
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

On Developing High-Speed Heterogeneous and
Composite ES Network through Multi-Master

Interface
J Rajasekhar1, Dr. JKR Sastry2

Koneru Lakshmaiah Education foundation Vaddeswaram

Abstract—These days, many heterogeneous and composite
embedded systems contain many subnets developed using
different bus-based protocols, such as I2C, CAN, USB, and
RS485. There is always a requirement to Interface and
interconnect the heterogeneous ES networks to achieve and
establish a composite network. The ES networks developed using
different protocols differ in many ways, considering the speed of
communication, Arbitration, Synchronization, and Timing.
Many solutions are being offered using heterogeneous embedded
systems, especially in implementing automation systems, without
addressing integration and proper interfacing. In this paper, a
Multi-Master based interfacing of a CAN and I2C networking
through Ethernet-based interfacing has been presented especially
to find the optimum speeds at which the networks must be
operated for different data packet sizes. It has been shown in the
paper that it is quite efficient and effective when a data packet of
size 40 bytes is driven using an I2C speed of 5120 bits, Ethernet
speed of 20480 bits, and CAN speed of 500 bits.

Keywords—Embedded systems; embedded networks;
hybridization of embedded networks; hybridizations through multi-
master communication

I. INTRODUCTION
Many kinds of embedded networks are in existence and in

use for implementing different types of Applications. The Most
important Embedded System networking being in use includes
the networks built using the communication systems that
Include I2C, CAN, RS485, USB. But as the technologies are
emerging, a necessity arises that require bridging the ES
networks built around ES networking standards.

All ES networking standards differ in many ways: network
termination, device identification, type and format of data
packets, type of signals used, and communication speeds.

Hybridization of Embedded Networks can be achieved
through different interconnecting types of wired networks that
include I2C, CAN, USB, and RS48. Serial communication
takes place among the hybridized networks. Hybridization can
also be achieved through establishing wireless networks or
through a combination of wireless and wired networks. The
major issue in such networking is the management of
communication speeds and data rates. May architectures can
achieve the networks' hybridization, including single master
integrations, multi-master integrations, a hardware-based
bridge, multi-master integration, etc. The way a hybridized
system works is dependent on the type of hybridization method

used. As of date, hybridization through a Bridge device is
proposed by [17].

Hybridization can be achieved through other methods that
include Single master catering for the communication, using a
Multi-master interface, and developing a Universal bus that
caters to most of the ES-based communication Standards. In
this paper, hybridization through Multi-master Interface has
been presented.

A. Motivation
The interfacing of the heterogeneous ES networks is

necessary these days as many Systems developed using
different networking protocols need to be interfaced and
interconnected. The response time does not suffer. The
electronics industry, as such, needs these kinds of solutions.

B. Rest of the Coverage in the Paper
In the rest of the paper, in Section 2, a review of the

contributions made in the research related areas has been
presented. In Section 3, application development using CAN
and I2C communication systems has been presented along with
a comparison that shows how the networking systems differ
and the issues related to interfacing between the
communication systems. In Section 4, an architecture that
focuses on the I2C and CAN networks' hybridization has been
presented. In Section 5, a computation method for determining
optimum speeds of I2C, CAN, and Ethernet has been presented,
and conclusions have been drawn in Section 6.

II. RELATED WORK
The speed of communication through I2C and RS23 gets et

influenced because of the complex electromagnetic conduit.
Such a domain will result in the inappropriate disposal of the
signals to the interfaces. Inappropriate transfer of
electromagnetic will result in low speed and dependability. A
few strategies are to be invented that help handle speed through
legitimate cushion the executives [1].

Utilizing remote advances to improve conveyed implanted
frameworks is testing contrasted with wired systems because of
vulnerability and less unwavering quality caused by attractive
obstruction, blurring, reflection, and so on. The consistency of
remote correspondence is an issue. It turns out to be very
unsafe for a framework when it needs to meet some basic
security prerequisites by getting information through a remote
system. The vulnerabilities existing with the remote
correspondence can be settled through the utilization of mixed-

320 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

race models or undertaking hybridization of structural models.
The idea of hybridization is increasingly common in the
automotive area where everything must work consummately,
disregarding un- sureness. Hybridization helps when the
correspondence needs to occur in questionable circumstances.
Engineering has been displayed that can be utilized to actualize
applications requiring the idea of hybridization. Numerous
Interface gives that must be considered and taken care of
through a programming model that makes the framework
hybridization-mindful [2].

Two gauges are utilized as often as possible. They
incorporate field bus and CAN bus for executing industry-
based applications; field bus benchmarks are not uniform and
incredibly vary from industry to industry. Correspondence
between the gadgets utilizing Fieldbus in that capacity is
entangled. In industry, both the transport based systems
administration frameworks are often utilized. This has
prompted a prerequisite of converting one kind of
correspondence to the next, which can be accomplished through
convention transformation. Convention transformation can be
planned and actualized at the equipment level [3].

CAN transport based correspondence can be utilized for
systems administration with frameworks. The engineers need
to comprehend the CAN convention, Interface, controller, and
Physical associations before the applications can be created
utilizing CAN-based correspondence. Actualizing CAN-based
correspondence at the net root level is entangled and needs
thorough testing. The advancement of utilizations utilizing
CAN is made to be straight through the CAN module. The
CAN is a convention suite that can be coordinated with any
inserted framework Software. Sending and getting the
information can be accomplished through the CAN module [4].
When CAN is to be utilized alongside other correspondence
conventions, for example, I2C, protocol transformations can be
actualized at work level rather than net root level. If another
module that modified works I2C communication is grown, at
that point, convention transformation can be accomplished at
the work level.

A different gadget can be structured and built to do
conventional change utilizing numerous Microcontroller based
frameworks, fast double port RAM information sharing
innovation, and continuous multi- entrusting framework C/OS-
II. A convention converter that helps correspondence
somewhere in the range of RS232C and RS485 has been built
up to be actualized inside savvy instruments, information
securing frameworks, etc. [5]. The gadget can be interfaced
with a remote checking framework through Ethernet-based
correspondence. Along these lines, sequential gadgets can be
connected to the system control layer. This gadget built up
along these lines has unwavering high quality and continuous
execution and acknowledge information trade, information
sharing, and data handling among various Microcontroller
based frameworks

Field bus convention is nonstandard and has been
actualized in various forms. There is additionally an issue of
interconnecting distinctive field buses. At the point when two
systems are manufactured utilizing distinctive Fieldbus
correspondence, conventional transformation is required. ARM

controller can be used for accomplishing the change. The
convention transformation is accomplished through the
advancement of a protocol utilizing a standard information
parcel. The strategy isn't constrained to coordinated
transformation and is free of the transport area and convention
utilized by the field buses [6].

A USB and I2C convention varies in numerous angles,
considering how the correspondence is attempted. The
information bundle groups, length of the system, number of
gadgets that can be associated, number of ace, transport
discretion, synchronization strategy, stream control, and so on
vary greatly. A mapping between

I2C and USB have been done both at the equipment and
product level. The product structure that can be utilized for
accomplishing the change has been displayed [7].

Modbus and Profibus are two correspondence frameworks
utilized for accomplishing modern mechanization. Both
specialized strategies are generally utilized in the modern
control field. Anyway, these two means of transport can't be
associated straightforwardly because of the presence of
extraordinary fluctuation between them. An entryway is
required for interfacing two unique means of transport through
which convention transformation can be conveyed. A passage
is created utilizing the AT89C52 Microcontroller. Profibus and
Modbus are two progressively basic mechanical field transport;
they were generally utilized in the modern control field. Since
the two means of transport can't inter-connect with one
another, a Profibus and Modbus convention conversion is
required. SPC3 is incorporated with the Micro Controller to
achieve Profibus and Modbus conversions [8].

Numerous kinds of sub-frameworks are to be created and
actualized, utilizing distinctive correspondence frameworks.
For example, s Flight control, banking, therapeutic, and other
high affirmation frameworks should be executed most
unequivocally since the correspondence framework utilizes
distinctive signaling, sheathing, commotion separating, signal
disconnection, and so forth. One should structure and build up
the framework so that one sub-framework doesn't meddle with
the other.

Following a data stream at the equipment level is one
strategy that can be utilized to distinguish and channel the
differences. The door level in-arrangement stream following
(GLIFT) framework is built to provide a technique for testing
data streams inside I2C and USB. Time-division various access
(TDMA) has been utilized that can confine a gadget on the
BUS from the streams [9].

Mechanical Ethernet innovation (EPA) and Modbus
correspondence innovation (MODBUS) are now and again
utilized correspondence frameworks to actualize modern
procedures. No immediate communication in that capacity can
be conveyed in the middle of these two frameworks as there is
no immediate similarity between them. A corresponding
passage is created for accomplishing the necessary Interface
between these two innovations. A passage has been created
utilizing an ARM-based smaller scale controller and COS
continuous working system. Bidirectional correspondence can
be accomplished through the utilization of the entryway.

321 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

The correspondence entryway can give a steady, secure,
constant, and adaptable answer to power plants [10].

Two kinds of industry explicit correspondence frameworks
are utilized in the power segments intended for National power
dispatching and control the breeze factories. To achieve
integration, the framework theories correspondence
frameworks must be interfaced with one another. A method has
been developed to accomplish conventional transformation that
executes capacities like interconnectivity, convention
information type, configuration change, and scaling,
information approval, the board of neighborhood/remote
directions, recreation of information parcels transmission, etc.
solicitations, communication bundles investigation, and
repetitive correspondence joins [11].

Field buses are utilized for trading information between
several microcontrollers and field gadgets by affecting
communication among them. Numerous adaptations of the
field bus communication frameworks exist. Structuring a
correspondence framework for impacting correspondence
among the gadgets that keep diverse Fieldbus correspondence
benchmarks is mind-boggling and, by and large, prompts
convoluted usage of equipment and programming. An effective
correspondence interface is a requirement for executing a solid
framework utilizing restrained field bus correspondence norms.
CAN transport is additionally being utilized nowadays for
actualizing a significant number of mechanical procedures.
There is a need to interconnect between CANBUS and
MODBUS. The correspondence conventions are to be mapped
considering various parts of correspondence, and afterward, an
interface is required to be created. An interface that associates
both the transport based correspondence frameworks has been
introduced [12][13].

The way networking of the embedded systems is carried on
the kind of communication standard used I2C [14], USB [15],
CAN [16] and RS485[17] and also the kind of Microcontroller
based systems used for networking.

Many issues related to networking have been discussed
[18][19][20][21][22][23][24] concerning testing Distributed
Embedded Systems. Various methods and strategies have been
proposed by Rajasekhar et al. [25] for hybridizing the
networking of heterogeneous embedded networks. The
interconnection between an I2C network and a CAN network
can be achieved by developing a device that bridges both the
networks. Speed Matching is one of the most important
considerations that must be handled when it comes to the ES
networks' hybridization [26]. Rajasekhar et al. have presented
an efficient architecture that considers hybridization using
Multi-master Interface [27], which is further extended in this
paper to drive the architecture with the main considering
driving through optimum speeds.

III. APPLICATION DEVELOPMENT USING HETEROGENEOUS
AND COMPOSITE EMBEDDED NETWORK

A. Application Development using CAN Interface
An ES Application is developed through a CAN network,

which is meant for monitoring and controlling temperature and
humidity within an Engine.

CAN-based networking is archived through one Master and
two slaves. The slaves are implemented through Arduino-
UNO, and the Master is implemented through STEM 32. All
three systems are connected through MCP 2515 CAN Module.
The Master is connected to a SWITCH through its native
Ethernet port for onward networking with another network
developed using a different protocol such as I2C.

One of the slaves is connected with the DHT 11 sensor
situated near an automobile system engine. The sensor
continuously monitors the temperature of the engine and sends
the information to the CAN master. CAN Master will send the
information to the I2C Master through the Ethernet interface.
I2C Master drives a different network based on its native
protocol; The I2C Master sends the data that it received from
the CAN network to the I2C slave, a kind of actuator to cool
through a FAN connected to the slave. The FAN is controlled
through a relay system. Whenever the engine's temperature
goes beyond a level, the FAN is switched on or otherwise
switched off. The Functional requirements of CAN-based
Application is shown in Table I.

The Networking Diagram for the Application is shown in
Fig. 1.

CAN or Controller Area Network is a two-wired
asynchronous, half-duplex fast sequential system-bus width of
CAN is 217 bits. CAN is used for communication among
devices in a closed distance, such as in a vehicle. CAN is based
on CSMA-CD/ASM convention. CSMA guarantees that every
hub must hang tight for a given period before sending any
message. The crash location guarantees that the impact is kept
away from choosing the messages dependent on their endorsed
need. It gives a flagging rate from 125kbps to 1 Mbps. It
accommodates 2048 diverse message identifiers.

TABLE I. CAN APPLICATION DESCRIPTION

H
ar

dw
ar

e
D

ev
ic

e
N

um
be

r

H
ar

dw
ar

e
de

sc
rip

tio
n

In
te

rfa
ce

de

sc
rip

tio
n

Functional Description

1 STM32F401RE CAN

To receive Temperature Data from Slave

To receive Humidity Data from Slave

To Send Temperature data to I2C Master

To Send Humidity data to I2C Master

To Receive Distance data from I2C
Master

To send distance data to the slave

2 ARDUINO
UNO CAN

To Receive distance data from Master

To Control the Lighting System

3 ARDUINO
UNO CAN

To sense the temperature

To sense the humidity

To send Temperature to Master

To send humidity to the Master

322 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

SWITCH

CAN MASTER
STM 32 WITH ETHERNET SHIELD

MCP 2515 CAN MODULE

MCP 2515 CAN MODULE MCP 2515 CAN MODULE

SLAVE 2
ARDUONO UNO

SLAVE 1
ARDUONO UNO

DHT 11 SENSOR
RELAY

ON IF DISTANCE>50
OFF DISTANCE<50

I2C MODULE
MONITORS

DISTANCE OF OBJECTS

Fig. 1. CAN Networking Diagram.

CAN bus is the multi-master protocol. When the bus is idle,
any device can be attached to the CAN bus and starts
messaging. The can bus versatile, so devices attached to the bus
do not have addressing. Each device in the CAN bus receives
every message transmitted over the bus, and it is up to the
device to decide whether to use the message that it receives or
simply ignore it when the message is no more related to its
own.

CAN bus provide remote transmission request (RTR),
meaning that one node on the bus can request information from
the other nodes. A request for information is sent to a node
instead of waiting for a node to send information continuously.
Any device in CAN bus can identify the error that occurred on
the bus while transmitting the data and generates the error
frames. The node which identifies the error alerts all other
nodes about the error. There are no limitations for attaching
and detaching the CAN bus devices, so devices are easy to
attach and detach. Depending on the bus delays time and
electrical loads, we can only decide the number of devices
attached to the bus.

CAN protocol send messages in different types of data
packets that include data frames, remote frames, error frames,
and overload frames shown in Fig. 2, Fig. 3, Fig. 4, and Fig. 5.
Data Frames are used to transmit data from Master to Slave
and vice versa. Remote frames are used to seek permission
from another node to transmit messages. Error frames are used
for transmitting the errors that occur due to transmission, which
can be classified as Bit errors, CRC errors, Form errors,
Acknowledgement errors, and Stuffing errors. Overflow frames
are used to create extra delays required for transmission of
data or response.

Fig. 2. Data Frame.

Fig. 3. Remote Frames.

Fig. 4. Error Frame.

Fig. 5. Error Frame.

CAN-based communication between the Master and slave
can be undertaken using speeds ranging from 125kbs to 1Mbps
following the protocol sequences. The sequence in which the
data packets are transmitted depends on the type of Application
implemented over the network. The most appropriate choice of
speed is the most important issue to be dealt with for realizing
effective communication to take place among the
heterogeneous network. The choice, however, needs to take
into consideration many other important parameters.

323 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

B. Application Development using I2C Interface
Another I2C network is used as a subnetwork integrated

into a composite network along with the CAN network. The
ES Application developed through I2C Interface is related to
measuring the distance of the objects Located behind a motor
Vehicle and controlling the speed of a FAN fitted within the
engine based on the engine's temperature, which is transmitted
through the CAN network. The Application-specific functions
implemented through I2C based networking is shown in
Table II.

I2C Network is built with a single master and two slaves.
One slave is connected with an ultrasonic sensor to monitor the
nearest object's distance while t h e car is backing up. The
monitored distances are sent to CAN master through Ethernet.
The Second slave is connected with a DC Motor for controlling
FAN's speed, which is connected to an engine. The FAN
controlling is done based on the Temperature and Humidity
data received from the CAN master. Two different protocols
are used within I2C, each for reading and writing data.

The networking Diagram for the I2C based Application is
shown in Fig. 6.

TABLE II. I2C APPLICATION DESCRIPTIONS

H
ar

dw
ar

e
D

ev
ic

e
N

um
be

r

H
ar

dw
ar

e
de

sc
ri

pt
io

n

T
yp

e
of

 D
ev

ic
e

Functional Description

1 STM32F4
01 RE Master

To Receive Distance data from the
slave

To receive Temperature data from
CAN Master

To receive Humidity data from CAN
Master

To send Distance data to CAN Master

To send Temperature data to the slave

To send Humidity data to the slave

2 STM 32
F301 RE Slave

To sense the distance of the object
while reversing the car

To send the Distance data to the Master

3 STM 32
F301 RE Slave

To receive Temperature data from the
Master

To receive Humidity data from Master

To actuate the DC motor for controlling
the FAN

SWITCH

I2C SLAVE 1
STM32

I2CSLAVE 2
STM32

I2C MASTER
STM32 WITH ETHERNET

SHIELD

ULTRASONIC SENSOR
DC MOTOR

ON IF TEMPERATURE>27
OFF IF TEMOERATURE<27

CAN MODULE
MONITORS THE TEMPERATURE AND

HUMIDITY VALUES

Fig. 6. I2C Networking Diagram.

The following sequence of operations is carried when data
transmitted by a slave is to be read by the Master.

1) The master device sets the Read/Write bit to '1' instead
of '0', which signals the targeted slave device that the master
device is expecting data from it.

2) The slave device sends the 8 bits corresponding to the
data block, and the master device sets the ACK/NACK bit.

3) Once the master device receives the required data, it
sends a NACK bit. Then the slave device stops sending data
and releases the SDA line.

4) Suppose the master device reads data from a specific
internal location of a slave device. It first sends the location
data to the slave device using the steps in the previous
scenario. It then starts the process of reading data with a
repeated start condition.

The following sequence of operations takes place when a
master device tries to send data to a particular slave device
through the I2C bus:

1) The master device sends the start condition.
2) The master device sends the seven address bits, which

corresponds to the slave device to be targeted.
3) The master device sets the Read/Write bit to '0', which

signifies a write.
4) Now two scenarios are possible.
5) If no slave device matches with the address sent by the

master device, the next ACK/NACK bit stays at '1' (default).
This signals the master device that the slave device
identification is unsuccessful. The master clock will end the
current transaction by sending a Stop condition or a new Start
condition.

6) If a slave device exists with the same address as the
one specified by the master device, the slave device sets the
ACK/NACK bit to '0', which signals the master device that a
slave device is successfully targeted.

7) If a slave device is successfully targeted, the master
device now sends 8 bits of data only considered and received

324 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

by the targeted slave device. This data means nothing to the
remaining slave devices.

8) If the slave device successfully receives the data, it sets
the ACK/NACK bit to '0', which signals the master device to
continue.

9) The previous two steps are repeated until all the data is
transferred.

10) After all the data is sent to the slave device, the master
device sends the Stop condition, which signals all the slave
devices that the current transaction has ended.

C. Data Frames
I2C data is transferred in messages. Messages are broken

into frames of data. Each message has an address frame that
contains the binary address of the slave and one or more data
frames that contain the data being transmitted. The message
also includes start and stop conditions, read/write bits, and
ACK/NACK bits between each data frame. The format of the
message used within an I2C system is shown in Fig. 7.

Start Condition is initiated by making the SDA line
switched from a high voltage level to a low voltage level before
the SCL line switches from high to low. The Stop condition is
achieved through switching the SDA line from LOW voltage to
HIGH voltage after SCL is switched from LOW to HIGH. The
Bits 7-10 contain the address of the slave with which the
Master wants to communicate. The Read/Write Bit specifies
whether the Master is sending data to the slave (low voltage
level) or requesting it (high voltage level). The ACK/NACK Bit
specifies whether the Master requires Acknowledgment from
the slave or otherwise. If an address frame or data frame was
successfully received, an ACK bit is returned to the sender
from the receiving device.

D. Comparison of Application Specific CAN and I2C Networks
I2C and CAN networks differ in many ways: speeds,

protocols used for transmission and reception of the data,
addressing the devices within the networks, the data frames
used for transmission and reception of the data, error control
implemented, etc. Making a device as a slave to both the
networks is cumbersome. There can be many ways of
interconnecting both the networks, including connectivity
through a single Master, Connectivity through Multiple
Masters, Connectivity through a Bridge, and by implementing
a Universal Bus.

E. Interconnecting between CAN and I2C Networks through
Multi-master Interface
The interconnection between the I2C network and CAN

network is achieved by interfacing the MASTERS using an
Ethernet Interface is shown in Fig. 8.

The Master on the I2C network has both the I2C and
Ethernet Interface, and similarly, the Master on the CAN
network has both the CAN and Ethernet Interface. Whenever
data from an I2C slave is transmitted to a CAN salve, the data
is first transmitted to the I2C Master using the I2C protocol.
The data packets are de-assembled and then assembled into
Ethernet packets. The Ethernet packets are then transmitted to
the CAN master through peer to peer connection established

through Ethernet. The CAN-master receives the Ethernet
packets, and the packets are dissembled and assembled into
CAN packets, which are then transmitted to the CAN slave.
The process of transmission from a CAN slave to the I2C slave
similarly takes place.

The entire communication process involves selecting the
proper speeds considering I2C, CAN, and Ethernet
communication systems. The communication is completed
with an acceptable response time. The delay caused due to de-
assembling and assembling the packets must also be taken into
account while calculating the response time.

Fig. 7. I2C Message Format.

Ethernet SWITCH

MCP 2515 CAN MODULE

SALVE 1
STM 32 F303RE

ULTRASONIC SENSOR DC MOTOR

I2C MASTER

STM 32 NUCLEO
WITH

ETHERNET SHIELD

CAN MASTER

STM 32 NUCLEO
WITH

ETHERNET SHIELD

SLAVE 2
STM 32 F303RE

SLAVE 2
ARDUINO UNO

RELAY

SLAVE 1
ARDUINO UNO

MCP 2515 CAN MODULE

MCP 2515 CAN MODULE

DHT 11 SENSOR

Et

I2C NETWORK CAN NETWORK

Fig. 8. Interconnecting I2C and CAN Networks through Ethernet Interface.

325 | P a g e
www.ijacsa.thesai.org

http://www.circuitbasics.com/wp-content/uploads/2016/01/Introduction-to-I2C-Message-Frame-and-Bit-2.png

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

IV. ARCHITECTURE FOR HYBRIDISED COMMUNICATION IN
BETWEEN I2C AND CAN NETWORKS

The architecture for establishing communication among
I2C and CAN network through Ethernet-based Multi-master
Interface is shown in Fig. 9. The most important issue is the
arbitration among the I2C Master and CAN master on the kind
of speeds used for effecting communications intra I2C, intra
CAN, and between the masters using internet Interface. Speed
matching is necessary so that the required response time is met.
There should be time allowance for assembling and de-

assembling the packets of different types. The software
components contained within the slaves and the Masters shall
carry designated functions as shown in the Architectural
Diagram. The masters agree on speed based on the amount of
data to be submitted, considering the type of packets and the
packets' size to be transmitted, and considering the amount of
delay time caused due to de-assembling and assembling
processes. Once the speed agreements are achieved, the Master
shall communicate the agreed speeds to the respective slaves to
follow the speeds, especially setting the slave's internal timers.

Transmit
Object

Distance Data
through I2C

Receive FAN
Control Data
through I2C

Actuate FAN
control

Receive Object
Distnce

through I2C
Send FAN data

Receive
Ethernet Data

from CAN

Send Ethernet
Data

Transmit
Communication

Speed

Receive
Communication

Speed

Receive
Communication

Speed

De-Assemble
I2C and

Assemble
Ethernet

De-Assemble
ethernet and

Assemble
I2C

Speed
Agreements
between the

Masters

Receive
Ethernet Data

Send Ethernet
Data

Speed
Agreements
between the

Masters

De-Assemble
Ethernet and

Assemble CAN

De-Assemble
CAN and
Assemble

Ethernet data

Receive
Communication

Speed

Sense Temp and
Humidity

Receive Distance
data

Actuate Lighting
System

Receive
Communication

Speed

Transmit Temp
and Humudity

Fig. 9. Architecture for Implementing MULTI-MASTER Ethernet-based Interface for Interconnecting I2C and CAN Networks.

326 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

V. DECISION MAKING ON FIXATION OF THE SPEEDS OF
I2C, CAN AND ETHERNET FOR ACHIEVING EFFECTIVE AND

FAST COMMUNICATION
While data moves from one type of protocol to another, the

data packet size increases or decreases. When an I2C Data
packet is to be moved using the Ethernet protocol, the data
packet size increases while the transmission speed increases;
when a data packet is received through Ethernet into a CAN-
based system, the same is de- pocketed and assembles into a
packet size of small packets, which can be handled through
fewer transmission speeds. It is rather challenging to decide on
the transmission speeds chosen when communication has to be
effected using a specific I2C, Ethernet, and CAN speeds that
reduce the transmission time. The choice of speeds is also
dependent on the total raw data transmitted from Time to
Time.

In the typical example stated in section 5.0, the temperature
data needs to be moved from the I2C network into the CAN
network through the Ethernet interface. Similarly, the distance
data must be moved in the other way. It is sufficient to analyze
from either end of I2C and CAN for computing the time taken
to transmit from either end. For this reason, the data analysis
from I2C end to CAN is presented in this paper.

Communication time computations have been carried
considering the data size that includes 16 Bits, 32Bits, 40Bits
and 48Bits, I2C speeds that Include 100kbps, 400kbps,
3482kbps, and 5120kbps. CAN speeds include 500kbps,
250kbps, 125kbps, 10Kbps, and the Ethernet speeds that
include 10240kbps, 20480kbps, 30720kbps, and 5120 Kbps to

find the combination of speeds that provide the least response
time. Table III, Table IV, Table V, and Table VI show the
computations regarding data sizes 16bits, 32Bits, 40Bits, and
48Bits, respectively. The response time computations are made
considering time taken to transmit using I2C protocol, data
receiving time using Ethernet protocol, time taken to de-
pocketing I2C packets and Pocketing to Ethernet packets, time
is taken to transmit using Ethernet protocol, time is taken for
receiving the data on the master side using the Ethernet
protocol, time taken to DE packet the Ethernet packet to CAN
packet, and time taken to transmit the CAN Packets to the
CAN slave.

The response time computations are shown in Table VII,
Table VIII, Table IX, and Table X for data sizes 16bits, 32Bits,
40Bits, and 48Bits for a different combination of speeds
considering I2C, Ethernet, and CAN. It can be seen that the
least response time (4.856002808 Micro Secs) is obtained when
data size is 16 Bit when one considers I2C speed of 5120 bits,
Ethernet speed of 51200bits, and CAN speed of 500bits. The
least response time obtained is 5.241206 Micro Seconds when
data size is 32Bits and when one considers I2C speed of
3482bits, Ethernet speed of 51200bits, and CAN speed of
500bits. The least response time obtained is 4.517013550
microseconds when the data Size 40 Bits considering I2C
speed 5120bits, Ethernet Speed of 20480bits, and CAN speed
of 500bits. The least response time obtained is 5.542037964
Microseconds when the data size is fixed are 48bits considering
the I2C speed being 5120bits, Ethernet speed being 51200bits,
and CAN speed 500bits.

TABLE III. COMMUNICATION TIME COMPUTATIONS FOR DATA SIZE 16 BITS WITH DIFFERENT I2C, ETHERNET, AND CAN SPEEDS

I2
C

 P
ac

ke
t S

iz
e

in
 B

its

N
um

be
r

of
 I2 C

 P
ac

ke
ts

T
ot

al
 D

at
a

to
 b

e
T

ra
ns

m
itt

ed
 in

 B
its

 th
ro

ug
h

I2 C

Sp
ee

d
in

 K
B

PS

T
ra

ns
m

is
si

on
 T

im
e

Se
cs

E
th

er
ne

t r
ec

on
ce

iv
in

g
 T

im
e

in
 S

ec
s

E
th

er
ne

t D
e-

Po
ck

et
in

g
an

d
Po

ck
et

in
g

T
im

e

T
ot

al
 D

at
a

to
 b

e
T

ra
ns

m
itt

ed

E
th

er
ne

t S
pe

ed
s i

n
K

B
PS

T
im

e
T

ak
en

 to
 T

ra
ns

m
it

th
ro

ug
h

E
th

er
ne

t i
n

Se
cs

T
im

e
T

ak
en

 to
 R

ec
ei

ve
 th

ro
ug

h
E

th
er

ne
t i

n
Se

cs

E
th

er
ne

t D
e-

Po
ck

et
in

g
an

d
Po

ck
et

in
g

T
im

e

T
ot

al
 D

at
a

to
 b

e
T

ra
ns

m
itt

ed
 in

 B
its

C
A

N
 S

pe
ed

 in
 K

B
PS

T
im

e
T

ak
en

 to
 T

ra
ns

m
it

D
at

a

T
im

e
T

ak
en

 to
 R

ec
ei

ve
 D

at
a

- C
A

N
 S

la
ve

 S
id

e

T
im

e
T

ak
en

 to
 d

e
po

ck
et

in
g

th
e

Pa
ck

et
s o

n
C

A
N

Sl

av
e

Si
ze

T
ot

al
 T

im
e

T
ak

en
 fo

r
D

at
a

T
ra

ns
m

is
si

on

31 1 3
1

100 0.000
3

0.0003
0

0.000
1

51
2

1024
0

4.88E-
05

4.88E-
05

0.000
1

87

50
0

0.0001
7 0.00017 0.000

1
0.0008
0

400 0.000
1

0.0000
8

0.000
1

2048
0

2.44E-
05

2.44E-
05

0.000
1

25
0

0.0003
4 0.00034 0.000

1
0.0007
3

348
2

0.000
0

0.0000
1

0.000
1

3072
0

1.63E-
05

1.63E-
05

0.000
1

12
5

0.0006
8 0.00068 0.000

1
0.0010
0

512
0

0.000
0

0.0000
1

0.000
1

5120
0

9.77E-
06

9.77E-
06

0.000
1 10 0.0085 0.00849

6
0.000
1

0.0087
0

327 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

TABLE IV. COMMUNICATION TIME COMPUTATIONS FOR DATA SIZE 32 BITS WITH DIFFERENT I2C, ETHERNET, AND CAN SPEEDS
I2

C
 P

ac
ke

t S
iz

e
in

 B
its

N
um

be
r

of
 I2

C
 P

ac
ke

ts

T
ot

al
 D

at
a

to
 b

e
T

ra
ns

m
itt

ed
 in

B

its
 th

ro
ug

h
I2

C

Sp
ee

d
in

 K
B

PS

T
ra

ns
m

is
si

on
 T

im
e

Se
cs

E
th

er
ne

t r
ec

ei
vi

ng
 T

im
e

in
 S

ec
s

E
th

er
ne

t D
e-

Po
ck

et
in

g
an

d
Po

ck
et

in
g

T
im

e

T
ot

al
 D

at
a

to
 b

e
T

ra
ns

m
itt

ed

E
th

er
ne

t S
pe

ed
s i

n
K

B
PS

T
im

e
T

ak
en

 to
 T

ra
ns

m
it

th
ro

ug
h

E
th

er
ne

t i
n

Se
cs

T
im

e
T

ak
en

 to
 R

ec
ei

ve
 th

ro
ug

h
E

th
er

ne
t i

n
Se

cs

E
th

er
ne

t D
e-

Po
ck

et
in

g
an

d
Po

ck
et

in
g

T
im

e

C
A

N
 P

ac
ke

t S
uz

e
in

 B
its

C
A

N
 S

pe
ed

 in
 K

B
M

S

T
im

e
T

ak
en

 to
 T

ra
ns

m
it

D
at

a

T
im

e
T

ak
en

 to
 R

ec
ei

ve
 D

at
a

-
C

A
N

 S
la

ve
 S

id
e

T
im

e
T

ak
en

 to
 D

e
po

ck
et

in
g

th
e

Pa
ck

et
s o

n
C

A
N

 S
la

ve
 S

iz
e

T
ot

al
 T

im
e

T
ak

en
 fo

r
D

at
a

T
ra

ns
m

is
si

on

47 1 47

10
0

0.000
5

0.000
46

0.000
1

51
2

1024
0

4.88281E-
05

4.88281E-
05

0.000
1

10
3

50
0

0.0002011
72

0.0002011
72

0.000
1

0.000
98

40
0

0.000
1

0.000
11

0.000
1

2048
0

2.44141E-
05

2.44141E-
05

0.000
1

25
0

0.0004023
44

0.0004023
44

0.000
1

0.000
83

34
82

0.000
0

0.000
01

0.000
1

3072
0

1.6276E-
05

1.6276E-
05

0.000
1

12
5

0.0008046
88

0.0008046
88

0.000
1

0.001
13

51
20

0.000
0

0.000
01

0.000
1

5120
0

9.76563E-
06

9.76563E-
06

0.000
1 10 0.0100585

94
0.0100585
94

0.000
1

0.010
27

TABLE V. COMMUNICATION TIME COMPUTATIONS FOR DATA SIZE 40 BITS WITH DIFFERENT I2C, ETHERNET, AND CAN SPEEDS

T
ot

al
 D

at
a

to
 b

e
T

ra
ns

m
itt

ed

in
 B

its
 th

ro
ug

h
I2

C

Sp
ee

d
in

 K
B

PS

T
ra

ns
m

is
si

on
 T

im
e

Se
cs

E
th

er
ne

t r
ec

ei
vi

ng
 T

im
e

in

Se
cs

E
th

er
ne

t D
e-

Po
ck

et
in

g
an

d
Po

ck
et

in
g

T
im

e

T
ot

al
 D

at
a

to
 b

e
T

ra
ns

m
itt

ed

E
th

er
ne

t S
pe

ed
s i

n
K

B
PS

T
im

e
T

ak
en

 to
 T

ra
ns

m
it

th
ro

ug
h

E
th

er
ne

t i
n

Se
cs

T
im

e
T

ak
en

 to
 R

ec
ei

ve

th
ro

ug
h

E
th

er
ne

t i
n

Se
cs

E
th

er
ne

t D
e-

Po
ck

et
in

g
an

d
Po

ck
et

in
g

T
im

e

T
ot

al
 D

at
a

to
 b

e
T

ra
ns

m
itt

ed

in
 B

its

C
A

N
 S

pe
ed

 in
 K

B
M

S

T
im

e
T

ak
en

 to
 T

ra
ns

m
it

D
at

a

T
im

e
T

ak
en

 to
 R

ec
ei

ve
 D

at
a

-
C

A
N

 S
la

ve
 S

id
e

T
im

e
T

ak
en

 to
 D

e
po

ck
et

in
g

th
e

Pa
ck

et
s o

n
C

A
N

 S
la

ve

Si
ze

T
ot

al
 T

im
e

T
ak

en
 fo

r
D

at
a

T
ra

ns
m

is
si

on

55

10
0

0.000
5

0.0005
4

0.000
1

512

102
40

4.88281E-
05

4.88281E-
05

0.000
1

111

50
0

0.000216
797

0.00021679
7 0.0001 0.00

108

40
0

0.000
1

0.0001
3

0.000
1

204
80

2.44141E-
05

2.44141E-
05

0.000
1

25
0

0.000433
594

0.00043359
4 0.0001 0.00

088

34
82

0.000
0

0.0000
2

0.000
1

307
20 1.6276E-05 1.6276E-05 0.000

1
12
5

0.000867
188

0.00086718
8 0.0001 0.00

119

51
20

0.000
0

0.0000
1

0.000
1

512
00

9.76563E-
06

9.76563E-
06

0.000
1 10 0.010839

844
0.01083984
4 0.0001 0.01

105

TABLE VI. COMMUNICATION TIME COMPUTATIONS FOR DATA SIZE 48BITS WITH DIFFERENT I2C, ETHERNET, AND CAN SPEEDS

T
ot

al
 D

at
a

to
 b

e
T

ra
ns

m
itt

ed
 in

 B
its

 th
ro

ug
h

2C

Sp
ee

d
in

 K
B

PS

T
ra

ns
m

is
si

on
 T

im
e

Se
cs

E
th

er
ne

t r
ec

ei
vi

ng
 T

im
e

in

Se
cs

E
th

er
ne

t D
e-

Po
ck

et
in

g
an

d
Po

ck
et

in
g

T
im

e

T
ot

al
 D

at
a

to
 b

e
T

ra
ns

m
itt

ed

E
th

er
ne

t S
pe

ed
s i

n
K

B
PS

T
im

e
T

ak
en

 to
 T

ra
ns

m
it

th
ro

ug
h

E
th

er
ne

t i
n

Se
cs

T
im

e
T

ak
en

 to
 R

ec
ei

ve

th
ro

ug
h

E
th

er
ne

t i
n

Se
cs

E
th

er
ne

t D
e-

Po
ck

et
in

g
an

d
Po

ck
et

in
g

T
im

e

T
ot

al
 D

at
a

to
 b

e
T

ra
ns

m
itt

ed
 in

 B
its

C
A

N
 S

pe
ed

 in
 K

B
M

S

T
im

e
T

ak
en

 to
 T

ra
ns

m
it

D
at

a

T
im

e
T

ak
en

 to
 R

ec
ei

ve

D
at

a
- C

A
N

 S
la

ve
 S

id
e

T
im

e
T

ak
en

 to
 D

e
po

ck
et

in
g

th
e

Pa
ck

et
s o

n
C

A
N

 S
la

ve
 S

iz
e

T
ot

al
 T

im
e

T
ak

en
 fo

r
D

at
a

T
ra

ns
m

is
si

on

63

10
0

0.000615
234

0.0006152
34

0.000
1

51
2

1024
0

4.88281E-
05

4.88281E-
05

0.000
1

119

50
0

0.000232
422

0.0002324
22 0.0001 0.0011

7

40
0

0.000153
809

0.0001538
09

0.000
1

2048
0

2.44141E-
05

2.44141E-
05

0.000
1

25
0

0.000464
844

0.0004648
44 0.0001 0.0009

3

34
82

1.7671E-
05

1.7671E-
05

0.000
1

3072
0

1.6276E-
05

1.6276E-
05

0.000
1

12
5

0.000929
688

0.0009296
88 0.0001 0.0012

6

51
20

1.20163E
-05

1.20163E-
05

0.000
1

5120
0

9.76563E-
06

9.76563E-
06

0.000
1 10 0.011621

094
0.0116210
94 0.0001 0.0118

3

328 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

TABLE VII. RESPONSE TIME COMPUTATIONS WHEN DATA SIZE = 16 BITS

Response Time Computations when data Size = 16Bits

I2C, Ethernet, CAN
Speeds

Response Time in
Seconds

Normalized
Response time

100 ,1024 ,500 0.000821484375000 8.214843750

100 ,20480 ,500 0.000797070312500 7.970703125

100 ,30720,500 0.000788932291667 7.889322917

100, 51200,500 0.000782421875000 7.824218750

400,1024 ,500 0.000594433593750 5.944335938

400 ,20480 ,500 0.000570019531250 5.700195313

400 ,30720,500 0.000561881510417 5.618815104

400, 51200,500 0.000555371093750 5.553710938

3482,1024 ,500 0.000527445265826 5.274452658

3482 ,20480 ,500 0.000527445265826 5.274452658

3482 ,30720,500 0.000494893182493 4.948931825

3482, 51200,500 0.000488382765826 4.883827658

5120,1024 ,500 0.000485600280762 4.856002808

5120 ,20480 ,500 0.000500248718262 5.002487183

5120 ,30720,500 0.000492110697428 4.921106974

5120, 51200,500 0.000485600280762 4.856002808

100 ,1024 ,250 0.000991406250000 9.914062500

100 ,20480 ,250 0.000966992187500 9.669921875

100 ,30720,250 0.000958854166667 9.588541667

100, 51200,250 0.000952343750000 9.523437500

400,1024 ,250 0.000764355468750 7.643554688

400 ,20480 ,250 0.000739941406250 7.399414063

400 ,30720,250 0.000731803385417 7.318033854

400, 51200,250 0.000725292968750 7.252929688

3482,1024 ,250 0.000697367140826 0.697367141

3482 ,20480 ,250 0.000672953078326 0.672953078

3482 ,30720,250 0.000664815057493 0.664815057

3482, 51200,250 0.000658304640826 0.658304641

5120,1024 ,250 0.000694584655762 6.945846558

5120 ,20480 ,250 0.000670170593262 6.701705933

5120 ,30720,250 0.000662032572428 6.620325724

5120, 51200,250 0.000655522155762 6.555221558

100 ,1024 ,125 0.001331250000000 13.312500000

100 ,20480 ,125 0.001306835937500 13.068359375

100 ,30720,125 0.001298697916667 12.986979167

100, 51200,125 0.001292187500000 12.921875000

400,1024 ,125 0.001104199218750 11.041992188

400 ,20480 ,125 0.001079785156250 10.797851563

400 ,30720,125 0.001071647135417 10.716471354

400, 51200,125 0.001065136718750 10.651367188

3482,1024 ,125 0.001037210890826 10.372108908

Response Time Computations when data Size = 16Bits

I2C, Ethernet, CAN
Speeds

Response Time in
Seconds

Normalized
Response time

3482 ,20480 ,125 0.001012796828326 10.127968283

3482 ,30720,125 0.001004658807493 10.046588075

3482, 51200,125 0.000998148390826 9.981483908

5120,1024 ,125 0.001034428405762 10.344284058

5120 ,20480 ,125 0.001010014343262 10.100143433

5120 ,30720,125 0.001001876322428 10.018763224

5120, 51200,125 0.000995365905762 9.953659058

100 ,1024 ,10 0.009147656250000 91.476562500

100 ,20480 ,10 0.009123242187500 91.232421875

100 ,30720,10 0.009115104166667 91.151041667

100, 51200,10 0.009108593750000 91.085937500

400,1024 ,10 0.008920605468750 89.206054688

400 ,20480 ,10 0.008896191406250 88.961914063

400 ,30720,10 0.008888053385417 88.880533854

400, 51200,10 0.008881542968750 88.815429688

3482,1024 ,10 0.008853617140826 88.536171408

3482 ,20480 ,10 0.008829203078326 88.292030783

3482 ,30720,10 0.008821065057493 88.210650575

3482, 51200,10 0.008814554640826 88.145546408

5120,1024 ,10 0.008850834655762 88.508346558

5120 ,20480 ,10 0.008826420593262 88.264205933

5120 ,30720,10 0.008818282572428 88.182825724

5120, 51200,10 0.008811772155762 88.117721558

TABLE VIII. RESPONSE TIME COMPUTATIONS WHEN DATA SIZE = 32 BITS

Response time Computations when Data size is 32Bits

I2C, Ethernet, CAN
Speeds

Response time
Seconds

Response time
Normalized

100 ,10240 ,500 0.00100898 10.089844

100 ,20480 ,500 0.00098457 9.845703

100 ,30720,500 0.00097643 9.764323

100, 51200,500 0.00096992 9.699219

400,10240 ,500 0.00066475 6.647461

400 ,20480 ,500 0.00084150 8.415039

400 ,30720,500 0.00063219 6.321940

400, 51200,500 0.00052412 5.241206

3482 ,10240 ,500 0.00056318 5.631831

3482 ,20480 ,500 0.00053877 5.387691

3482 ,30720,500 0.00053063 5.306311

3482, 51200,500 0.00052412 5.241206

5120,10240 ,500 0.00055896 5.589645

5120 ,20480 ,500 0.00053455 5.345505

5120 ,30720,500 0.00052641 5.264125

329 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

Response time Computations when Data size is 32Bits

I2C, Ethernet, CAN
Speeds

Response time
Seconds

Response time
Normalized

5120, 51200,500 0.00051990 5.199020

100 ,10240 ,250 0.00121016 12.101563

100 ,20480 ,250 0.00118574 11.857422

100 ,30720,250 0.00117760 11.776042

100, 51200,250 0.00117109 11.710938

400,10240 ,250 0.00086592 8.659180

400 ,20480 ,250 0.00084150 8.415039

400 ,30720,250 0.00083337 8.333659

400, 51200,250 0.00082686 8.268555

3482,10240 ,250 0.00076436 7.643550

3482 ,20480 ,250 0.00073994 7.399410

3482 ,30720,250 0.00073180 7.318029

3482, 51200,250 0.00072529 7.252925

5120,10240 ,250 0.00076014 7.601364

5120 ,20480 ,250 0.00073572 7.357224

5120 ,30720,250 0.00072758 7.275843

5120, 51200,250 0.00072107 7.210739

100 ,10240 ,125 0.00156133 15.613281

100 ,20480 ,125 0.00158809 15.880859

100 ,30720,125 0.00157995 15.799479

100, 51200,125 0.00157344 15.734375

400,10240 ,125 0.00126826 12.682617

400 ,20480 ,125 0.00124385 12.438477

400 ,30720,125 0.00123571 12.357096

400, 51200,125 0.00122920 12.291992

3482,10240 ,125 0.00116670 11.666988

3482 ,20480 ,125 0.00114228 11.422847

3482 ,30720,125 0.00113415 11.341467

3482, 51200,125 0.00112764 11.276363

5120,10240 ,125 0.00116248 11.624802

5120 ,20480 ,125 0.00113807 11.380661

5120 ,30720,125 0.00112993 11.299281

5120, 51200,125 0.01037732 103.773239

100 ,10240 ,10 0.01086641 108.664063

100 ,20480 ,10 0.01084199 108.419922

100 ,30720,10 0.01083385 108.338542

100, 51200,10 0.01082734 108.273438

400,10240 ,10 0.01052217 105.221680

400 ,20480 ,10 0.01049775 104.977539

400 ,30720,10 0.01048962 104.896159

400, 51200,10 0.01048311 104.831055

3482,10240,10 0.01042061 104.206050

Response time Computations when Data size is 32Bits

I2C, Ethernet, CAN
Speeds

Response time
Seconds

Response time
Normalized

3482 ,20480 ,10 0.01039619 103.961910

3482 ,30720,10 0.01038805 103.880529

3482, 51200,10 0.01038154 103.815425

5120,10240 ,10 0.01041639 104.163864

5120 ,20480 ,10 0.01039197 103.919724

5120 ,30720,10 0.01038383 103.838343

5120, 51200,10 0.01028709 102.870895

TABLE IX. RESPONSE TIME COMPUTATIONS WHEN DATA SIZE = 40 BITS

Response Time Computations when Data Size = 40Bits

I2C, Ethernet, and
CAN Speeds

Response Time in
Seconds

Normalized
Response time

100 ,10240 ,500 0.0011027344 11.027343750

100 ,20480 ,500 0.0010783203 10.783203125

100 ,30720,500 0.0010701823 10.701822917

100, 51200,500 0.0010636719 10.636718750

400,10240 ,500 0.0006999023 6.999023438

400 ,20480 ,500 0.0006754883 6.754882813

400 ,30720,500 0.0006673503 6.673502604

400, 51200,500 0.0006608398 6.608398438

3482,10240 ,500 0.0005810521 5.810520845

3482 ,20480 ,500 0.0005566380 5.566380220

3482 ,30720,500 0.0005485000 5.485000012

3482, 51200,500 0.0005419896 5.419895845

5120,10240 ,500 0.0005761154 5.761154175

5120 ,20480 ,500 0.0004517014 4.517013550

5120 ,30720,500 0.0005435633 5.435633341

5120, 51200,500 0.0005370529 5.370529175

100 ,10240 ,250 0.0013195313 13.195312500

100 ,20480 ,250 0.0012951172 12.951171875

100 ,30720,250 0.0012869792 12.869791667

100, 51200,250 0.0011804688 11.804687500

400,10240 ,250 0.0009166992 9.166992188

400 ,20480 ,250 0.0008922852 8.922851563

400 ,30720,250 0.0008841471 8.841471354

400, 51200,250 0.0008776367 8.776367188

3,48,21,02,40,250 0.0007978490 7.978489595

3482 ,20480 ,250 0.0007734349 7.734348970

3482 ,30720,250 0.0007652969 7.652968762

3482, 51200,250 0.0007587865 7.587864595

5120,10240 ,250 0.0007929123 7.929122925

5120 ,20480 ,250 0.0007684982 7.684982300

5120 ,30720,250 0.0007603602 7.603602091

330 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

Response Time Computations when Data Size = 40Bits

I2C, Ethernet, and
CAN Speeds

Response Time in
Seconds

Normalized
Response time

5120, 51200,250 0.0007538498 7.538497925

100 ,10240 ,125 0.0017531250 17.531250000

100 ,20480 ,125 0.0017287109 17.287109375

100 ,30720,125 0.0017205729 17.205729167

100, 51200,125 0.0017140625 17.140625000

40,01,02,40,125 0.0013502930 13.502929688

400 ,20480 ,125 0.0013258789 13.258789063

400 ,30720,125 0.0013177409 13.177408854

400, 51200,125 0.0013112305 13.112304688

3482,10240 ,125 0.0012314427 12.314427095

3482 ,20480 ,125 0.0012070286 12.070286470

3482 ,30720,125 0.0011988906 11.988906262

3482, 51200,125 0.0011923802 11.923802095

5120,10240 ,125 0.0012265060 12.265060425

5120 ,20480 ,125 0.0012020920 12.020919800

5120 ,30720,125 0.0011939540 11.939539591

5120, 51200,125 0.0011874435 11.874435425

100 ,10240 ,10 0.0117257813 117.257812500

100 ,20480 ,10 0.0117013672 117.013671875

100 ,30720,10 0.0116932292 116.932291667

100, 51200,10 0.0116867188 116.867187500

400,10240,10 0.0113229492 113.229492188

400 ,20480 ,10 0.0112985352 112.985351563

400 ,30720,10 0.0112903971 112.903971354

400, 51200,10 0.0112838867 112.838867188

3482,10240 ,10 0.0112040990 112.040989595

3482 ,20480 ,10 0.0111796849 111.796848970

3482 ,30720,10 0.0111715469 111.715468762

3482, 51200,10 0.0111650365 111.650364595

5120,10240 ,10 0.0111991623 111.991622925

5120 ,20480 ,10 0.0111747482 111.747482300

5120 ,30720,10 0.0111666102 111.666102091

5120, 51200,10 0.0111503342 111.503341675

TABLE X. RESPONSE TIME COMPUTATIONS WHEN DATA SIZE = 48 BIT

Response time Computation when the Data Size = 48Bits

I2C, Ethernet, CAN
Speed

Response time in
Seconds

Normalized Response
time

100 ,10240 ,500 0.0011964844 11.964843750

100 ,20480 ,500 0.0011720703 11.720703125

100 ,30720,500 0.0011639323 11.639322917

100, 51200,500 0.0011574219 11.574218750

400,10240 ,500 0.0007350586 7.350585938

Response time Computation when the Data Size = 48Bits

I2C, Ethernet, CAN
Speed

Response time in
Seconds

Normalized Response
time

400 ,20480 ,500 0.0007106445 7.106445313

400 ,30720,500 0.0007025065 7.025065104

400, 51200,500 0.0006959961 6.959960938

3482,10240 ,500 0.0005989210 5.989210241

3482 ,20480 ,500 0.0005745070 5.745069616

3482 ,30720,500 0.0005663689 5.663689408

3482, 51200,500 0.0005598585 5.598585241

5120,10240 ,500 0.0005932663 5.932662964

5120 ,20480 ,500 0.0005688522 5.688522339

5120 ,30720,500 0.0005607142 5.607142131

5120, 51200,500 0.0005542038 5.542037964

100 ,10240 ,250 0.0014289063 14.289062500

100 ,20480 ,250 0.0014044922 14.044921875

100 ,30720,250 0.0013963542 13.963541667

100, 51200,250 0.0013898438 13.898437500

400,10240 ,250 0.0009674805 9.674804688

400 ,20480 ,250 0.0009430664 9.430664063

400 ,30720,250 0.0009349284 9.349283854

400, 51200,250 0.0009284180 9.284179688

3482, 10240, 250 0.0008313429 8.313428991

3482 ,20480 ,250 0.0008069288 8.069288366

82 ,30720,250 0.0007987908 7.987908158

3482, 51200,250 0.0007922804 7.922803991

5120,10240 ,250 0.0008256882 8.256881714

5120 ,20480 ,250 0.0008012741 8.012741089

5120 ,30720,250 0.0007931361 7.931360881

5120, 51200,250 0.0007866257 7.866256714

100 ,10240 ,125 0.0018937500 18.937500000

100 ,20480 ,125 0.0018693359 18.693359375

100 ,30720,125 0.0018611979 18.611979167

100, 51200,125 0.0018546875 18.546875000

400, 10240, 125 0.0014323242 14.323242188

400 ,20480 ,125 0.0014079102 14.079101563

400 ,30720,125 0.0013997721 13.997721354

400, 51200,125 0.0013932617 13.932617188

3482,10240 ,125 0.0012961866 12.961866491

3482 ,20480 ,125 0.0012717726 12.717725866

3482 ,30720,125 0.0012636346 12.636345658

3482, 51200,125 0.0012571241 12.571241491

5120,10240 ,125 0.0012905319 12.905319214

5120 ,20480 ,125 0.0012661179 12.661178589

5120 ,30720,125 0.0012579798 12.579798381

331 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

Response time Computation when the Data Size = 48Bits

I2C, Ethernet, CAN
Speed

Response time in
Seconds

Normalized Response
time

5120, 51200,125 0.0012514694 12.514694214

100 ,10240 ,10 0.0125851563 125.851562500

100 ,20480 ,10 0.0125607422 125.607421875

100 ,30720,10 0.0125526042 125.526041667

100, 51200,10 0.0125460938 125.460937500

400,10240,10 0.0121237305 121.237304688

400 ,20480 ,10 0.0120993164 120.993164063

400 ,30720,10 0.0120911784 120.911783854

400, 51200,10 0.0120846680 120.846679688

3482,10240 ,10 0.0119875929 119.875928991

3482 ,20480 ,10 0.0119631788 119.631788366

3482 ,30720,10 0.0119550408 119.550408158

3482, 51200,10 0.0119485304 119.485303991

5120,10240 ,10 0.0119819382 119.819381714

5120 ,20480 ,10 0.0119575241 119.575241089

5120 ,30720,10 0.0119493861 119.493860881

5120, 51200,10 0.0119428757 119.428756714

TABLE XI. COMPARATIVE ANALYSIS OF I2C, ETHERNET AND CAN
SPEEDS @ DIFFERENT DATA SIZES

Data
Size

I2C, Ethernet,
CAN speeds

Response time in
Seconds

Response Time in
Micro Seconds

16 5120, 51200,500 0.00048560 4.85600

32 3482, 51200,500 0.00052412 5.24121

40 5120 ,20480 ,500 0.00045170 4.51701

48 5120, 51200,500 0.00055420 5.54204

The overall assessments of comparable speeds considering
local minimums of different data sizes and their related speeds
are shown in Table XI. It can be seen from Table XI and
Fig. 10 that optimum response time can be achieved when I2C
speed is 5120 Bits, Ethernet speed is fixed at 20480 Bits, and
the CAN speed fixed at 40bits and that too when the data size
is fixed at 40 Bytes. However, if there is a limitation on the
data size, then the local minimum can be determined
considering all the combinations of the I2C, Ethernet, and
CAN speeds.

Fig. 10. Optimum Response Time among Many Optimum Locals.

0.00000

1.00000

2.00000

3.00000

4.00000

5.00000

6.00000

5120, 51200,500 3482, 51200,500 5120 ,20480 ,500 5120, 51200,500

16 32 40 48

M
i
c
r
o

S
e
c
o
n
d
s

I2C, Ethernet, CAN speeds and the Related Data Sizes

Response Time in Micro Seconds

Response Time
in Micro
Seconds

332 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

VI. CONCLUSIONS
Interfacing different heterogeneous ES networks into a

composite network are quite challenging. Many issues that
include synchronizing, arbitration, timing, and speed control
have to be tackled properly so that optimum acceptable
response time is achieved, failing which the system's expected
response time cannot be supported. Many mechanisms can be
implemented for achieving the issues of hybridization that
include introducing a bridge device, adapting a universal bus, a
single master interfacing, and a Multi-Master interfacing. A
detailed comparison of protocols shows the issues that must be
considered for interacting and integrating heterogeneous
communication systems.

In this paper, a Multi-Master interfacing interconnects an
I2C network with a CAN network using an Ethernet interface.
The detailed working of data communication considering the
different combination of I2C, CAN, and Ethernet speeds have
been presented, and the best combination of these speeds that
gives the least response time has been presented.

Further research can be carried to find the speed
combinations that must be considered when networking is to be
done considering I2C+USB, I2C+RS485, CAN+USB,
CAN+RS485, USB_RS485. Interfacing using a single master
through a common bus is also one of the important approaches
that can be considered.

REFERENCES
[1] CHAI Yan-Jie, SUN Ji-yin, GAO Jing, TAO Ling-jiao, JI Jing, BAO

Fei-hu," Improvement of I2C Bus and RS-232 Serial Port un-der
Complex Electromagnetic Environment" International Conference on
Computer Science and Software Engineering, 2008, PP 178 - 181.

[2] Antonio Casimiro, Jose Rufino, Luis Marques, Mario Calha, and Paulo
Verissimo "Applying Architectural Hybridization in Net-worked
Embedded Systems," IFIP International Federation for In-development
Processing, 2009, PP 264-275.

[3] Lou Guohuan, ZhangHao, Zhao Wei, "Research on Designing Method
ofCAN Bus and Modbus Protocol Conversion Interface" International
Conference on Future BioMedical Information Engineering,2009, PP
180-182.

[4] Xiaoming Li, Mingxiong Li, "An Embedded CAN-BUS Communication
Module for Measurement and Control System" International conference
on ICEEE, 10.119/ICEEE.2010.5661248, 2010.

[5] Peng Daogang, Zhang Hao, Li Hui, Xia Fei," Development of the
Communication Protocol Conversion Equipment Based on Embedded
Multi-MCU and μC/OS-II," International Conference on Measuring
Technology and Mechatronics Automation, 2010, PP 15-18.

[6] Tae-Won Kim, Jin Ho Kim, Do Eon Lee, Jun young Moon, Jae Wook
Jeon," Development of Gateway based on BroadR-Reach for
Application in Automation Network," International Conference on
Computing, Communication and Automation, 2016, PP 421-426.

[7] CHEN Huijuan," Heterogeneous Network Integration Based on Protocol
Conversion" Control Conference (CCC), 2016, PP 6888-6893.

[8] Chen Wei, Wang Xijun, Sun Wenxia," The Design of profinet- Modbus
protocol conversion Gateway Based on the ERTEC 200P", International
Conference on Software, Knowledge, Information Management &
Applications, 2016, PP 87-91.

[9] Jason Oberg, Wei Hu, Ali Irturk," Information Flow Isolation in I2C and
USB", Design Automation Conference, 2011, PP 254-259.

[10] Li Hui, Zhang Hao, Peng Daogang," Design and Application of
Communication Gateway of EPA and MODBUS on Electric Power
System" International Conference on Future Electrical Power and
Energy Systems, 2012, PP 286 – 292.

[11] Gheorghe G.Florea, Oana, Rohat, Monica G. Dragan, "Contributions to
the Development of Communication Protocols Conversion Equipment,"
2nd IFAC Workshop on Convergence of Information Technologies and
Control Methods with Power Systems, 2013, VOLUME 46, Issue 6, PP
84-88.

[12] Umesh Goyal, Gaurav Khurana," Implementing MOD bus and CAN bus
Protocol Conversion Interface" IJETT, 2013, VOLUME 4, Issue 4, PP
630-635.

[13] Roopak Sinha," Conversing at Many Layers: Multi-layer System-On-
chip Protocol Conversion," 20th International Conference on
Engineering of Complex Computer Systems, 2015, PP 170-173.

[14] JKRSastry, J. Viswanadh Ganesh, and J. SasiBhanu, "I2C based
Networking for Implementing Heterogeneous Microcontroller based
Distributed Embedded Systems", Indian Journal of Science and
Technology, 2015, Vol 8(15), PP 1-10.

[15] JKRSastry, Valluru Sai Kumar Reddy, Smt J SasiBhanu," Net-working
Heterogeneous Microcontroller based Systems through Universal Serial
Bus," IJECE, 2015, Vol. 5, No. 5, PP. 992-1002.

[16] JKR. Sastry, M. Vijaya Lakshmi, and Smt J. SasiBhanu," Optimizing
Communication Between Heterogeneous Distributed Embedded
Systems Using CAN Protocol," ARPN Journal of Engineering and
Applied Sciences, 2015, VOL. 10, NO. 18, PP 7900-7911.

[17] JKR Sastry, T. Naga Sai Tejasvi and J. Aparna, Dynamic scheduling of
message flow within a distributed embedded system connected through
RS485 network, ARPN Journal of Engineering and Applied Sciences,
VOL. 12, NO. 9, MAY 2017.

[18] J. K. R. Sastry, A. Suresh, and Smt J. Sasi Bhanu, Building
Heterogeneous Distributed Embedded Systems through RS485
Communication Protocol, ARPN Journal of Engineering and Applied
Sciences, issue. 16, vol.10, 2015.

[19] K. Chaitanya, Sastry JKR, K. N. Sravani, D. Pavani, Ramya, and K.
Rajasekhara Rao, Testing Distributed Embedded Systems Using Assert
Macros, ARPN Journal of Engineering and Applied Sciences, 2017,
page no.3011-3021.

[20] Sastry JKR, K. Chaitanya, K. Rajasekhara Rao, DBK Kamesh, Testing
Distributed Embedded Systems Through Instruction Set Simulators,
PONTE, International Journal of Sciences and Research, issue.7, vol.73,
July 2017, page no.353-382.

[21] JKR Sastry, K. Chaitanya, K. Rajasekhara Rao, DBK Kamesh, An
Efficient Method for Testing Distributed Embedded Systems using In-
circuit Emulators, PONTE, International Journal of Sciences and
Research, issue.7, vol.73, 2017, page no.390-422.

[22] K. Chaitanya, JKR Sastry, K. Rajasekhara Rao, Testing Distributed
Embedded Systems Using Logic, Analyzer, International Journal of
Engineering and Technology, March 2018, page no. 297-302.

[23] K Chaitanya1, Dr. K Rajasekhra Rao, Dr. JKR Sastry, A Framework for
Testing Distributed Embedded Systems, International Journal advanced
Trends in computer science and engineering, 2019, Volume 8, No.4, PP.
1104-1227.

[24] K Chaitanya, Dr. K Rajasekhra Rao, Dr. JKR Sastry. A Formal and
Enriched Framework for Testing Distributed Embedded Systems,
International Journal Emerging Trends in Engineering Research,
Volume 7, No. 12, 2019, PP. 867-878.

[25] J. Rajasekhar, Dr. JKR Sastry, An approach to hybridization of
embedded system networks, International Journal of Engineering &
Technology, 7 (2.7) (2018) 384-389.

[26] Jammalamadaka Rajasekhar, JKR Sastry, Building Composite
Embedded Systems Based Networks Through Hybridization and
Bridging I2C and CAN, Journal of Engineering Science and
Technology, Vol. 15, No. 2 (2020) 858 – 88.

[27] E. Mounika, Dr. JKR Sastry, J. Rajasekhar, A Hybridised
Heterogeneous Embedded System Networking through Multi-Master
Interface, International Journal of Emerging Trends in Engineering
Research, Volume 8. No. 3 March 2020, https://doi.org/
10.30534/ijeter/2020/45832020.

333 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	A. Motivation
	B. Rest of the Coverage in the Paper

	II. Related Work
	III. Application Development using Heterogeneous and Composite Embedded Network
	A. Application Development using CAN Interface
	B. Application Development using I2C Interface
	1) The master device sets the Read/Write bit to '1' instead of '0', which signals the targeted slave device that the master device is expecting data from it.
	2) The slave device sends the 8 bits corresponding to the data block, and the master device sets the ACK/NACK bit.
	3) Once the master device receives the required data, it sends a NACK bit. Then the slave device stops sending data and releases the SDA line.
	4) Suppose the master device reads data from a specific internal location of a slave device. It first sends the location data to the slave device using the steps in the previous scenario. It then starts the process of reading data with a repeated start con�
	1) The master device sends the start condition.
	2) The master device sends the seven address bits, which corresponds to the slave device to be targeted.
	3) The master device sets the Read/Write bit to '0', which signifies a write.
	4) Now two scenarios are possible.
	5) If no slave device matches with the address sent by the master device, the next ACK/NACK bit stays at '1' (default). This signals the master device that the slave device identification is unsuccessful. The master clock will end the current transaction b�
	6) If a slave device exists with the same address as the one specified by the master device, the slave device sets the ACK/NACK bit to '0', which signals the master device that a slave device is successfully targeted.
	7) If a slave device is successfully targeted, the master device now sends 8 bits of data only considered and received by the targeted slave device. This data means nothing to the remaining slave devices.
	8) If the slave device successfully receives the data, it sets the ACK/NACK bit to '0', which signals the master device to continue.
	9) The previous two steps are repeated until all the data is transferred.
	10) After all the data is sent to the slave device, the master device sends the Stop condition, which signals all the slave devices that the current transaction has ended.

	C. Data Frames
	D. Comparison of Application Specific CAN and I2C Networks
	E. Interconnecting between CAN and I2C Networks through Multi-master Interface

	IV. Architecture for Hybridised Communication in between I2C and CAN Networks
	V. Decision Making on Fixation of the Speeds of I2C, CAN and Ethernet for achieving Effective and Fast Communication
	VI. Conclusions
	References

