
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 2, 2020

48 | P a g e

www.ijacsa.thesai.org

JEPPY: An Interactive Pedagogical Agent to Aid

Novice Programmers in Correcting Syntax Errors

Julieto E. Perez
1
, Dante D. Dinawanao

2
, Emily S. Tabanao

3

Department of Computer Science, College of Computer Studies

MSU–Iligan Institute of Technology, Iligan City Philippines

Abstract—Programming is a complicated task and correcting

syntax error is just one among the many tasks that makes it

difficult. Error messages produced by the compiler allow novice

learners to know their errors. However, these messages are

puzzling, and most of the times misleading due to cascading of

errors, which can be detrimental to running a syntax-error free

program. In most laboratory setting, it is the role of the teachers

to assist their students while doing activities. However, in our

experienced, considering the large number of students in a class,

it may seem difficult for teachers to assist their students one-by-

one given the time constraints. In this paper, the design and

implementation of an interactive pedagogical agent named JEPPY

is presented. It is intended to assist novice learners learning to

program using C++ as a programming language. In order to see

on how students struggle or progress in dealing with errors, the

proponents implemented the Error Quotient (EQ) developed by

Jadud. The principles of the cognitive requirements of an agent-

based learning environment were followed. The agent was put

into test by novice learners in a laboratory setting. Logs of

interaction between the embodied agent and the participants

were recorded, aside from the compile errors and edit actions.

These mechanisms show us some insight on the interaction

behavior of learner to the agent.

Keywords—Pedagogical agent; error quotient; syntax-error

correction; compile errors; human computer interaction

I. INTRODUCTION

Computer programming is a complicated task. According
to Jenkins [1], Programming “is a complicated business” which
requires the mastery of several skills such as problem solving,
abstraction, mathematical logic and testing, debugging and so
forth. In addition to this, in case of novice programmers,
knowledge was found to be limited and shallow hence they
lack the ability to write syntactically-correct programs. Over
the years, several studies have been conducted to look at how
compiler errors have affected the learning curve of students
learning to program, particularly, novice programmers. Becker
[2] showed that compiler errors can be frustrating and students
in his study described them as “barriers to progress”. In
addition, Denny, Luxton-Reilly and Tempero [3] showed that
students have difficulties locating and correcting syntax errors
using average compiler. Moreover, Kummerfeld and Kay [4]
concluded that even the more experienced students took
significant time to correct some syntax errors. Studies have
been conducted to understand interaction of learners to the
compilers. Separate studies of Jadud [5] and Becker [6]
showed a metric in quantifying these repeated errors. Jadud [5]
called the interaction of the learners to the compiler as

“compilation behaviour” and called the metric as the Error
Quotient. To support learners in dealing cryptic messages
produced by compiler, Ahmed, Kumar, Karkare, Kar, and
Gulwani [7] developed a system called TRACER (Targeted
RepAir of Compilation Errors) that perform repairs on
compilation errors. In a study of Becker, Goslin, and Glanville
[8], an enhancement to JAVA compile error messages was
made and employed for intervention. Comparison between
control and intervention groups showed that enhancing
compiler messages is of advantage.

For environment of practice by novice programmers such
as that in a laboratory setting, the current methods and tools
employed focused on identifying behaviors using the online
protocols and browser to inform teachers who among their
students struggles and then provide manual intervention if
necessary. However, considering the number of students in a
classroom it is not realistic that the teacher can always assist
the entire class for every laboratory session given some time
constraints. This issue motivated the researchers in this study
to come up another approach to augment the problem.

This study made an attempt in employing an embodied
agent and see its potential use to aid novice programmers in
their battle over syntax errors. This can help mentors attend to
several other skills to consider in teaching programming, rather
than focusing on assisting compile errors correction. However,
skills like problem solving and logical reasoning were not yet
addressed in this study and learning on that aspects requires
different measures to help novice learners.

In this paper, the proponents presented the design and
implementation of an interactive pedagogical agent which will
be used as a tool to assist novice programmers in the daunting
task of correcting syntax error produced by the compiler.
Moreover, the proponents look into the interaction of the
learner to the agent along with their interaction to the compiler.
This can give us insights on the improvement of the agent and
to the target benefit at which the agent was employed.

II. REVIEW OF RELATED WORK

There were studies that looked at how novice learners
interact with the compiler while practicing programming.
Jadud [9] define novice compilation behavior as the study of
students‟ interaction with their compiler while learning to
program. In his study, Jadud [3] developed a quantification of
the student's compilation behavior based on grounded theory.
He called it the error quotient or EQ. Every record in the data
logs represents one compilation event. Stored in each record is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 2, 2020

49 | P a g e

www.ijacsa.thesai.org

the error message if there was an error at the time of
compilation, the location of the error in the file which is
reported by the compiler as a line number, and the source code.
An EQ score is of the range 0 to 1.0, where 0 is a perfect score.
An EQ score of 0 does not mean that the student made no
syntax errors in their programming process. What it means is
that at no point did the student encounter the same syntax error
consecutively. Whereas a session scoring 1.0 means that every
compilation resulted to the same syntax error all the time.

Agapito and Rodrigo [9] looked into students‟ compilation
behaviors as they wrote their programs in C++ by analyzing
automatically collected online protocols. Students‟ data were
analyzed by computing for their Error Quotient. Results
confirmed that freshmen programmers do experience difficulties
and that the Error Quotient is a practical tool that can be used to
characterize their compilation behaviors.

Many of the programming environment or IDEs used today
have embedded capabilities or features added to help
programmers do their job easily instead of just writing it using
plain text editors. This same IDE is also used by novice
programmers in their first programming experience using
specific language. Many works reported development of
automated syntax error correction. However, the approach does
not care whether learners have assisted their own mistake.

Some works produced feedback through an interface where
support is provided. Carter [10] developed an intelligent tutor
for debugging called ITS-Debug. This is achieved by
developing a system with four standard modules (Domain,
Student, Pedagogical, Communication) of Intelligent Tutoring
System. A web-based system was developed wherein students
learn debugging through different phases. Students were able
to edit the code, compile and run the code, and receive
assistance on a host of syntax, runtime, and logical defects that
might be present in the exercise or that they may inadvertently
create themselves. In the study of Kummerfeld and Kay [4], a
web-based reference guide was developed which catalogues
some common C++ compiler generated errors.

So far, the work of Edwards, Rajagopal, Kandru [11]
reported the use of embodied characters that assist learners in
dealing syntax. The proponents developed an emotionally-
intelligent pedagogical agents to deliver effective and efficient
feedback to students about their programming assignments and
also act as a teaching assistant for any general programming
related queries. The main objective of their study is to
communicate clearly the feedback about student programs
while motivating them to perform better. This is so far, the
work that was closely related in this study.

Veletsianos and Russell [12] defined pedagogical agents as
anthropomorphous virtual characters employed in online
learning environments to serve various instructional goals.
Pedagogical agents were employed by Carlotto and Jacques
[13], Kim [14], Liew, Zin, and Sahari [15], and Kim, Thayne,
and Wei [16] in a form of an animated characters, virtual or
digital characters. It was used as a chatbot as reported by
Savin-Baden, Tombs, and Bhakta [17], an influencer such as of
Kim and Baylor [18], or a tutor Kim [14]. They can also
simulate conversations and nonverbal behavior according to
Liew and Tan [19]. In the work of Schroeder, Romine, and

Craig [20], pedagogical agent was employed to enhance
student learning. Johnson and Lester [21] cited a nonverbal
feedback capability of pedagogical agents. The nonverbal cues
can take various forms including nodding or shaking the head,
facial expressions such as smiling or surprise. This paper
employs the use of nonverbal cues for the embodied agent and
used the agent as an assistant.

III. METHODOLOGY

A. Defining Agent Design Requirements

According to Baylor [22], the prime cognitive
consideration in the design of agent-based learning
environment is the management of control. The first dimension
of control involves instantiating the instructional purpose of the
environment on a constructivist (high learner control) to
instructivist‟s (high program/agent control) continuum. A
critical issue from a constructivist approach to agent-based
learning environments is in moderating between the agents
taking over thinking for the student with the agent training the
student to think more effectively. In the constructivist
approach, the agent is a medium that does not teach the student
directly. In this study, the presentation of knowledge about
errors comes in a form of recall and example. Note that in an
error message, the compiler may refer to some token in the
code. Meaning, different token may appear even for the same
error type. For example, the error message “expected „;‟ before
„int‟” contains the token „;‟ and „int‟ enclosed within single
quote. In recall, the content presented by the agent will not
specifically tell the student the specific solution but instead
present the similar or general case. For instance, for the error
mentioned above, the agent would say “Remember that in C++
every statement must end with a semi- colon. In an example,
the agent would present an example statement with a semi-
colon at the end. This is how the proponents push the student to
do the thinking. The second dimension of control entails
managing feedback, and several issues need to be considered:
type, timing, amount, explicitness, and learner control of agent
feedback. An important consideration in terms of feedback is
that the pedagogical agent should not provide too many insights
and thereby annoy the student. In the current design of
intervention, the agent will depend on the current computed
value of the error quotient. This means that whenever the
student is stuck in a specific error, the agent will intercept
every compilation. Although by default help should be minimal,
part of our intention is to give us insight on the interaction of the
learner to the agent in the environment. So, the proponents
allow the agent to be proactively intervening as long as the EQ
limit of 0.3 or greater was reached. Third consideration is when
agent versus learner control is further defined through the
desired relationship of the learner to agent. Some examples of
instantiating the learner-agent relationship include the agent as
learning companion, agent as mentor, multiple pedagogical
agents, agent as personal assistant, or agent as resource. In this
paper, the proponents define the role of the agent to be an
assistant that informs the learner on their mistake. The feedback
flows from agent looking at the error quotient and appears
when EQ is greater than the value 0.3. The agent looks only on
the first error message per compilation since the first error most
of the time is the cause of cascading error and if not eliminated
will cause the student to get stuck on that error. This is also

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 2, 2020

50 | P a g e

www.ijacsa.thesai.org

consistent to the existing computation of error quotient in
which only one error was considered for computation in every
compilation. Fourth, to be instructionally effective, the agent
must assert enough control so that the learner develops
confidence in the agent in terms of believability, competence,
and trust. The critical issue that concerns believability is the
message that the agent will provide. Incorrect message to
provide will decrease trust and competence. The persona and
behavior of the agent was also considered to make the agent
believable.

B. The Agent Persona

Fig. 1 shows the Agents‟ gestures. Sequencing these gestures
make up some form of behavior. The choice of the interface is a
cartoon character and was named JEPPY. The proponents
choose not a very serious character to capture the attention of
the serious learners. The behavior space includes deictic and
affective gestures as shown in the Fig. 1. The following
gestures were combined to form actions that make the
embodied agent more life-like.

Thumbs-up Waving Default

Reading Nodding Clapping

Fig. 1. Deictic and Affective Gestures of JEPPY.

C. Testing

To test and validate the functionality of the components, the
proponent put JEPPY in to a test with participants in an actual
laboratory session. Participants were students taking up
introductory programming course in a State University. Before
the participants continue in the task, they were given
questionnaire to verify whether they are really novice
programmers. This is because the agent is intended for novice
programmers only. There are 18 participants which where
identified to be novice programmers. They were given a source
code which contains cascading errors. Meaning, one error may
come after another after correcting the first one. They were all
given the freedom and time to finish the problem without
asking help from other participants or instructor around.

D. The Architectural Design

The implementation follows the typical architecture of a
pedagogical agent but was contextualized according to purpose
of used. Fig. 2 shows the architecture of the agent in this study.
The pedagogical module was implemented as plugin in
Code::Blocks. The errors produced by the compiler were
preprocessed to include only necessary information. The event
logger was responsible on logging the preprocessed compiler
errors, the edits done in the code, the interaction of the learner
with the agent and the calculated value of error quotient. These
data logged by the logger were inserted in the SQLite database.

The communication module implemented using Java comprises
the interface and inference controller. The interface is where the
learner interacts with the agent. The embodiments are gif files
which are retrieved depending on the interaction and current
state of the learner.

Fig. 2. Architectural Design.

Recalls which can be interchangeably call as hint and
examples were written as an html files, which can then be
viewed in the interface. The interface contains a balloon tip
which is an open source program written in java. Html files
which are retrieved from the domain module were displayed
inside the balloon tip. The inference controller is responsible
for retrieving knowledge during intervention. This part of the
implementation connects the pedagogical module and the
domain module. The knowledge on the errors was written in
CLIPS as rules in an if-then format.

IV. RESULTS AND DISCUSSIONS

A. The Implemented Agent

In the first compilation, the agent would appear and
introduce itself to the student. Starting from the first
compilation also, the logger is activated. So, every time the
learner edits some lines in the code it will be recorded line per
line. For every compilation starting from the third compilation,
the two pairs of events can be created. At this point the Error
Quotient can be calculated. When EQ is more than the threshold
value, the agent will capture the first error, preprocessed it and
retrieve message from the rules in the domain module that
matches the error, and then display the help message through
the embodied agent.

Table I shows an example EQ computation extracted from
the compile-edit log. As per algorithm, the task is to compare

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 2, 2020

51 | P a g e

www.ijacsa.thesai.org

two successive compilations. For instance, from Table I,
looking at compilation number 2 and 3, both compilations
ended with error, so a penalty of 2 was added. Since both
compilations have same error type (expected token before
token), a penalty of 3 was added. However, both compilations
do not have same error location and line edit made, so no
penalty was added. The total score for this pair (compilation 1
and 2) is 5. The total score was divided to 11, which is the
highest possible score, and is now the normalized value 0.5556.
The final error quotient for this pair is the average of the sum
of all the normalized score in each pair, in the given example, it
is 0.3889.

The implemented agent was shown in Fig. 3 to Fig 9. Fig. 3
shows the appearance of the agent when it offers help from the
learner. As one can see, the agent does not provide directly the
help on the error identified. Instead, an option was given to see
whether help is needed, or the learner already knows the error.
When help is used, the agent will then provide the help as
shown in Fig. 4. Fig. 5 shows the case wherein the error occurred
again, and the agent will offer another help. Fig. 6 is the
screenshot of the agent portraying like reading some notes
when telling student to use example.

When help is used again, help will be provided in a form
example as shown in Fig. 7. Fig. 8 and Fig. 9 are the affective
gestures of JEPPY when it is sad and glad, respectively.

B. Result of Interaction based on the Logs

One critical part among the components is the correct
message or support that the agent will provide. The interaction
log provides a way for us to see whether correct help is given to
an error message. Recorded in every row was the error message
which is a result in preprocessing stage during compilation.
Also, in the same row, was the help coming from the domain
knowledge which is a result of the inference engine.

Aside from validating the functionality of the components
through the logs, it also gives us some observations on the
interaction of the learner to the agent. Out of 538 times that the
agent appears, only 159 or 29.55% of the time the agent was
used. It can also be observed that there are 119 or 22.12% of the
time the agent was closed when help is asked. The proponents
can also see instances wherein there is no interaction in an
intervention, meaning the agent was ignored and after 20
seconds without any interaction it pops out. There are 260 or
48.33% of the time that the agent was ignored. The large
number of time that the agent was ignored by students is
maybe because they were so engaged in attempting to correct
error by themselves. As mentioned by Jadud [3], students took
significant time editing and compiling their code, and after
several attempts without success, they may fall into frustration.
But here, with the presence of JEPPY, we can be able to prevent
such case. We can see that in the sequence of usage. From 159
interventions, 106 or 66.7% were hint usage and 53 or 33.33%
were example usage. Even the students are proactively
debugging these errors by themselves and do not use help even
when they need it, based on the logs, out of the 106 hints
usage, 70 or 66.04% of the time wherein errors were
encountered are corrected after using hint. When error was not
eradicated, the agent can reinforce this by offering an example.
We see that there are 11 instances in the total usage wherein hint
is immediately followed by example and the error was
corrected after it. There is a total of 81 or 76.42% of errors
corrected after using the support provided. In case of example
usage only, meaning not preceded with hint, there is 56.60% of
the total usage wherein the error was corrected right after.

Although the figures presented are not at large, the potential
of JEPPY can be seen in helping the novice learners in dealing
syntax error, of course, with further improvement.

TABLE. I. SAMPLE ERROR QUOTIENT CALCULATION

Compi

lation

no.

Error message

Error

message

type

Error

locati

o

-n

Both

event

- s

end

with

error

Same

error

type

Same

error

locati

o n

Same

edit

locati

- on

Pair

no
score

Norma

-lized

score

Sum of

normali

-zed

score

Error

quotient

1

„ans‟ was not

declared in
this scope

error was

not declared
in this scope

55

2

Expected

„while‟
before „cin‟

expected

token before
token

29 2 0 0 0 1 2 0.2222 0.2222

3
Expected „;‟

before „endl‟

expected

token before

token

50 2 3 0 0 2 5 0.5556 0.7778 0.3889

4
Expected „}‟
before „else‟

expected

token before

token

52 2 3 0 1 3 6 0.6667 1.4444 0.4815

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 2, 2020

52 | P a g e

www.ijacsa.thesai.org

Fig. 3. JEPPY Offering Help through Hint.

Fig. 4. JEPPY Showing Hint.

Fig. 5. JEPPY Offering Help through an Example.

Fig. 6. JEPPY when Instructing to Read Help Carefully.

Fig. 7. JEPPY Showing Example to an Error.

Fig. 8. JEPPY when Help was Ignored or not used.

Fig. 9. JEPPY when Help was used and Error was Corrected.

To see whether content in the support is helpful, part of the
interaction by the agent is to ask the learner whether the message
is clear or helpful. There are 66 or 41.51% instances wherein
student responded on the question whether hint is clear or
understandable. From the total responses, all 66 of it responded
that the message is clear. For the example usage, however, there
is only one response which said that the message is clear.

The summary of our logs had given us insight in terms of
interaction. In the design, the agent was intended to be proactive
by having smaller threshold value of Error Quotient. But our
logs tell us that the agent must be designed to carefully select

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 2, 2020

53 | P a g e

www.ijacsa.thesai.org

timing in intervention, otherwise, the learner might get annoyed.
Probably models on interaction along with EQ should be
developed for timing in intervention. Nevertheless, when help is
being used, the agent can be of help before the learner falls into
frustration. However, it should be noted that our logging
mechanism was not intended to deeply look on the efficacy of
learning. The logs enable us to verify and validate the
functionality of every component and give us opportunity to
gain insight for further improvement of the agent.

V. CONCLUSION AND FUTURE WORK

In this paper, the researchers presented the design and
implementation of an interactive pedagogical agent. It was
successfully embedded as a plugin in an Integrated
Development Environment named Code::Blocks. The said
environment for developing real-world applications was also
used by the students in our institution. However, it was not
developed to care on the problem encountered by Novice
programmers such as syntax error correction. Hence, through
this work, the researchers were able to address one of the many
problems a Novice programmer may encounter.

Although our domain is specific to C++ as programming
language, the modular fashion of the architectural design on the
components can be easily expanded. For instance, rules
containing errors and their corresponding help or corrections can
be added without any changes in the rule engine as long as it
conforms to the pattern. Currently, the study does not include
yet the evaluation on the learning gain. It can be seen, however,
that by using the computed EQ, one can determine how well a
student is progressing with or without JEPPY. This can be done
with a large number of participants and an ample time. The
current work done focuses on the design and implementation of
the agent and the EQ.

REFERENCES

[1] T. Jenkins, “On the difficulty of learning to program,” 3rd Annual LTSN
-ICS Conference. University of Ulster, LTSN Centre for Information
and Computer Sciences, 2002.

[2] B.A. Becker, “An effective approach to enhancing compiler error
messages,” In Proceedings of the 47th ACM Technical Symposium on
ComputingScience Education, 126–131, 2016.

[3] P. Denny, A. Luxton-Reilly, E. Tempero, J. Hendrick, “Understanding
the syntax barrier for novices,” ITiCSE In Proceedings of the 16th
Annual Joint Conference on Innovation and Technology in Computer
Science Education, 208–212, 2011.

[4] S. K. Kummerfeld and J. Kay, “The neglected battle fields of syntax
errors,” In Proc. Fifth Australasian Computing Education Conference,
105-111, 2003.

[5] M.C. Jadud, “Methods and tools for exploring novice compilation
behaviour,” Proceedings of the 2006 international workshop on
Computing education research, pp. 73-84, 2006.

[6] B. A. Becker. “A new metric to quantify repeated compiler errors for
novice programmers,” In Proceedings of the 21st ACM Conference on
Innovationand Technology in Computer Science Education, pp. 296–
301, 2016.

[7] U. Z. Ahmed, P. Kumar, A. Karkare, P. Kar, and S. Gulwani,
“Compilation error repair: for the student programs, from the student
programs,” In Proceedings of the 40th International Conference on
SoftwareEngineering: Software Engineering Education and Training,
78–87, 2018.

[8] B. A. Becker, K. Goslin, and G. Glanville, “The effects of enhanced
compiler error messages on a syntax error debugging test,” In
Proceedings of the 49th ACM Technical Symposium on Computer
Science Education, 2018.

[9] J. L. Agapito, M. M. T. Rodrigo, “An analysis of novice programmers'
compilation behaviors in c++,” Philippine Information Technology
Journal, 2012.

[10] E. A. Carter, "An intelligent debugging tutor for novice computer
science students," Theses and Dissertations, 2014.

[11] S. H. Edwards, M. B.M. M. Rajagopal, N. Kandru, “Pedagogical agent
as a teaching assistant for programming assignments: (abstract only),”
Proceedings of the 49th ACM Technical Symposium on Computer
Science Education, p.1079, February 2018.

[12] G. Veletsianos, G. Russell, “Pedagogical agents,” handbook of research
on educational communications and technology, 4th Edition, pp. 759-
769, 2014.

[13] T. Carlotto and P. A. Jaques, “The effects of animated pedagogical
agents in an english-as-a-foreign-language learning environment,”
International Journal of Human Computer Studies, vol 95, pp.15–26,
2016.

[14] Y. Kim, “The role of agent age and gender for middle-grade girls,”
Computers in the Schools, vol 33, pp. 59–70, 2016.

[15] W. T. Liew, N. A. M. Zin, and N. Sahari, “Exploring the affective,
motivational and cognitive effects of pedagogical agent enthusiasm in a
multimedia learning environment,” Human-Centric Computing and
Information Sciences, 7(9), 2017.

[16] Y. Kim, J. Thayne, and Q. Wei, “ An embodied agent helps anxious
students in mathematics learning,” Educational Technology Research
and Development, 65(1), 219–235, 2017.

[17] M. Savin-Baden, G. Tombs, and R. Bhakta, “Beyond robotic
wastelands of time: abandoned pedagogical agents and new pedalled
pedagogies,” E-Learning and Digital Media, 12(3-4), 295–314, 2015.

[18] Y. Kim, A. L. Baylor, Pedagogical agents as social models to influence
learner attitudes,” Educational Technology, 47(1), 23–28, 2007.

[19] W. T. Liew, and S. M. Tan, “Virtual agents with personality: adaptation
of learner-agent personality in a virtual learning environment,” 11th
International Conference on Digital Information Management, pp. 157–
162, 2016.

[20] L. N. Schroeder, W. D. Romine., and S. D. Craig, “Measuring
pedagogical agent persona and the influence of agent persona on
learning,” Computers and Education, 109, 176–186, 2017.

[21] W.L. Johnson, J.C Lester, “Face-to-face interaction with pedagogical
agents, twenty years later” International Journal of Artificial Intelligence
in Education, 26(1), 25–36, 2016.

[22] A. Baylor, "Cognitive requirements for agent-based learning
environments,", Proceedings of the 2001 International Conference on
Advanced Learning Technologies, pp. 462-463, 2001.

