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Abstract—In recent years, various encoder-decoder-based U-

Net architecture has shown remarkable performance in medical 

image segmentation. However, these encoder-decoder U-Net has 

a drawback in learning multi-scale features in complex 

segmentation tasks and weak ability to generalize to other tasks. 

This paper proposed a generalize encoder-decoder model called 

dense dilated inception network (DDI-Net) for medical image 

segmentation by modifying U-Net architecture. We utilize three 

steps; firstly, we propose a dense path to replace the skip 

connection in the middle of the encoder and decoder to make the 

model deeper. Secondly, we replace the U-Net's basic convolution 

blocks with a modified inception module called multi-scale 

dilated inception module (MDI) to make the model wider without 

gradient vanish and with fewer parameters. Thirdly, data 

augmentation and normalization are applied to the training data 

to improve the model generalization. We evaluated the proposed 

model on three subtasks of the medical segmentation decathlon 

challenge. The experiment results prove that DDI-Net achieves 

superior performance than the compared methods with a Dice 

score of 0.82, 0.68, and 0.79 in brain tumor segmentation for 

edema, non-enhancing, and enhancing tumor. For the 

hippocampus segmentation, the result achieves 0.92 and 0.90 for 

anterior and posterior, respectively. For the heart segmentation, 

the method achieves 0.95 for the left atrial. 

Keywords—Deep learning; Dense-Net; inception network; 

medical image segmentation; U-Net 

I. INTRODUCTION 

Accurate and automated segmentation of anatomical 
structures is the most critical and challenging task in analyzing 
medical images. Medical image segmentation extracts the 
region of interest for the diagnosis and treatment of various 
diseases [1], including brain cancer [2], cardiovascular 
diseases [3], liver cancer [4], pulmonary disease [5], etc., and 
the list goes on. Accurate and automatic segmentation of 
anatomical structures is the most important and demanding 
activity of medical imaging Medical image analysis aims to 
provide radiologists and clinicians with an efficient, accurate, 
and precise interpretation of medical images, reducing the 
time, cost, and error for effective diagnosis. Medical images 
such as magnetic resonance images (MRI) provides a variety 
of information (i.e., shape, size, and position) for a diagnostic 
which achieves multiple anatomical tomographic imaging by 
setting different parameters [6]. 

Deep learning (DL) models recently achieved huge 
success in segmenting medical images [7] because of their 
great ability to learn critical data features automatically [8][9]. 

Compared to traditional approaches, multi-layered DL has 
become the preferred solution for various complicated tasks. 
Motivated by its performance, multiple types of medical 
image segmentation research were conducted, notably using a 
convolutional neural network (CNN) such as brain tumor 
segmentation [10], heart segmentation [11], and hippocampus 
segmentation [12]. 

Over the years, many sophisticated CNN models have 
been proposed such as Alex Net [13], VGG [14], Google Net 
[15], Dense Net [16], ResNet [17], Deeplab [18], fully 
convolution network (FCN) [19] and U-Net [20]. Among 
these CNN networks, U-Net, an encoder-decoder based 
model, makes an outstanding achievement and becomes the 
most famous model in medical image segmentation tasks and 
computer vision at large that outperformed the existing 
approaches [21]. The encoder extracts the features while the 
decoder performs the segmentation based on the extracted 
features, which results in a remarkable performance on 
medical images. However, these encoder-decoder architecture 
has a drawback in learning multi-scale features in complex 
segmentation tasks and a weak ability to generalize to other 
tasks. The network structure needs to be optimized to be 
robust enough to make the parameter space wider and deeper 
to solve the problem. Although network widening and 
deepening increase network parameters and computational 
cost, which causes difficulty while training, causing the 
gradient to vanish during training [22]. Therefore, the 
challenge is to make the network wider and deeper without 
gradient vanishing and fewer parameters. 

To overcome the above-aforementioned challenges, we 
propose a generalized encoder-decoder model called dense 
dilated inception network (DDI-Net) for medical image 
segmentation by modifying U-Net architecture. More 
specifically, we utilize three steps; firstly, we propose a dense 
path to replace the skip connection between the encoder and 
decoder to make the model deeper. Secondly, we replace the 
U- Net's basic convolution blocks with a modified inception 
module called multi-scale dilated inception module (MDI) to 
make the model wider without gradient vanishes and with 
fewer parameters. Thirdly, data augmentation and 
normalization was applied to the training data to improve the 
model generalization. We evaluated our DDI-Net on three 
subtasks of medical segmentation decathlon challenge (MSD) 
datasets [23]. The experimental results show that our proposed 
method outperformed the existing ones in each task. Our 
contribution to this paper is as follows: 
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 A generalized network named Dense Dilated Inception 
Network (DDI-Net) is proposed for medical image 
segmentation. 

 We proposed a simple and efficient Preprocessing 
pipeline, which uses data normalization and 
augmentation for training and testing DDI-Net to 
improved segmentation generalization and accuracy. 

 We conduct experiments with three different medical 
segmentation tasks to verify integrated components' 
performance and the overall model's generalization. The 
results show that our model outperforms other state-of-
the-art models with fewer parameters. 

The remaining part of this paper is as follows; we review 
the related work in Section II. In Section III represents our 
proposed DDI-Net. The experimental setup, including dataset 
preprocessing, implementation details, and evaluation, are 
describes in Section IV. Section V discusses the experiments 
to evaluate the effectiveness of our DDI-Net. Finally, we 
conclude in Section VI. 

II. RELATED WORK 

Nowadays, many encoder-decoder based architectures 
have been proposed for medical image segmentation. Based 
on recent studies, the encoder-decoder architecture, such as U-
Net, has shown excellent performance due to its flexibility and 
extensible structure. Several extensions of U-Net have been 
proposed by integrating sophisticated network blocks such as 
residual network [24], dense network [25], inception module 
[26], and dilated convolution [27] for improving segmentation 
accuracy. Li et al. [25] proposed a hybrid densely U-Net (H-
DenseU-Net) for 3D liver and tumor segmentation. H-
DenseUNet combines densely connected paths and U-Net to 
improve performance. Alternatively, Yang et al. [28] propose 

a U-Net with dilated convolution, and they called their 
structure DCU-Net for brain tumor segmentation. 

Similarly, Chen et al. [29] embedded dense and residual 
blocks into a U-Net segmentation network. Ibtehaz and 
Rahman [30] combine a U-Net with residual inception modules 
for multi- scale feature extraction and perform segmentation on 
different modalities. Also, Wang et al. [31] integrate the 
inception module in U-Net architecture for segmentation of left 
atrial. Li and Tso [32] in cooperated inception modules and 
dilated inception modules in U-Net architecture for liver and 
tumor segmentation. Furthermore, Zang Z.et al [33] integrates 
the inception module with a dense connection into U-Net 
architecture. Jingcong L. et al. [34] replace the basic 
convolution block of U-Net architecture with a dilated 
inception block for multi-scale feature aggregation for cardiac 
right ventricle segmentation. Moreover, Bala S.B. and Kant S. 
[35] proposed a hybrid network. They combined CNN and 
Gated Recurrent Unit (GRU) using the U-Net structure to 
perform segmentation of cardiac MRI. 

III. PROPOSED METHOD 

In this study, inspired by U-Net, Dense-Net, Inception 
module, and Dilation convolution, we proposed a generalized 
medical segmentation model. The model was built upon U-
Net based encoder-decoder architecture by integrating dense 
path and MDI blocks into U-Net. We modify U-Net by 
replacing the skip connection with the proposed dense path 
between the encoder and decoder and in cooperating MDI 
block to replace the basic convolutional block to improve the 
model's accuracy. Fig. 1 illustrate the proposed DDI-Net 
architecture. The DDI-Net comprises four dense paths, nine 
MDI blocks, four down sampling layers, four up sampling 
layers, and one output layer. 

 

Fig. 1. Overall Architecture of the DDI-Net Model. 
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A. Dense Path 

In U-Net, features extracted at the encoding path are pass 
using skip connections to their corresponding decoder path, 
which results in the passing of extra features forward, leading 
to the mortifying the exactitude of segmentation [36][37]. 
Also, we observe a large semantic gap between the encoder 
and the decoder feature map. Thus concatenation (feature 
fusion) of the feature maps from the encoder and the decoder 
will cause disparity during learning, thereby affecting 
segmentation prediction. Therefore to alleviate these 
challenges, we proposed to replace the skip connection with 
convolutional layers densely connected, which we referred to 
as dense path. Rather than merely concatenating the feature. 
As illustrated in Fig. 2, the dense path comprises densely 
connected convolution layers with 3x3 filters and a bottleneck 
layer. The dense path allows in-depth supervision to make the 
model deeper to allow the encoder to extract low-level 
features, thus helping the decoder recover the lost spatial 
information. The dense path also improved the flow of 
information and the gradient all over the network. This aids in 
alleviating the difficulty in training the network and hence 
reduces overfitting with its regularizing effect. Moreover, the 
dense path performs feature reuse to utilize the network's 
potential, with a resilient condensed model that is easy to train 
and highly parameter efficient. 

B. Multi-Scale Dilated Inception Block 

There are usually different scales of interest in medical 
image segmentation, such as tumors, lesions, and organs. 
Therefore, we need a network that can learn and extract multi-
scale features with fewer parameter Networks models like 
googleNet [12] propose the inception module. The inception 
module consists of multiple convolutional layers with kernels 
of different sizes that learn multi-scale features. In each 
convolutional layer, the receptive field size is determined by 
the kernel size [38]. These kernel sizes include both small and 
large sizes. The small kernels are used to learn small scale 
features such as 1 x 1, 3 x 3, while the large scale kernel is 
used to learn large scale features such as 7 x 7 and 13 x 
13[38]. According to [39] [40], multi-scale features improved 
the performance of the network model. However, large 
convolutional kernels used in obtaining large scale features 
increase the parameters and computational cost. To overcome 
this challenge, [39] apply dilated convolution. Dilated 
convolution is a convolution type that expands the receptive 
field to obtain large scale features using different dilation rates 
without increasing the parameters and computational cost. 
Inspired by the inception module [12] and dilated convolution 
[39], we propose a modified inception module by 
incorporating dilated convolutions called multi-scale dilated 
inception module (MDI). MDI module is developed to be used 
in the encoder as well as the decoder path to extract and 
aggregate the multi-scale feature maps. These feature maps 
are aggregated from kernels of different sizes with different 
dilation rates to widen the network to learn multi-scale 
features to improve the segmentation performance [41]. As 
depicted in Fig. 3, three convolutional layers with 3x3 kernels 
with four different dilation rates are used in the MDI module. 
The dilation rates are 1, 2, 4, and 6. Each convolutional 
kernel's feature scale is (2l+l)

 2
, where l is the kernel's dilation 

rate. Features extracted from the dilated convolution result 
produce a different scale of 3 x 3, 5 x 5, 9 x 9, and 13 x 13, as 
illustrated in Fig. 4. The output of the four dilated convolution 
layers is concatenated. Batch normalization [42] is applied to 
accelerate the training and enhance the model's stability, 
followed by a 1x1 convolution to reduce the dimension and 
ReLU is used as the activation function for each convolutional 
layer [43]. 

 

Fig. 2. The Architecture of Dense Path. 

 

Fig. 3. The Architecture of Multi-Scale Dilated Inception (MDI) Block. 

 

Fig. 4. Dilated Convolution with 3x3 Kernel with a Dilation Rate of 1, 2, 4, 

and 6. 
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We modified the U-Net architecture by replacing the 
convolution block with the proposed MDI module. 
Experiments verified that our proposed MDI enhanced the 
segmentation performance by learning more multi-scale 
features without any free blow up in computational 
complexity [37] with fewer parameters than the original 
inception module. 

IV. EXPERIMENTAL SETUP 

The experimental setup, including the preprocessing of the 
dataset, implementation description, and evaluation metrics, is 
discussed in this section. 

A. Datasets 

We use three subtasks from the decathlon challenge 
dataset for medical segmentation. There are 484, 260, and 20 
image data for brain tumors, hippocampus, and heart tasks. In 
Table I, the dataset is briefly outlined. 

1) Preprocessing of training and testing data: Various 

scanners, institutions, and anatomical structures with different 

pixel spacing were used in collecting training and testing data 

used. Hence, these differences make it very important to 

preprocess the training and testing data before feeding our 

model. Fig. 5 shows the overview of the preprocessing steps 

followed during training and testing. Precisely, we performed 

image resampling to make the pixel spacing of all the images 

the same, and then we normalized the images. Lastly, data 

augmentation is applied during the training and testing process 

to improved generalization. 

a) Image Resampling: Since the dataset used for both 

training and testing, the experiments are from three different 

datasets with pixel spacing ranging from 1mm to 1.25mm.We 

do image resampling to eliminate the difference. For brain 

MRI the pixel spacing is 1mm x 1mm x 1mm, while the 

hippocampus 1mm x 1mm x 1mm and heart is 1.25mm x 

1.25mm x 2.70mm. Therefore, we resample the heart images 

to 1mm to make the spatial resolution the same as the brain 

and hippocampus images. After image resampling, we applied 

intensity normalization to the three datasets' images to 

normalize the image. 

b) Data Normalization: We normalize the images using 

intensity normalization by subtracting the volume's mean and 

dividing by the volume standard deviation to the range of 0, 1. 

After normalization, we applied augmentation to increase the 

training data to improve model generalization and avoid 

overfitting. 

c) Data Augmentation: Data augmentation increases the 

training data by artificially generating more training data to 

generalize the model. The training data is augmented by; 

 Random rotation of angle between -5 and 5 degrees. 

 Vertical flipping with a probability of 0.2 for increasing 
the orientation variety. 

 Random image scaling with a scale factor s: s E [0.2, 
0.6] to maximize the images' variance. 

B. Implementation Details 

The network model has been implemented using keras [44] 
with tensorflow [45] backend using python 3 programming 
languages. Our network was trained and tested on a desktop 
computer with NVIDIA GeForce RTX 2080Ti with 11 GB of 
memory and 2 graphics card. During the training, the network 
was initialized with the normal weight [46], 0 bias, 0.0001 
learning rate, and cross-entropy as our loss function. We 
optimize our network with Adam optimizer [47] with Beta-
1=0.90, Beta-2 = 0.99 and epsilon = 0.000001. We executed 
5-fold cross-validation and trained the model for 100 epochs. 
After every epoch, we evaluate the model using the validation 
data, and then the best model is selected for evaluating the test 
data. For the training and validation, we use a batch size of 4. 
In each epoch, 4 data is transposed to the model as input. All 
layers use a Rectified Linear Unit (ReLU) as an activation 
function except the output layer that uses softmax. We use 
batch normalization to normalize the feature maps and 
stabilize the network while training. 

C. Evaluation Metric 

The performance of our model is to assess using the Dice 
score. It is evaluated as; 

     (     )  
 |     |

( |  | |  | )
             (1) 

GT and SR are ground truth and segmentation results, 
respectively. Ground truth is the segmented region extracted 
by experienced experts manually using standard annotation 
protocol. In contrast, the segmentation result is the segmented 
region from the evaluated method. 

TABLE I. GENERAL DESCRIPTION OF THE DATASET 

Name Modality 
Number of 

subjects 
Scanners Source 

Image Spatial 

Resolution 
Target 

Brats 2016 & 2017 

Multimodal 

Multisite 
MRI Data FLAIR, 

T1w, T1gd, T2w 

484 1T to  3T 
Brats 2016 & 2017 
Datasets 

Gliomas segmentation 

necrotic, active tumor 

and oedema 

1x1x1mm3 

LASC Mono-modal MRI 20 
1.5T Achieva 

Scanner Philips 

Kings College 

London 
Left Atrium 1.25x1.25x1.25mm3 

Hippocampus Mono-modal MRI 260 
1.5T Achieva 
Scanner Philips 

Vanderbilt 

University Medical 

Centre 

Hippocampus Head and 
Body 

1x1x1mm3 
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Fig. 5. Overview of Preprocessing of Images Steps during Training and 

Testing. 

V. EXPERIMENTAL RESULT 

This section evaluates our proposed model's effectiveness 
and generalizability on three separate segmentation tasks, 
including multimodal MRI segmentation of brain tumors, 
mono-modal MRI segmentation of the hippocampus, and MRI 
segmentation of the heart. 

A. Brain Tumour Segmentation 

We experiment with brain MRI images for brain tumor 
diagnosis of glioma to test our model's efficacy. The most 
common brain tumor found in the brain and spinal cord is a 
glioma. Due to the diverse and heterogeneously positioned 
targets shown in Fig. 6, glioma segmentation is a difficult 
task. This segmentation is targeted at segmenting glioma into 
edema, tumor non-enhancement, and tumor enhancement. 484 
multi-parametric magnetic resonance imaging (MRI) scans 
from patients diagnosed with glioblastoma or lower grade 
glioma with the same number of ground-truth images are 
included in the brain dataset given. The proposed method uses 
all four sequences to segment brain MRI images, comprising 
volumes of Native T1-weighted (T1), Post-contrast T1-
weighted (T1-Gd), T2-weighted (T2), and T2-fluid attenuation 
inversion recovery (FLAIR). 70 % of the data in this 
experiment is used for training, 15 % for validation, and 15% 
for testing. To get an accurate and stable model, we performed 
a 5-cross validation. DDI-Net results were contrasted with two 
recently published state-of-the-art models, and the outcome is 
shown in Table II. The results of the dice score obtained from 
DDI-Net demonstrated superior performance over the existing 
models. 

B. Hippocampus Segmentation 

The hippocampus is a complex organ of the brain 
embedded deep in the temporal lobe. In learning and memory, 
it has the most responsible function. For Alzheimer's disease 
(AD) diagnosis, hippocampus segmentation is essential. As 
shown in Fig. 6, a complicated task is hippocampus 
segmentation. It has two adjacent tiny structures with high 
precision. The data set consisted of 260 stable adults and 
adults with non-affective psychotic illness, taken from the 
Vanderbilt University Medical Center phenotype data 
repository. 70% of the data in this experiment is used for 
training, 15% for validation, and 15% for testing. 

To get an accurate and stable model, we performed a 5-
cross validation. The hippocampus's entire MRI is used as the 
input to the network, as shown in Table III. Compared to the 

other two art method states, our proposed method gets the 
highest result. 

C. Heart Segmentation 

The heart is one of the human body's vital organs that 
pump blood throughout the body. Segmentation of the Left 
atrial from the heart plays a vital role in diagnosing atrial 
fibrillation (AF). 

Segmentation of the left atrial from the heart is challenging 
because of the small training dataset with considerable 
variability, as shown in Fig. 6. The provided dataset consists 
of 20 MRI images from the left atrial segmentation challenge 
(LASC), Kings College Kingdom, London, United Kingdom. 
We use the whole MRI of the heart as input to the network. As 
shown in Table IV, the best result compared to other method 
states is obtained by our proposed method. 

 
(a)   (b)  (c) 

Fig. 6. A Sample of the Three Tasks of Segmentation. The First Row 

Demonstrates the Original Images and the Ground Truths was Shown in the 

Second Row. (a) Brain Tumor. (b) Hippocampus. (c) Heart. 

TABLE II. COMPARISONS RESULT ON BRAIN TUMOR SEGMENTATION 

Networks Edema  Non-enhancing Enhancing 

NDN 0.71 0.60 0.72 

nnU-Net 0.68 0.48 0.68 

DDI-Net (ours) 0.82 0.68 0.79 

TABLE III. COMPARISONS RESULT ON HIPPOCAMPUS SEGMENTATION 

Networks Anterior  Posterior 

NDN 0.88 0.89 

nnU-Net 0.90 0.89 

DDI-Net (ours) 0.92 0.90 

TABLE IV. COMPARISONS RESULT ON HEART SEGMENTATION 

Networks Left Atrial 

NDN 0.85 

nnU-Net 0.93 

DDI-Net (ours) 0.95 
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D. Ablation Studies 

We propose and introduce dense paths and the MDI blocks 
to improve the baseline encoder-decoder-based U-Net model's 
segmentation accuracy in the proposed method. 

To verify these introduced modules' effectiveness, we 
conduct the following ablation studies to investigate their 
contributions to the overall DDI-Net performance. We use the 
heart dataset for the ablation studies because it is the most 
challenging dataset used in our experiment. Hence, we make a 
comparison among the U-Net, U-net with dense paths (U-Net 
+ dense path), and U-net with MDI blocks (U-Net +MDI) and 
the DDI-Net (U-Net+ Dense path +MDI). We initially start 
with the baseline U-Net and then assess the dense path and 
MDI block's effect on the results. 

1) Ablation study for replacing the skip connection with 

the dense path: To verify the dense path's effectiveness, we 

replaced the skip connection with the proposed dense path. 

Table V illustrates the segmentation result. The results show 

that we achieved 0.9 on the dice score compare to 0.89 in the 

original U-Net. Our result signifies that the dense path 

proposed has improved the segmentation accuracy, making the 

network deeper and without a vanishing gradient. The dense 

path also alleviates the semantic gap between the encoder and 

the decoder by adding more blocks of convolutional operation 

and dense connection, which aids in a proper fusion of the 

feature maps. 

2) Ablation study for replacing the convolutional layer 

with MDI blocks: To verify MDI blocks' effectiveness, we 

replaced the basic convolutional blocks with MDI blocks. 

Table VI depicted the segmentation results. The results 

illustrate that we achieved 0.93 on the dice score compare to 

0.89 in the original U-Net. We observed that MDI blocks 

make the network wider; this aid in extracting multi-scale 

features from different scales. This indicates that using a filter 

of different sizes allowed the network to capture multi-scale 

features and improved the segmentation result. 

3) Ablation study for the proposed DDI-Net: To verify the 

effectiveness of DDI-Net, We experimented with dense path 

and MDI blocks together. The results of the comparison are 

depicted in Table VII. Our results show that we achieved 0.95 

on the dice score compare to 0.89 in the original U-Net. 

Table VII shows that the DDI-Net contributes to improving 

medical image segmentation's performance and accuracy. The 

cooperation between these two proposed modules into U-Net 

has yielded the best result from the segmentation results. 

E. Evaluating the Effect of Data Normalization and Data 

Augmentation on DDI-Net Generalization 

Using two data normalization and three data augmentation 
techniques, including image resampling, intensity 
normalization, rotation, flipping, and scaling, this section 
verifies the efficacy of data normalization and data 
augmentation on DDI-Net generalizability. We trained DDI-

Net using all three datasets with the same setting to analyze 
the impact of data normalization and augmentation in model 
generalization. Firstly, we experiment with data normalization 
only. Secondly, we experimented with data augmentation and 
experimented with normalization and augmentation of data, as 
seen in Table VIII. From Table VIII, it indicates that the data 
normalization and augmentation increase Dice score result. By 
integrating data normalization and augmentation operations, 
the best segmentation efficiency is obtained for all three 
datasets. 

F. Algorithm Run-Time 

Table IX shows the training and testing time for all the 
models in each experiment. It can be found that in both 
segmentation tasks, the proposed model requires less time for 
training and testing compared to nnU-Net and NDN. Besides, 
brain data requires more time than the hippocampus and heart 
dataset for training and research. 

G. Comparison with State-of-the-Art Methods 

To verify the effectiveness of our proposed improvements 
with the state of the art methods. We compare our method 
with two proposed methods by Wang L. et al. [48] and Isensee 
F.et al. [49].For the brain and hippocampus dataset, the result 
is from the papers. For the heart dataset, Wang L.et al. do not 
perform implementation with the heart dataset. We obtained 
the result using Wang L.et al; implementation details and 
Isensee F. result from their paper. Tables II, III, and IV show 
the two methods' dice score and the DDI-Net on the three 
datasets. As observed visually from the tables, the proposed 
DDI-Net improves the segmentation's accuracy and 
generalizes all three datasets. Fig. 7 visually illustrates the 
output results of the DDI-Net proposed. 

TABLE V. ABLATION STUDY FOR REPLACING THE SKIP CONNECTION 

WITH DENSE PATH 

Networks Heart Segmentation Left Atrial Parameters 

U-Net 0.89 2.81M 

U-Net + Dense path 0.90 1.75M 

TABLE VI. ABLATION STUDY FOR REPLACING THE CONVOLUTION BLOCK 

WITH MDI BLOCKS 

Networks Heart Segmentation Left Atrial Parameters 

U-Net    0.89 2.81M 

U-Net + MDI    0.93 1.10M 

TABLE VII. ABLATION STUDY FOR REPLACING THE SKIP CONNECTION 

AND CONVOLUTION BLOCK WITH DENSE PATH AND MDI BLOCKS 

Networks Heart Segmentation Left Atrial Parameters 

U-Net    0.89 2.81M 

DDI-Net    0.95 0.90M 
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TABLE VIII. PERFORMANCE OF DDI-NET WITH DIFFERENT TRAINING CONFIGURATION 

Configuration 

Data                 Data 
Norm                Aug 

Brain Segmentation 

Edema   Non-enhancing  Enhancing 

Hippocampus Segmentation 

Anterior             Posterior 

Heart Segmentation 

Left Atrial 

X                   √ 0.73              0.50               0.71 0.85                     0.81 0.82 

√                   X 0.79              0.62               0.75 0.89                     0.86 0.89 

√                   √ 0.82              0.68               0.79 0.92                     0.90 0.93 

TABLE IX. MODEL TRAINING AND TESTING TIME 

Networks 

Brain Segmentation 

Training          Testing 

Time               Time 

Hippocampus Segmentation 

Training               Testing 

Time                     Time 

Heart Segmentation 

     Training          Testing 

      Time                  Time 

NDN   8.2h                  1.5sec     7.4h                        0.91sec      4.7h                   0.8sec 

nnU-Net   7.6h                  1.8sec     8.1h                        1.32sec      5.2h                   1.3sec 

DDI-Net (ours)   7.5h                  0.9sec     6.5h                        0.68sec      4.3h                   0.7sec 

 

Fig. 7. Visual Illustration of Segmentation Output on Brain, Hippocampus and Heart Dataset. from Left to Right: Original Image, Ground truth, DDI-Net, NDN 

and nnU-Net. 

VI. CONCLUSION 

In this paper, by modifying the U-Net architecture using 
Dense-Net, Dilated Convolution, and Inception network, we 
propose a new encoder-decoder network called DDI-Net. 
There are two features on the DDI-Net, namely dense paths 
and MDI blocks. The dense path enables in-depth supervision 
to deepen the model. Low-level features can be extracted by 
the encoder, thus helping the decoder recover the missing 
spatial information. This helps to facilitate the reuse of 

features with a resilient simplified training path and highly 
efficient parameters. 

The MDI block, meanwhile, makes the model wider 
without the gradient vanishing but with fewer parameters. 
Besides, using data normalization and augmentation, we 
propose a general training and testing process. The 
experiments conducted show that they play an essential role in 
generalizing the model across images from various tasks. To 
prove the DDI-Net generalization, the model is tested using 
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three distinct medical image segmentation tasks. The result 
shows that our DDI-Net performs better than the state of the 
art method, including nnU-Net and NDN. However, we have 
limited the tasks only to MRI images. Therefore, to make the 
network more general and efficient for all medical problems in 
the future, we plan to experiment with other modalities. 
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