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Abstract—This paper proposes a new model in emergency 

control of load shedding based on the combination of dual 

Artificial Neural Network to implement the load shedding, 

restore the power system frequency and prevent the power 

system blackout. The first Artificial Neural Network (ANN1) 

quickly recognizes the state with or without load shedding when 

a short-circuit occurs in the electrical system. The second 

Artificial Neural Network (ANN2) identifies and controls the 

selection of load shedding strategies. These load shedding 

strategies include pre-designed rules which is built on the AHP 

algorithm to calculate the importance factor of the load units and 

select the priority of the load shedding. In case the ANN1 results 

in a load shedding, the load shedding control strategy is 

immediately implemented. Therefore, the decision making time is 

much shorter than the under frequency load shedding method. 

The effectiveness of the proposed method is tested on the IEEE 

39-bus system which proves the effectiveness of this method. 

Keywords—Load shedding; Artificial Neural Network; AHP 

algorithm; emergency control; frequency stability 

I. INTRODUCTION 

Short-circuit faults during operation are unpredictable and 
the time required for troubleshooting is also very short. If 
early system instability is detected and rapid shedding are 
implemented, it will prevent the system blackout and losing 
power completely. The conventional UFLS [1, 2] method is 
not suitable for the large and the complex power systems. For 
the most power companies, load shedding methods are 
implemented using a load balancing method, and it is not 
possible to shed the exact amount of load power because it is 
applied the entire feeder distribution line.  UFLS relays are 
located at the first part of the feeder distribution line to control 
the breaker according to the frequency thresholds value. This 
value is set by the operator system regardless of the type of 
load, as well as the importance of the loads connected to the 
feeder. Therefore, the power supply will not be maintained to 
provide for the most important and necessary loads. Moreover, 
the coordination the frequency setting thresholds for UFLS 
relays for all feeder distributions line on a large power system 
nationwide is very complicated and difficult. 

The recent large grid blackouts on the world [3-5] make 
the reliability of the UFLS, UVLS conventional techniques no 
longer as reliable as before in preventing power system 
blackout. The studies of intelligent load shedding [6, 7] focus 

mainly on the objective of addressing the optimization of the 
load shedding power under the steady state operating mode of 
the power system. However, due to the complexity of the 
power system, in case of the emergency control, such as short 
circuits on branch and bus bars, these methods have problems 
with the amount of data, computation time and the processing 
speed of the algorithm program is relatively slow or the 
passive load shedding is done after waiting for the frequency 
below the permitted threshold, thus causing delays in the load 
shedding decision. This can lead to an instability of the power 
system frequency. In addition, these studies focused on the 
separate problem; it is the application of intelligent algorithms 
to solve the load shedding problem without combining with 
other problems, such as the problem of early warning 
recognition "Yes" or "No" of load shedding in a total solution 
to maintain power system frequency stability. 

To overcome these problems, the dual neural network with 
the solution to identify "Yes" or "No" load shedding is 
applied. This solution has the ability to meet the classification 
requirements rapidly when short circuits occur incidents 
destabilize frequency in the power system. In case the load 
shedding recognition result of the ANN1 is "Yes”, this 
identification result coordinate with the load shedding control 
that has been pre-design by the application of Analytic 
Hierarchy Process (AHP) algorithm. It helps to quickly make 
decisions to control load shedding based on ANN2 to restore 
and maintain the frequency stability of the power system. 

II. LITERATURE REVIEW 

Research on the application of ANN network to shed the 
load in the power system has been used and developed by 
many researchers. In [8] proposes load shedding method base 
on ANN network for the multi-generator system and 39-bus 
New England systems [9, 10]. The ANN network training 
process includes three variables inputs: total generation power, 
total load demand, frequency attenuation and one variable 
output is the minimum amount of load shedding power. The 
results show that this method performs faster load shedding 
than UFLS methods [11, 12]. Kottick [13] uses two neural 
network models to solve the power failure situation of the 
generator. The first neural network identifies the lowest 
minimum frequency in the event of an outage generator. The 
second neural network identifies how many stage to perform 
of load shedding. However, this study has not considered 
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emergencies such as short circuit and load shedding has not 
considered the importance of load.  In [14], ANN network is 
used to quickly identify the stability of multi-generator 
system. This study has not yet been considered in combination 
with load shedding solutions to stabilize the power system. 

In addition, the ANFIS method base on the combination of 
neural networks and fuzzy logic to determine the amount of 
load shedding power presented in [15]. This method has been 
tested on IEEE 300-bus test systems. The test results show 
that the ANFIS method gives an accurate amount of load 
shedding power. However, the ANFIS method can only work 
with Sugeno type systems [16]. 

In most of the previous studies involving ANN, the 
variable output was the total amount of load shedding. This 
variable output is not an actual signal, because it does not 
determine the number of loads that must be shed in each step. 

The intelligent load shedding algorithms are proposed as: 
in [17-19], the Particle Swarm Optimization (PSO) is a 
random optimization algorithm proposed by Kennedy and 
Eberhart in 1995 to support the load shedding strategic 
proposal … These studies focus primarily on the objective of 
addressing the optimization of the load shedding power under 
the steady state operating mode of the power system. 
However, these methods have certain limitations in applying 
them in real-time applications. As a result, these methods are 
not fast enough for load shedding in emergencies such as short 
circuits. The actual load shedding system takes place in real 
time, and in this section, the quick response of the neural 
network can give the ability to optimize the identification and 
shedding of the load in an instant. 

In fact, for a large system, the amount of load shedding 
power is greater or less than the optimal amount of load 
shedding power and does not affect too much of the system 
frequency, it is necessary to consider the location and time of 
load shedding so that system parameters recover quickly and 
stable restoration of the power system. 

 The proposed method in this paper has the advantage of 
solving the integrated problem, while many other methods 
solve single problems mainly about optimizing the amount of 
load shedding power. The proposed method combines the 
disturbance classification problem in the power system to 
decide whether or not to shed the load and the problem of 
determining the location of the load need to shed based on the 
load importance factor. 

The effectiveness of the proposed load shedding method is 
verified on the 10-machine New-England Power System 
diagram. The results of the proposed method are compared 
with the under frequency load shedding method. Fast 
recognition process of "Yes" or "No" perform load shedding 
when a short-circuit incident occurs causes frequency 
instability in the power system in combination with the 
established load-control solution based on AHP algorithm. 
Which helped the control system to make decisions on fast 
load shedding to help the power system keep its frequency 
stability, the frequency of the recovery system to the allowed 
value and faster recovery frequency than traditional load 
shedding. 

III. METHODOLOGY 

A. Arrange the Shedding Priority of the Load units based on 

the Importance Factor 

The application of Analytic Hierarchy Process (AHP) 
algorithm [20] is proposed by T.L. Saaty with the idea of 
using expert knowledge to rank the objects in a system. This 
algorithm arranges the priority for load shedding of the load 
units through the following steps: 

Step 1: Identify the Load Centre areas LCi and the load 
units Lj in the power system diagram, this division of load 
centres is based on the criteria that the loads are close to each 
other or in the same load cluster. 

Step 2: Set up a hierarchy model based on the Load Centre 
areas and load units identified in Step 1. 

Step 3: Set up judgment matrix LCi and Lj showing the 
importance factor of load centres and the importance factor 
among loads in the Load Centre together. The values of the 
components in the judgment matrix reflect the operational 
experience of the operating expert on the importance of the 
relationship between the pair of factors presented in equation 
(1), (2). 
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Where: m is the number of the Load Centre; n is the 
number of loads in a Load Centre; WDi/WDj describe the 
relative importance of the ith load compared to the jth load; 
WKi/WKj describe the relative importance of the ith Load 
Centre compared to the jth Load Centre. The value WDi/WDj; 
Wki/Wkj can be obtained from the experience of experts or 
system operators through the use of the 9-scaling method. 

If both loads A and B are equally important, then the 
scaling factor will be “1”. 

If load A is a bit more important than load B, then the 
scaling factor of A to B will be “2”. 

If load A is slightly more important than load B, then the 
scaling factor of A to B will be “3”. 

If load A is relatively more important than load B, then the 
scaling factor of A to B will be “4”. 

If load A is more important than load B, then the scaling 
factor of A to B will be “5”. 

If load A is relatively more important than load B, then the 
scaling factor of A to B will be “6”. 
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If load A is much more important than load B, then the 
scaling factor of A to B will be “7”. 

If load A is extremely relatively important compared to 
load B, then the scaling factor of A to B will be “8”. 

If load A is extremely important compared to load B, then 
the scaling factor of A to B will be “9”. 

Step 4: Calculate the importance factor of the Load Centre 
areas together and the importance factor of the load units in 
the same load area on the basis of set up a judgment matrix. 
According to AHP principles, the importance factor of the 
load can be calculated through the calculation of the maximal 
eigenvalue and the corresponding eigenvector of the judgment 
matrix. The calculation steps using the root method are as 
follows: 

Multiply all elements of each row in the judgment matrix 

,i i ijM X   i=1, …, n; j = 1, …, n           (3) 

Calculate the nth root of Mi 

*

1W ,n
i M

 i=1, …, n             (4) 

Once done, obtain the following vector: 

* * * *

1 2W W ,W ,...,W
T

n
                 (5) 

Normalize the vector W* 

*
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the eigenvector of the judgment matrix A, that is: 

 1 2W W , W ,..., W
T

n
             (7) 

Step 5: Calculate the importance factor of the load units 
for the whole system. 

The importance factor of the load Wij for the whole 
system can be calculated from the equation (8). 

Wij = WLCi x WLj         Lj  LCi            (8) 

Where: Lj  LCi it mean the Lj load is located in the LCi 

Load Centre. 

Step 6: Arrange in descending order of importance of each 
load unit to implement the load shedding strategy according to 
priority. 

B. The Method of Emergency Load Shedding is based on the 

use of Dual Artificial Neural Networks 

The principle model of the load shedding method based on 
the quick identification of the status "Yes" or "No" of the load 
shedding is presented in Fig. 1 and the detailed model shown 
in Fig. 2. 

 

Fig. 1. Model of Emergency Control Principle for Load Shedding. 

 

Fig. 2. Detailed Model of Emergency Load Shedding Control. 

The principle of the load shedding method proposed is as 
follows: The input variable vector contains information 
specific to the state of the power system in the event of an 
incident and is collected from measuring devices. Parameters 
of the input variables contain an instant change of status 
parameters as soon as the problem occurs such as: amount of 
power change of the load bus (∆Pload), voltage drop at buses 
(∆Vbus), amount of power change on branches (∆PBranch). 
Based on these input variables, the first ANN1 neural network 
implement power system status identification "Yes" or "No" 
load shedding. If the output of ANN1 is "Yes" then the 
selector activates allowing the ANN2 to operate. ANN2 
implements and identifies LSi load shedding strategies (i = 1, 
n) to control the load shedding strategy. These load shedding 
strategies are based on the AHP algorithm [20]. 

IV. CASE STUDIES-SIMULATIONS AND RESULTS 

The effectiveness of the proposed method is tested on the 
IEEE 39 bus 10 generators system. Rated frequency is 60Hz. 
This diagram is shown in Fig. 3. 

PowerWorld software is used to off-line simulation to 
collect data for assessing the status of the electrical system 
with/without load shedding in the event of a short-circuit fault 
with 80%, 90% and 100% load levels of the base load, the 
short-circuit trip time of the circuit breaker is set to 50ms [22]. 
In these test, faults such as three-phase short-circuit, phase-
phase, phase-to-earth at all bus bar and along the associated 
lines with each 5% distance of the line length are considered. 
The power system implements load shedding when the 




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frequency drops below the permitted level of 59.7Hz after the 
fault is cleared and vice versa. For ANN1, the input variable x 
{∆Vbus, ∆Pload, ∆PBranch} and the output variable y{1 0, 0 1}. 
The total number of input variables is 104 variables 
(including: 39 variables ∆Vbus, 19 variables ∆Pload and 46 
variables ∆PBranch), and 2 output variables (Including: load 
shedding, no load shedding). Synthesis of simulation cases for 
load levels built an input data set including 892 samples which 
includes 576 patterns that do not require load shedding and 
316 samples need to be shed the load. During training of 
artificial neural network, the data set is divided into 85% data 
for training and 15% for test data. The data are normalized 
before training. 

ANN1 is trained with neural network tools powered by 
Matlab software. Neural Perceptron configuration and 
parameters include 3 layers: input layer, hidden layer and 
output layer. The algorithm for updating weights and bias is 
Levenberg-Marquardt which is recommended for recognition 
problem due to its fast calculation and high accuracy [23]. 
Number of training cycles is 1000, training error is 1e-5, other 
parameters are selected by default. The training results for 
ANN1 have a training accuracy of 98.81%, a test accuracy of 
97.74% and the results are shown in Fig. 4. 

 

Fig. 3. Load Centre Areas in the IEEE 39 Bus 10 Generators System [21]. 

 

Fig. 4. Relationship of Training and Testing Accuracy Corresponds to the 

Number of Input Variables. 

The steps of calculating importance weights are presented 
in Section II.A. Load Centre areas, load units in the IEEE 39 
bus 10 generators and hierarchy model are shown in Table I 
and Fig. 5. 

In the IEEE 39-bus 10 generators system, applying AHP 
algorithm to build 4 Load Centres, 19 load units are shown in 
Fig. 5. The judgment matrix of LCi Load Centres and Lj loads 
in the Load Centre are presented from Tables II to Table VI. 

TABLE I. LOAD CENTRE AREAS AND LOAD UNITS IN THE IEEE 39 BUS 10 

GENERATOR DIAGRAM 

Load centres Load units 

Load Centre 1 (LC1) L4, L7, L8, L12, L31, L39 

Load Centre 2 (LC2) L15, L16, L20, L21, L23, L24 

Load Centre 3 (LC3) L26, L27, L28, L29 

Load Centre 4 (LC4) L3, L18, L25 

 

Fig. 5. Hierarchical Model of Load Centre and Load units. 

TABLE II. THE JUDGMENT MATRIX OF LOAD CENTRE S 

LCi LC1 LC2 LC3 LC4 

LC1 1/1 2/1 3/1 4/1 

LC2 1/2 1/1 2/1 3/1 

LC3 1/3 1/2 1/1 2/1 

LC4 1/4 1/3 1/2 1/1 

TABLE III. THE JUDGMENT MATRIX OF LOAD UNITS AT LOAD CENTRE 1 

Lj L4 L7 L8 L12 L31 L39 

L4 1/1 2/1 1/1 9/1 9/1 1/2 

L7 1/2 1/1 1/2 8/1 8/1 1/5 

L8 1/1 2/1 1/1 9/1 9/1 1/2 

L12 1/9 1/8 1/9 1/1 1/1 1/9 

L31 1/9 1/8 1/9 1/1 1/1 1/9 

L39 2/1 5/1 2/1 9/1 9/1 1/1 

TABLE IV. THE JUDGMENT MATRIX OF LOAD UNITS AT LOAD CENTRE 2 

Lj L15 L16 L20 L21 L23 L24 

L15 1/1 1/1 1/2 2/1 2/1 1/1 

L16 1/1 1/1 1/2 2/1 2/1 1/1 

L20 2/1 2/1 1/1 2/1 3/1 2/1 

L21 1/2 1/2 1/2 1/1 1/1 1/1 

L23 1/2 1/2 1/3 1/1 1/1 1/2 

L24 1/1 1/1 1/2 1/1 2/1 1/1 
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TABLE V. THE JUDGMENT MATRIX OF LOAD UNITS AT LOAD CENTRE 3 

Lj L26 L27 L28 L29 

L26 1/1 1/2 1/2 1/2 

L27 2/1 1/1 2/1 1/1 

L28 2/1 1/2 1/1 1/2 

L29 2/1 1/1 2/1 1/1 

TABLE VI. THE JUDGMENT MATRIX OF LOAD UNITS AT LOAD CENTRE 4 

Lj L3 L18 L25 

L3 1/1 2/1 2/1 

L18 1/2 1/1 1/2 

L25 1/2 2/1 1/1 

After building a judgment matrix, the AHP algorithm is 
applied to calculate the weight of the Load Centres and load 
units as follows: 

Applying the equation (3), multiplying the values in the 
same row of each judgment matrix together calculates the 
MLCi and MLj values. Then, apply Equation (4) to get the nth 
root of these MLCi and MLj values, where n is the dimension of 

the judgment matrix, given the values *WLCi
 and *WLj

. Results of 

calculating values *WLCi
 and *WLj

 are presented from Table VII 

to Table XI. 

TABLE VII. THE MLCI AND *WLCi
 VALUES OF LOAD CENTRES 

MLC1 24,00 
*

1WLC
 2,21 

MLC2 3,00 
*

2WLC
 1,32 

MLC3 0,33 
*

3WLC
 0,76 

MLC4 0,04 
*

4WLC
 0,45 

TABLE VIII. THE MLJ AND *WLj
VALUE OF LOAD UNITS AT LOAD CENTRE 1 

ML4 81,00 
*

4WL
 2,08 

ML7 3,20 
*

7WL
 1,21 

ML8 81,00 
*

8WL
 2,08 

ML12 0,00 
*

12WL
 0,24 

ML31 0,00 
*

31WL
 0,24 

ML39 1620,00 
*

39WL
 3,43 

TABLE IX.  THE MLJ AND *WLj
VALUE OF LOAD UNITS AT LOAD CENTRE 2 

ML15 2,00 
*

15WL
 1,12 

ML16 2,00 
*

16WL
 1,12 

ML20 48,00 
*

20WL
 1,91 

ML21 0,13 
*

21WL
 0,71 

ML23 0,04 
*

23WL
 0,59 

ML24 1,00 
*

24WL
 1,00 

TABLE X. THE MLJ AND *WLj
VALUE OF LOAD UNITS AT LOAD CENTRE 3 

ML26 0,13 
*

26W  0,59 

ML27 4,00 
*

27W  1,41 

ML28 0,50 
*

28W  0,84 

ML29 4,00 
*

29W  1,41 

TABLE XI. THE MLJ VÀ *WLj
VALUE OF LOAD UNITS AT LOAD CENTRE 4 

ML3 4,00 
*

3W  1,59 

ML18 0,25 
*

18W  0,63 

ML25 1,00 
*

25W  1,00 

Normalize the matrix, applying equation (6) to find the 

weight values of the Load Centre s WLCi
 and the weight of the 

loads in each Load Centre WLj
. The results of calculating these 

values are presented in Table XII to Table XVI. 

TABLE XII. THE WLCI VALUE OF LOAD CENTRE S 

WLC1 0,47 

WLC2 0,28 

WLC3 0,16 

WLC4 0,10 

TABLE XIII. THE WLJ VALUE OF LOAD UNITS AT LOAD CENTRE 1  

WL4 0,22 

WL7 0,13 

WL8 0,22 

WL12 0,03 

WL31 0,03 

WL39 0,37 

TABLE XIV. THE WLJ VALUE OF LOAD UNITS AT LOAD CENTRE 2  

WL15 0,17 

WL16 0,17 

WL20 0,30 

WL21 0,11 

WL23 0,09 

WL24 0,16 

TABLE XV. THE WLJ VALUE OF LOAD UNITS AT LOAD CENTRE 3  

WL26 0,14 

WL27 0,33 

WL28 0,20 

WL29 0,33 

TABLE XVI. THE WLJ VALUE OF LOAD UNITS AT LOAD CENTRE 4  

WL3 0,49 

WL18 0,20 

WL25 0,31 
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After obtaining the values WLCi
 and WLj

, applying 

equation (8) calculates the values of the combined importance  
factor Wij of each load. The WLCi values at the same Load 
Centre are the same. The results of calculating the importance 
factors values of the load are presented in Table XVII. 

The load units are arranged in ascending order the 
importance factor of the Wij. In table XVIII, the load buses 
have the smaller weight which prioritized for shedding first in 
control strategies (Table XIX). 

Based on the sorting order according to the increasing 
importance factor of the loads with respect to the system. The 
load has a small importance factor will be prioritized for 
shedding first and vice versa. Specifically, based on the results 
from Table XVIII, the L31 load will be prioritized for first 
shedding and the L39 load has the greatest importance factor 
for the final shedding. The load shedding is performed in 
accordance with the case of generator outage that need to be 
shed. The process of implementing this load shedding strategy 
is carried out until the frequency is within the permitted range 
of 59.7Hz. In fact, the importance of each load can vary from 
time to time in the 24-hour load chart. For example, the 
industrial zones loading area concentrates on production 
during office hours and off-peak hours, the living lighting area 
is heavily used in the evening, However, in order to simplify 
the calculation process, it is assumed that the order of load 
shedding above is unchanged by time and by consumption 
load level. 

The results of load shedding strategies based on the AHP 
algorithm corresponding to the load simulation cases that must 
be performed for load shedding are presented in Table XIX. 

TABLE XVII. IMPORTANT FACTOR OF THE LOAD CENTRES AND THE LOAD 

UNITS 

Load 
Load 

Centre  
WLj WLCi 

The combined importance  

factor Wij 

L4 LC1 0,224 0,467 0,10473 

L7 LC1 0,131 0,467 0,06112 

L8 LC1 0,224 0,467 0,10473 

L12 LC1 0,025 0,467 0,01187 

L31 LC1 0,025 0,467 0,01187 

L39 LC1 0,370 0,467 0,17254 

L15 LC2 0,174 0,278 0,04833 

L16 LC2 0,174 0,278 0,04833 

L20 LC2 0,296 0,278 0,08208 

L21 LC2 0,110 0,278 0,03045 

L23 LC2 0,091 0,278 0,02535 

L24 LC2 0,155 0,278 0,04306 

L26 LC3 0,140 0,160 0,02235 

L27 LC3 0,330 0,160 0,05316 

L28 LC3 0,200 0,160 0,03161 

L29 LC3 0,330 0,160 0,05316 

L3 LC4 0,493 0,100 0,04702 

L18 LC4 0,196 0,100 0,01866 

L25 LC4 0,311 0,100 0,02962 

TABLE XVIII. ORDER OF LOAD SHEDDING ACCORDING TO AHP ALGORITHM 

Oder of 

load 

shedding 

Load 
Load 

Centre  
Wdi Wkj 

The combined 

importance  

factor Wij 

1 L31 LC1 0,025 0,467 0,01187 

2 L12 LC1 0,025 0,467 0,01187 

3 L18 LC4 0,196 0,10 0,01866 

4 L26 LC3 0,14 0,16 0,02235 

5 L23 LC2 0,091 0,278 0,02535 

6 L25 LC4 0,311 0,10 0,02962 

7 L21 LC2 0,11 0,278 0,03045 

8 L28 LC3 0,20 0,16 0,03161 

9 L24 LC2 0,155 0,278 0,04306 

10 L3 LC4 0,493 0,10 0,04702 

11 L16 LC2 0,174 0,278 0,04833 

12 L15 LC2 0,174 0,278 0,04833 

13 L29 LC3 0,33 0,16 0,05316 

14 L27 LC3 0,33 0,16 0,05316 

15 L7 LC1 0,131 0,467 0,06112 

16 L20 LC2 0,296 0,278 0,08208 

17 L8 LC1 0,224 0,467 0,10473 

18 L4 LC1 0,224 0,467 0,10473 

19 L39 LC1 0,37 0,467 0,17254 

TABLE XIX. LOAD SHEDDING STRATEGIES ARE BASED ON THE AHP 

ALGORITHM 

Strategies to control load shedding The loads are cut 

LS1 L31, L12 

LS2 L31, L12, L18 

LS3 L31, L12, L18, L26 

LS4 L31, L12, L18, L26, L23 

LS5 L31, L12, L18, L26, L23, L25 

ANN2 implements the recognition the load shedding 
strategies, the input variable similar to ANN1 includes 104 
variables and the output variable includes five outputs 
corresponding to five load shedding control strategies based 
on the AHP algorithm. The process of developing strategies 
load shedding is shown above. Details of five load control 
strategies are presented in Table XIX. The input data of the 
ANN2 consists of 316 samples that need to be shed. During 
neural network training, the data set is divided into 85% data 
for training and 15% data for test. The data are normalized 
before training. 

ANN2 is trained with the cases of using Back Propagation 
Neural Network (BPNN) with 4 training algorithms: 
Lenvenberg-Marquardt (trainlm), Bayesian (trainbr), Scaled 
Conjugate Gradient (trainscg), Resillient Backpropagation 
(trainrp) and use Generalized Regression Neural Networks 
(GRNN) to compare the effectiveness of training methods. 
Results of training accuracy and test accuracy of training 
methods are presented in Table XX and Fig. 6. 
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TABLE XX. TRAINING AND TEST ACCURACY OF ARTIFICIAL NEURAL NETWORK TRAINING METHODS 

Training algorithm for 
ANN2 

Lenvenberg-

Marquardt (trainlm) 

Bayesian 

(trainbr) 

Scaled Conjugate 

Gradient (trainscg) 

Resillient Backpropagation 

(trainrp) 

Generalized Regression Neural 

Networks (GRNN) 

Training accuracy (%) 66,29 92,88 39,13 42,32 98,50 

Test accuracy (%) 56,52 71,74 36,96 41,57 95,65 

 

Fig. 6. Relationship of Training and Testing Accuracy Corresponding to the 

Input Variables of Artificial Neural Network Training Methods. 

From the data results of Fig. 6 shows that in the case of 
recognition of load shedding strategy, GRNN training method 
has the highest accuracy. In addition, as the number of input 
variables increases, the accuracy also increases accordingly 
and reaches the highest precision value when it reaches 80 
variables with a training accuracy of 98,5% and test accuracy 
of 95,7 %. 

The proposed load shedding method is simulated to 
illustrate the diagram of the IEEE 39-bus 10 generators 
standard power system with the support of PowerWorld 
software for the disturbance at Bus 30. 

In the study of power system stability, the time to load 
shedding tshed is very important. This tshed period greatly affects 
the stability of the system. The impact time of the under 
frequency load shedding relays (UFLS) is about 0.1s [24]. 
When applying intelligent computational algorithms, the 
proposed effective load shedding time is less than 500ms [22]. 
In this paper, the calculated load shedding time of 200ms 
includes: data acquisition measurement, data transfer, data 
processing and trip impact of the breaker. However, in order 
to ensure the safe amplitude in real time, as well as the 
permissible error, the 100ms interval is calculated [22]. 
Therefore, when simulating, the installation load cutting time 
is 300ms. 

Specifically, considering the problem of a short circuit at 
Bus 32, the breakers will open the components: lines, 
generators connected to Bus 32 when short-circuited. A graph 
of the frequency of the system when disturbance at Bus 32 is 
shown in Fig. 7. 

As observed in Fig. 7, when the load shedding is not 
implemented, the frequency of the system becomes unstable 
when the short-circuit fault occurs at Bus 32. Applying the 
proposed load shedding method, for short-circuit case at Bus 
32, the result of recognition is that there is a load shedding and 

LS5 load shedding strategy is implemented. The time delay is 
about 300ms after the disturbance. The results of simulating 
the frequency of the power system when performing load 
shedding by the proposed load shedding method are presented 
in Fig. 8. 

Comparing the proposed load shedding method with the 
traditional load shedding method using the under frequency 
load shedding (UFLS) relay [24] which is presented in Table 
XXI. 

In this case, the delay time for load shedding is 2,88s after 
the disturbance, this time period includes: the time delay from 
the disturbance to the frequency below the permitted threshold 
of 59,7Hz is 2.6s, the time delay of relay UFLS, signal 
transmission and trip impact of breaker (0,28s). For this 
method, it is necessary to perform two steps of load shedding 
A and B because after the completion of step of load shedding 
A, the frequency has not been restored to the allowed value. 
The total amount of load shedding power for two steps A and 
B is 16% of the total power of the power system. The results 
of the simulation of the power system frequency during the 
load shedding by the traditional load shedding method UFLS 
are shown in Fig. 9. 

In order to better understand the effectiveness of the 
proposed load shedding method, consider the case of a short-
circuit failure at Bus 25. Performing the same steps as the case 
study when there is a short circuit at Bus 32. The result of 
recognition is that there is a load shedding and LS4 load 
shedding strategy is implemented. The results of simulating 
the frequency of the power system are presented in Fig. 10 and 
Fig. 11. 

The results of comparison between the proposed load 
shedding method and the traditional load shedding method 
[24] are presented in Table XXII. 

 

Fig. 7. The Frequency of the System when there is a Short Circuit at Bus 32. 
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Fig. 8. The Frequency of the System when Load Shedding is Implemented 

by the Proposed Method. 

TABLE XXI. THE UFLS SCHEME USING LOAD SHEDDING TABLE [11] 

The 

steps 

UFLS 

Frequency 

(Hz) 

Time 

delay 

(s) 

The amount of 

load shedding 

(the percent of 

total load) (%) 

Total amount 

of load 

shedding (%) 

A 59.7 0.28 9 9 

B 59.4 0.28 7 16 

C 59.1 0.28 7 23 

D 58.8 0.28 6 29 

E 58.5 0.28 5 34 

F 58.2 0.28 7 41 

L 59.4 10 5 46 

M 59,7 12 5 51 

N 59,1 8 5 56 

 

Fig. 9. The Frequency of the System when Load Shedding by the 

Traditional Method (UFLS). 

Analysis of simulation results in Fig. 7, 8, 9, 10, 11 and 
Table XXII shows that the implementation of the proposed 
load shedding strategy helps the power system keep the 
frequency stability after the disturbance with recovery 
frequency value in the range 60,028Hz to 60.0455Hz. 

Meanwhile, the traditional load shedding method (UFLS) has 
a greater amount of load shedding power from 2,28% to 
24,2% and slower frequency recovery time from 10s to 28s. 

 

Fig. 10. The Frequency of the System when Load Shedding is Implemented 

by the Proposed Method in the Event of a Short Circuit Failure at Bus 25. 

 

Fig. 11. The Frequency of the System when Load Shedding is Implemented 

by the Traditional Method (UFLS) in the Event of a Short Circuit Failure at 

Bus 25. 

TABLE XXII. COMPARISON RESULT BETWEEN THE PROPOSED LOAD 

SHEDDING METHOD AND THE TRADITIONAL LOAD SHEDDING METHOD 

 
Frequency of 

recovery 

(Hz) 

Time of 

recovery (s) 

The amount of 

load shedding 

power (MW) 

Short circuit failure at Bus 32 

The proposed load 

shedding method 
60.028 50 628.2 

The traditional load 

shedding method 
60.055 78 780.4 

Short circuit failure at Bus 25 

The proposed load 
shedding method 

60.0455 40 438.9 

The traditional load 

shedding method 
60.0750 50 448.9 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 4, 2020 

82 | P a g e  

www.ijacsa.thesai.org 

V. CONCLUSION 

The fast recognition process of "Yes" or "No" load 
shedding when a short-circuit incident occurs causes 
frequency instability in the power system in combination with 
the established load-control solution based on AHP algorithm 
supported the control system to make decisions on fast load 
shedding and keep the frequency stability of the power 
system. The frequency restored to the allowable value and the 
frequency of recovery time is faster than the traditional load 
shedding method. 

Using the AHP algorithm to calculate and build a load 
shedding strategy group takes into account the importance 
factor of the load to reduce the economic loss when load 
shedding compared to previous traditional methods. 

The effectiveness of the proposed load shedding method is 
verified on the IEEE 39 bus 10 generators power system 
diagram showing that the proposed load shedding method has 
helped maintain the system's frequency stability state. In the 
future work, the calculation of the load importance factor will 
apply Fuzzy-AHP algorithm to assist the experts more easily 
in making decisions to establish judgment matrices. The 
neural network training data set need to consider dynamic load 
and the load operates at different levels. Besides, the load 
shedding problem will take into account the optimal amount 
of load shedding and solve the economic and technical multi-
objective problems using intelligent algorithms such as GA, 
PSO. 
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