
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

1 | P a g e

www.ijacsa.thesai.org

Apple Carving Algorithm to Approximate Traveling

Salesman Problem from Compact Triangulation of

Planar Point Sets

Marko Dodig1, Milton Smith2

Industrial, Manufacturing and Systems Engineering

Texas Tech University

Lubbock, TX, USA

Abstract—We propose a modified version of the Convex Hull

algorithm for approximating minimum-length Hamiltonian cycle

(TSP) in planar point sets. Starting from a full compact

triangulation of a point set, our heuristic “carves out” candidate

triangles with the minimal Triangle Inequality Measure until all

points lie on the outer perimeter of the remaining partial

triangulation. The initial candidate list consists of triangles on the

convex hull of a given planar point set; the list is updated as

triangles are eliminated and new triangles are thereby exposed.

We show that the time and space complexity of the “apple

carving” algorithm are O(n2) and O(n), respectively. We test our

algorithm using a well-known problem subset and demonstrate

that our proposed algorithm outperforms nearly all other TSP

tour construction heuristics.

Keywords—TSP; heuristics; combinatorial optimization;

computational geometry; compact triangulation

I. INTRODUCTION

In this article we examine the following tour-construction
heuristic for the planar TSP: take a compact triangulation of the
planar set and then find the minimum Hamiltonian cycle
embedded in the triangulation by progressively removing
triangles of minimal Triangle Inequality measure until n-2
triangles remain. We call this heuristic “apple carving” as this
descriptor accurately describes the triangle removal process
which is the basis of the algorithm. Possibility of using well-
known triangulations such as Greedy and Delaunay to generate
heuristic tours was already explored by Reinelt [1], Stewart [2],
and Letchford and Pearson [3]. These authors looked at
triangulations as presenting a “good” subset of edges and
utilized well-established TSP solutions engines like
CONCORDE to solve for TSP. Our research is different in that
we (a) utilize newly introduced Greedy Compact Triangulation
(GCT) proposed recently by Dodig and Smith [4], and (b)
utilize a modification of Convex Hull Heuristic on GCT
triangles to approximate TSP.

Our paper is organized as follows. First, we formally define
the TSP and review the present state of its solution algorithms.
Second, we introduce our approach. Third, we present our
experimental methodology and review our experimental
results. Finally, we highlight our conclusions and outline future
research steps.

II. LITERATURE REVIEW

A. Traveling Salesman Problem

Traveling salesman problem (TSP) is perhaps the best-
known and most-researched problem in combinatorial
optimization. In its general form we are given a collection of
cities and the distance to travel between each pair of them, and
the problem then is to find the shortest route to visit each city
and to return to the starting point [5]. TSP belongs to the class
of NP-hard problems; in other words no polynomial-time
algorithm exists that can solve the problem optimally in
polynomial time, regardless of its complexity (i.e. the number
of cities in the tour). The best result to date is a solution
method, discovered in 1962, that runs in time proportional to
n22n [6]. TSP has been fascinating both researchers and general
public for more than sixty years. In 1954, three researchers
from Rand Corporation had solved a long-standing public
challenge to find the shortest tour through 48 US state capitals
and DC, shown in Fig. 1 [5].

In purely mathematical terms, TSP is the problem of
finding a Hamiltonian tour (cycle) of minimum weight in a
complete edge-weighted graph. In our research, we consider a
symmetric TSP, or STSP, in that we assume that edge-costs are
symmetric, or, equivalently, that the graph is undirected. A
special case of the TSP is obtained when the vertices of the
graph correspond to points in the Euclidean plane, and distance
between any two points is equal to the Euclidean distance
between the corresponding points. The Euclidean TSP is a
special case of the metric TSP, in which the costs obey the
triangle inequality. Metric TSP was found to be strongly NP-
hard [7]. Related to, but distinct from, the Euclidean TSP is the
planar graph TSP which is the focus of our research. This is the
version of the TSP in which a planar graph G = (V, E) is given,
with weights on the edges of E, and one seeks the minimum
cost tour which uses only edges in E. Not only is this problem
NP-hard, it is NP-hard even to test if a planar graph is
Hamiltonian [7].

There is a multitude of planar TSP solution algorithms; few
are exact algorithms, and many are heuristic algorithms. Since
planar TSP is NP-hard, exact algorithms are exponential and
heuristic algorithms are polynomial; selecting between exact or
heuristic algorithms to solve for TSP presents a clear case of
precision and time trade-off.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

2 | P a g e

www.ijacsa.thesai.org

Fig 1. Newsweek Coverage of 49-City Tour through United States [5].

B. Exact Algorithms

Branch-and-bound algorithm is an exact algorithm based
on the IP formulation of TSP. This algorithm consists of two
steps, (a) branching, which means splitting the problem into
sub-problems, and (b) bounding, which means calculating
lower and/or upper bounds for the objective function value of
the sub-problem. The branching is performed in the following
algorithm by separating the current subspace into two parts
using the integrality requirement. Using the bounds,
unpromising sub-problems can be eliminated. LP-relaxation of
the problem is formed by relaxing integer requirements. In the
algorithm, a list of sub-problems is maintained. A sub-problem
is fathomed (totally solved) and removed from the list only
when it has an integer solution that is best so far and becomes
the new incumbent solution, or its optimum LP-solution
objective is worse than the current incumbent value, or its LP-
problem is infeasible.

Held-Karp algorithm is a dynamic programming algorithm
utilizing graph theoretical representation of TSP. In a way, it is
an intelligent brute force method in that it utilizes recursive
formulation to find minimal distance paths between points. It
was proposed independently by Bellman [6] and by Held and
Karp [8]. This algorithm utilizes an optimization property of
TSP in that every sub-path of a path of minimum distance is
itself of minimum distance, which is easily proven by
contradiction. The algorithm computes the solutions of all sub-
problems, starting with the smallest, and looks up solutions
already computed when requiring solutions for smaller
problems. At the end, computing minimum distance tour
means using the final equation to generate the initial node, and
then repeating for all other nodes. Held-Karp is exhaustive, in
that all sub-problems need to be solved; it has the time
complexity of O(2nn2) and the space complexity of O(2nn).

C. TSP Heuristics

In simplest terms, TSP heuristics can be divided into two
distinct categories. Tour construction heuristics execute a
sequence of operations until a valid tour is obtained, at which
point the heuristics stop and report the constructed tour. Tour
improvement heuristics start with a valid tour (an output of a
tour construction heuristic, for example) and iteratively
improve the tour cost, typically via local search, until some
stopping criterion is reached [5]. Solution quality of tour

improvement techniques far exceeds quality of solutions
achieved by tour constructions [5].

Nearest Neighbor heuristic is perhaps the best-known tour
construction heuristics [9]. It starts with a random city, adds the
nearest non-visited city, and keep adding new non-visited cities
in the same fashion until all cities are included. When all of the
cities are included it returns to the initial city. It has the time
and the space complexity of O(n2) and O(n), respectively [10].

Greedy heuristic gradually constructs a tour by repeatedly
selecting the shortest remaining edge and adding it to the tour
as long as it does not create a cycle with less than n edges nor
increase the degree of any node (city) to more than two [10].
Greedy heuristic has the time complexity of O(n×log2n), which
makes it more efficient than Nearest Neighbor [10]. The space
complexity of Greedy matches that of Nearest Neighbor
heuristic [10].

Cheapest Insertion heuristic starts with the shortest edge
which becomes the initial sub-tour. Then it selects a city not in
the current sub-tour, having the shortest distance to any one of
the cities in the sub-tour. It finds an edge in the sub-tour such
that the cost of inserting the selected city between the edge
cities will be minimal, and keeps inserting shortest-distance
remaining cities until none remain. Cheapest Insertion has the
time complexity of O(n2×log2n) and is more computationally
intensive then Nearest Neighbor and Greedy [11].

Convex Hull heuristics starts by finding the convex hull of
a point set and making it an initial sub-tour. For each remaining
point it finds its cheapest insertion, adds the city with the least
cost/increase ratio, and keeps repeating this process with
remaining points until none remain. It is also more
computationally intensive with the time complexity of
O(n2×log2n) [12].

Christofides heuristic builds a minimal spanning tree
(MST) of the planar point set. It then creates a minimum-
weight matching (MWM) on points having an odd degree, adds
the MST together with the MWM, creates an Euler cycle from
the combined graph, and finally traverses it taking shortcuts to
avoid already included points. This heuristic has the best worst-
case performance guarantee of all TSP heuristics as it never
produces tours worse than 1.5 times the optimal [13]. On the
other hand, it has the time complexity equal to O(n3) [13].

Match-Twice-and-Stitch heuristic [14] uses two sequential
minimum-weight matchings to construct the cycles. The first
matching returns the usual minimum-cost edge set with each
point incident to exactly one matching edge. The second
matching returns the minimum-cost edge set with each point
incident to exactly one matching while ignoring the edges
found in the first matching. The first phase results in multiple
sub-tours. The second phase stitches the constructed cycles to
form the TSP tour, with the exact (slow) and approximate (fast)
patching procedure to join two cycles. A minimum spanning
tree (MST) calculation determines a way to stitch all cycles
into a tour. It is the best construction heuristics reported, with
the different versions of the heuristic reporting average tour
lengths between 4.8% (slowest) to 7.1% (fastest) over HK
bound. It has the time complexity of O(n2) [14].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

3 | P a g e

www.ijacsa.thesai.org

Tour improvement algorithm such as 2-opt removes two
edges from the feasible tour and reconnects the two paths
created if the new tour will be shorter. There is only one way to
reconnect the two paths and still have a valid tour. It continues
removing and reconnecting the tour until no 2-opt
improvements can be found. Algorithm works the same for any
path connecting k points, however the time performance
severely lags starting at 5-opt. Its worst-case performance
guarantee is known, as it is guaranteed to produce results not
more than two times the optimal [10]. The main weakness of
the 2-opt tour improvement heuristic is that it covers local
improvements for pairs of 2 nodes only. This was subsequently
addressed in newer k-opt algorithms, where k > 2, chief among
them the Lin-Kernighan heuristic with the time complexity of
O(n2.2) [10].

Solutions generated by TSP heuristics are typically
compared to the Held-Karp (HK) lower bound. This lower
bound is the solution to the LP relaxation of the IP formulation
of the TSP, which can be found in polynomial time by using
the Simplex method and a polynomial constraint-separation
algorithm [15]. A HK lower bound averages about 0.8% below
the optimal tour length [15]; however, its guaranteed lowest
bound is only 2/3 of the optimal tour. Fig. 2 summarizes
typical performance of the most-significant TSP heuristic
algorithms. 2-opt, 3-opt, and Lin-Kernighan heuristics are the
tour improvement heuristics, and all of the others are tour
construction heuristics.

Fig 2. Typical Performance of Best-known Heuristics [10], [14].

III. OUR APPROACH

A. Improved Greedy Compact Triangulation (iGCT)

iGCT of a planar point set S is created by GCT Algorithm
[4]. This algorithm progressively inserts most-compact empty
triangles into the triangulation not intersecting empty triangles
in S previously inserted and achieves local optimality by
performing weight-reducing edge flipping [4]. Compactness of

an empty triangle T with area A(T) and perimeter P(T) in
planar point set S is measured as follows [16]:

CI(𝑇) =
4𝜋𝐴(𝑇)

[𝑃(𝑇)]2 (1)

Dodig and Smith showed that GCT approximates
Minimum Weight Triangulation (MWT) in a variety of planar
point set configurations, thereby making its edges compelling
candidates for our proposed TSP heuristic [4]. MWT is defined
as the full triangulation of a planar point set S having the
lowest total edge length out of all full triangulations of a planar
point set S. Dodig and Smith have also confirmed that the
optimal TSP solution is frequently fully embedded in iGCT
(61% of the time), and that the minimum perimeter polygon
fully contained in iGCT is nearly optimal, or 0.36% longer
than optimal. Fig. 3 shows full embeddedness of the optimal
TSP tour in iGCT for berlin52, one of the TSPLIB problems
for which the optimal TSP is known.

B. Apple Carving Algorithm

There are 2n - h - 2 triangles in both iGCT and MWT
triangulations of a planar set S of n points, where h represents
the number of points on the Convex Hull of S, or CH(S) [16].
We know that the perimeter length of CH(S) is less than the
perimeter length of TSP polygon for this planar point set due to
Isoperimetric Inequality principle. Following Steiner proof of
Isoperimetric Inequality, we can “carve out” from CH(S) a
triangle on the perimeter of full triangulation with the lowest
Triangle Inequality Factor and have high degree of confidence
that minimum perimeter polygon is still fully contained in the
resulting partial triangulation. We can continue carving out
eligible triangles with the lowest Triangle Inequality Measure,
until all points are at the perimeter of the partial triangulation.
We give priority to removing triangles whose absolute Triangle
Inequality, or TI, is not only lowest, but also “optimal”.
“Optimal” TI on any point is defined as the lowest TI of all
triangles containing this point. We consider this method to be
the basis of the “apple carving” algorithm. In fact, this method
is very similar to the Convex Hull heuristics, through Convex
Hull Heuristics does not follow a pre-defined tour building
roadmap such as the one provided by the compact triangulation
[12]. “Apple carving” algorithm pseudocode is given in Fig. 4.

Fig 3. Optimal TSP (Shaded) Fully Contained in GCT for berlin52 Problem

[4].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

4 | P a g e

www.ijacsa.thesai.org

INPUTS

1. Planar point set S with n points; S has h points on CH(S).

2. iGCT(S) with 2n – h – 2 triangles; each Triangle(a, b, c) and Edge(a, b) in iGCT satisfies a ≤ b ≤ c

BEGIN Apple Carving Algorithm

 1. Initialize variables

 2. Import point coordinates

 3. Initialize iGCT

 FOR each triangle i in iGCT

 SimpleTriangle(i) := Triangle(a, b, c)
 CountTriangles(a) +=1; CountTriangles(b)+=1; CountTriangles(c) +=1

 IF TIA (a, SimpleTriangle(i)) < min_TI (a) THEN

 min_TI(a) := TIA(a, SimpleTriangle(i))
 ENDIF

 CountEdges(a,b) += 1; CountEdges(a,c) += 1; CountEdges(b,c) += 1

 Apple ← SimpleTriangle(i)
 NEXT i

 4. Initialize Candidate List

 FOR each Edge(a, b)
 IF CountEdges(a, b) = 1 THEN

 CandidatesList ← Edge(a, b)

 VisitedCities ← a, b
 TourLength += Distance(a, b)

 ENDIF

 NEXT

 5. Carve triangles from Polygon (Apple)

 change_recorded := 1

 WHILE VisitedCities < n AND change_recorded == 1
 change_recorded := 0

 Let k be the index of a triangle containing the candidate edge Edge(a, b) such that:
 a) CountTriangles(a) > 1 AND CountTriangles (b) > 1 AND CountTriangles(c) > 1,

 b) Min_TI(c) == TIA(c, SimpleTriangle(k))

 c) SimpleTriangle(k) == Triangle(a, b, c) with the min_TI(c) for all triangles satisfying a) and b)
 IF SimpleTriangle(k) doesn’t exist THEN

 Let k be the index of a triangle containing any candidate edge Edge(a,b) such that:

 d) CountTriangles(a) > 1 AND CountTriangles(b)>1 AND CountTriangles(c) > 1,
 e) SimpleTriangle(k) = Triangle(a, b, c) with the lowest TIR(c, SimpleTriangle(k)) for all triangles

 satisfying d)

 ENDIF
 Apple → SimpleTriangle(k)

 CandidatesList ← Edge(a,c), Edge(b,c)

 CandidatesList → Edge(a,b)
 CountTriangles(a) -= 1; CountTriangles(a) -= 1; CountTriangles(a) -= 1

 VisitedCities ← c

 TourLength := TourLength - Distance(a, b) + Distance(a, c) + Distance(b, c)
 VisitedCities += 1; change_recorded := 1

 WHILE END

 6. Correct infeasibility conditions (if any)

 IF VisitedCities < n THEN

 FOR each point c NOT in VisitedList

 Let a and b be points in S such that
 f) Edge(a,b) is in CandidatesList,

 g) Triangle(a,b,c) has the lowest TIA(c, Triangle(a,b,c)) for any pair of points a and b satisfying f)

 VisitedCities ← c
 CandidatesList ← Edge(a,c), Edge(b,c)

 CandidatesList → Edge(a,b)

 TourLength = TourLength - Distance(a, b) + Distance(a, c) + Distance(b, c)

 VisitedCities += 1

 NEXT c

 ENDIF

 7. Record the polygon tour

 FOR each Edge(a, b) in CandidatesList

 Predecessor(b) := a
 NEXT

END Apple Carving Algorithm

Fig 4. Apple-Carving Algorithm Pseudocode.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

5 | P a g e

www.ijacsa.thesai.org

C. Measure of Sub-optimality

We define 𝜀𝑃′′
𝐴 (𝑠) as the absolute deviation (from the

optimal TSP) of the perimeter length of the polygon found via
“apple carving” algorithm, and express it mathematically as
follows:

𝜀𝑃′′
𝐴 (𝑠) =

𝑃𝐿(𝑃′′(𝑆)))−𝑃𝐿(𝑇𝑆𝑃(𝑆))

𝑃𝐿(𝑇𝑆𝑃(𝑆))
× 100%, ∀𝑆 𝑖𝑛 𝑅2 (2)

Where S is a given point set, and P’’ is the Hamiltonian
cycle found by the “apple carving” algorithm.

D. Time Complexity

Theorem 1 The time complexity of the “apple-carving”
algorithm is O(n2).

Proof: Step 2 of the “apple carving” algorithm has the time
complexity of O(n), since in this step we initialize arrays of n
points. Step 3 of the “apple carving” algorithm has the time
complexity of O(n), as we also know that there are O(n)
triangles in a full triangulations of a planar point set S of n
points [16]. Step 4 of the “apple carving” algorithm loops
through no more than n candidate edges, and therefore has time
complexity of O(n). Step 5 of the “apple carving” algorithm
removes up to n – h triangles from iGCT. In each removal step,
we evaluate up to 2n – h – 2 candidate triangles that can be
removed. This guarantees time complexity of O(n2) for Step 5.
Step 6 of the “apple carving” algorithm has time complexity of
O(n2). We know this because there are not more than n points
that need to be evaluated against up to n candidate
edges/triangles. Finally, step 7 of the “apple carving” algorithm
assigns predecessors for each of n points in S by looping
through not more than n edges in the candidate lists,
guaranteeing the time complexity of O(n).

This proves that the time complexity of the “apple carving”
algorithm is 4O(n) + 2O(n2) = O(n2).

Theorem 2 The time complexity of the “apple-carving”
algorithm and iGCT algorithm together is O(n4).

Proof: Time complexity of the stand-alone “apple carving”
algorithm is O(n2). Dodig and Smith proved that the time
complexity of the iGCT algorithm is O(n4) [4].

This proves that the time complexity of the “apple carving”
algorithm is O(n2) + O(n4) = O(n4).

E. Space Complexity

Theorem 3 The space complexity of the “apple-carving”
algorithm is O(n).

Proof: Number of points in a planar point set S is defined
as n. The number of triangles in any full triangulation of S is
known to be 2n – h – 2, where h is the number of points
belonging to CH(S) [17]. The number of edges in any full
triangulation of S is known to be 3n – h – 3, where h is the
number of points belonging to CH(S) [17]. This implies that
the variables in “apple carving” algorithm tracking both visited
cities and candidate edges cannot have the space complexity
greater than O(n).

This proves that the space complexity of the “apple
carving” algorithm is O(n).

IV. EXPERIMENTAL METHODOLOGY

A. Objective

Our experimental objective was to test the validity of the
proposed tour construction algorithm experimentally by
analyzing how well the length of the resulting Hamiltonian
cycle approximates the length of the optimal TSP.

B. Hypothesis

We hypothesize that the “apple carving” algorithm will
outperform the traditional Convex Hull algorithm. We further
hypothesize that the “apple carving” algorithm will outperform
most of the traditional tour construction heuristics.

C. Data Sets

To perform our experiments, we selected 18 problem sets
from TSPLIB, a well-known online problem library created to
provide researchers with a broad set of test problems from
various sources and properties for which the optimal TSP
solutions are known [18]. We have chosen 11 problem sets
which are given with points in general position (att48,
berlin52, ch130, eil51, eil76, eil101, gr96, gr137, rat99,
rat195, rd100). This was important as point sets in general
position do not have 3 or more co-linear points. We have also
chosen 7 problem sets with a significant number of co-linear
points (lin105, pr76, pr107, pr124, pr136, pr144, u159). This
was done to test performance of our framework in both point
set configurations.

D. Programming

To achieve our experimental objectives we have
programmed iGCT Algorithm in VBA for Excel. This
algorithm takes a planar point set as an input, and produces a
Hamiltonian cycle of S as an output. It also calculates the
length of P’’ found by “apple carving” algorithm in order to
compare to the optimal TSP lengths for each of the problems in
our problem set. All of our experiments were performed on
Latitude 5490 laptop with Intel Core i5-8250U CPU @
1.60GHz with 8GB of RAM, running Windows 10 64-bit
operating system.

V. RESULTS

Experimental results for 18 given problem sets can be
found in Table I.

On average, polygons produced by the “apple carving”
algorithm in our test problems are 8.1% longer than optimal
TSP solutions. For gr137 problem, the absolute error is the
lowest at 1.9%, and for pr124 problem, the error is the highest
recorded at 15.9%. If we exclude point sets of 3 or more co-
linear points, the absolute error drops to the average of 6.1%,
with the maximum error recorded for ch130 problem at 11.2%.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

6 | P a g e

www.ijacsa.thesai.org

TABLE I. EXPERIMENTAL RESULTS

Set S TSP P’’ 𝜀𝑃′′
𝐴

Co-

linear

1 att48 108,159 118,702 9.8%

2 berlin52 7,544 7,711 2.2%

3 ch130 6,111 6,793 11.2%

4 eil51 430 453 5.3%

5 eil76 545 578 5.9%

6 eil101 642 701 9.2%

7 gr96 512 534 4.3%

8 gr137 729 743 1.9%

9 lin105 14,383 15,207 5.7% Yes

10 pr76 108,159 112,152 3.7% Yes

11 pr107 44,301 49,653 12.1% Yes

12 pr124 59,030 68,069 15.3% Yes

13 pr136 96,770 108,573 12.2% Yes

14 pr144 58,535 67,867 15.9% Yes

15 rat99 1,219 1,265 3.7%

16 rat195 2,333 2,517 7.9%

17 rd100 7,910 8,426 6.5%

18 u159 42,075 47,354 12.6% Yes

VI. CONCLUSIONS AND NEXT STEPS

We have introduced a simple algorithm that takes a full
triangulation (iGCT) of a planar point set and reduces it to a
simple polygon by removing triangles with low Triangle
Inequality Measure starting from triangles on the convex hull
of this point set. We have proved that the time complexity of
the “apple carving” algorithm is O(n2). We have also shown
that the space complexity of the algorithm to be O(n). We have
then demonstrated that, on average, polygons produced by this
“apple carving” algorithm in our test problems are 8.1% longer
than optimal TSP solutions. If we exclude point sets of three or
more co-linear points, the absolute error drops to the average of
6.1%, with the maximum error recorded at 11.2%.

Based on these results and our literature review we
conclude that “apple carving” algorithm produces better quality
of solutions than any other construction heuristics other than
match-twice-and-stitch heuristic, as evident in Fig. 5. Here it is
important to note that the “apple carving” average results have
been adjusted up by 0.8%, since HK lower bound is on average
0.8% lower than the optimal TSP solution [15].

Our initial research hypothesis that the “apple carving”
algorithm will produce results superior to that of the classical
Convex Hull Algorithm were met (9% average error for “apple
carving” versus 12% average error for Convex Hull algorithm).
We were also able to demonstrate that the “apple carving”
algorithm performs significantly better than all the classical
tour construction heuristics and is only slightly outperformed
by Match-twice-and-stich heuristic introduced in 2004 [14].

Fig 5. Typical Performance of Cited Heuristics over HK Lower bound

(Including “Apple Carving” Algorithm Results).

Limitations in our work lie in the number of TSPLIB
instances we used (i.e. 18 problems), as well as in the relatively
small problem sizes employed (i.e. maximum of 195 points).
To improve quality of our experiments we intend to expand our
tests to all named TSPLIB instances, which will also allow us
to compare how our algorithm performs on problems of
varying size.

Finally, our future work will focus on fine-tuning the
“apple carving” algorithm and adding the improvement steps
of switching the relevant triangles in and out of the solution
polygon depending on whether adding or removing related
triangle pairs will result in desired tour improvements. Triangle
pairs would be relevant and suitable for “swapping” in and out
of the resulting polygon if the share at least one point, and their
“swap” would not result in a loss of solution feasibility.

REFERENCES

[1] G. Reinelt, “Fast heuristics for large geometric traveling salesman
problems” ORSA Journal on Computing, pp. 206-217, 1992.

[2] W. Stewart, Euclidean traveling salesman problems and Voronoi
diagrams. School of Business Administration, College of William and
Mary, 1997.

[3] A. N. Letchford, and N. A. Pearson, “Good triangulations yield good
tours”, Computers and Operations Research, vol. 35(2), 2008, pp. 638-
647.

[4] M. Dodig, and M. Smith, “Novel heuristic for approximating minimum
weight triangulation of planar point sets”, unpublished.

[5] W. Cook, In Pursuit of the Traveling Salesman. Princeton University
Press, 2012.

[6] R. Bellman, “Dynamic programming treatment of the travelling
salesman problem”, Journal of the ACM, vol. 9(1), pp. 61-63, 1962.

[7] R. Garey, D. Johnson, and R. Tarjan, “The Planar Hamiltonian Circuit
Problem is NP-Complete”, SIAM Journal on Computing, pp. 704-714,
1976.

[8] M. Held, and R. Karp, “A Dynamic Programming Approach to
Sequencing Problems”, Journal for the Society for Industrial and
Applied Mathematics, vol. 10(1), pp. 196-210, 1962.

[9] G. Kizilates, and F. Nuriyeva, “On the nearest neighbor algorithms for
the traveling salesman problem”, Advances in computational science,
engineering, and information technology, vol. 225, pp. 111-118, 2013.

[10] C. Nilsson, Heuristics for the Traveling Salesman Problem. Linköping
University, 2003.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

7 | P a g e

www.ijacsa.thesai.org

[11] D. Rosenkrantz, R. Stearns, and P. Lewis, “Approximate algorithms for
the traveling salesperson problem”, 15th Annual Symposium on
Switching and Automata Theory, pp. 33-42, 1974.

[12] B. Golden, L. Bodin, T. Doyle, and W. Stewart Jr, “Approximate
traveling salesman algorithms”, Operations Research, vol. 28(3), pp.
694-711, 1980.

[13] N. Christofides, “Worst-case analysis of a new heuristic for the
travelling salesman problem (No. RR-388)”, Carnegie-Mellon
University, Management Sciences Research Group, 1976.

[14] A. Kahng, and S. Reda, “Match twice and stitch: a new TSP tour
construction heuristic”, Operations Research Letters, pp. 499-509, 2004.

[15] D. Johnson, L. McGeoch, and E. Rothberg, “Asymptotic Experimental
Analysis for the Held-Karp Traveling Salesman Bound”, Proceedings of
the Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 341-
350, 1996.

[16] R. Osserman, “The Isoperimetric Inequality”, Bulletin of the American
Mathematical Society, vol. 84(6), pp. 1182-1238, 1978.

[17] T. Vassilev, Optimal Area Triangulations. University of Saskatchewan,
2005.

[18] G. Reinelt, “TSPLIB - a traveling salesman problem library”,
INFORMS Journal on Computing, pp. 376–384, 1991.

