
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

278 | P a g e

www.ijacsa.thesai.org

An Efficient and Rapid Method for Detection of

Mutations in Deoxyribonucleic Acid - Sequences

Wajih Rhalem1, Jamal El Mhamdi2, Mourad Raji3

E2SN-Laboratory

ENSET Mohammed V University, Rabat, Morocco

Ahmed Hammouch4

Direction of Scientific Research and Innovation

Ministry of Higher Education, Rabat, Morocco

Aqili Nabil5

LRGE Laboratory, ENSET Mohammed V University

Rabat, Morocco

Nassim Kharmoum6

Department of Computer Science

Intelligent Processing Systems and Security Team

Faculty of Sciences, Mohammed V University

Rabat, Morocco

Hassan Ghazal7

National Center for Scientific and Technical Research

Ministry of Higher Education Rabat, Morocco

Abstract—The comparison of genomic sequences plays a key

role in determining the structural and functional relationships

between genes. This comparison is carried out by identifying the

similarities, differences and mutations between genomic

sequences. This makes it possible to study and analyze the genetic

and the evolutionary relationships between organisms.

Alignment algorithms have been in the spotlight for the last few

decades, due to a vast genomic data explosion. They have

attracted a great deal of interest from many researchers who

focus on the development of practical solutions to ensure effective

alignments with an optimal response time. In this paper, a novel

algorithm based on Discrete To Continuous "DTC" approach

has been developed. The proposed methodology was compared

against other existing methods, which are largely based on the

concept of string matching. Experimental results show that the

DTC algorithm delivers supremely efficient alignment with a

reduced response time.

Keywords—Alignment algorithms; genomic sequences;

dynamic polynomial interpolation; mutations

I. INTRODUCTION

Bioinformatics is the intersection of biology and
informatics because it is a field that covers life sciences
disciplines such as genomics, proteomics and biology through
computer methods. The main mission of this research area is
to analyze and interpret deoxyribonucleic acid (DNA)
sequences in central databases, accessible worldwide, to
enable scientists to present and search biological information.

The DNA sequence is an ordered collection of alphabets of
the four nucleotides A, C, G and T containing the information
necessary for the survival and reproduction of living beings.
Analyzing this sequence is then important and useful for both
research on the life of organisms and for biomedical
engineering.

Comparison of DNA sequences is done through softwares
based on alignment algorithms that give results in the form of
score and percentages of similarities and identities, and whose

dynamic programming plays a considerable role. Dynamic
programming relies on a relationship between the optimal
solution of the problem and that of a finite number of sub-
problems. Concretely, this means that it would be possible to
deduce the optimal solution of a problem from an optimal
solution of a sub-problem.

With regard to sequence alignment, three types of
alignment of the DNA sequences can be distinguished:

1) Global alignment: used when the sequences are about

the same length because the alignment is done on all their

lengths. This type of alignment was first proposed by

Needleman and Wunsch [1].

2) Semi-global alignment: used in the case where one

sequence is shorter than the other or when one looks for

overlaps at the ends without counting the penalties of the gaps.

3) Local Alignment: that searches for the two most

conserved sub-regions between two sequences and only these

two regions will be aligned. Smith and Waterman algorithm

[2] is the most used in this matter.

In this study, a new DNA sequence alignment algorithm
Discrete-To-Continuous (DTC), will be presented to ensure
the three types of alignment: Global, Semi Global and Local.
DTC relies on dynamic programming based on polynomial
interpolation of data. This approach was originally applied in
shape recognition and chirality measurement [3].
Subsequently, DTC has been adapted to tackle other areas of
application, namely: the alignment of time-shifted signals [4],
correction of the DNA-electropherogram errors resulting from
capillary electrophoresis sequencing experiments [5], online
signature matching [6], speech recognition [7], algorithmic
geometry [8] and fingerprint matching [9].

Unlike string matching algorithms, which try to find a
point-to-point correspondence of the chains, the DTC
approach solves this problem in its entirety by superimposing

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

279 | P a g e

www.ijacsa.thesai.org

the discrete representation of the test points on the continuous
representation of the reference points. In section IV, the
operating principle of the algorithm will be presented in detail.

In order to ensure the performance of this approach, the
programming and adaptation of DTC in the DNA sequence
alignment domain were carried out. For this purpose, a
comparative study was carried out in terms of accuracy,
temporal complexity and response time with other algorithms
that were the subject of a benchmarking study on a DNA
sequence. The sequence studied in this work is JN222368 for
Genbank belonging to the marine sponge.

For an efficient comparison, the test environment and
conditions were unified by downloading a partial Genbank
database containing 7682 sequences of different sizes,
including the sequence in question JN222368. Subsequently,
the DTC algorithm was implemented as well as the other
reference algorithms in the Java programming language. The
machine used was a 2.40 GHz Intel Core i7 processor with 8
GB of RAM. Experimental results show that the DTC
algoritm delivers supremely efficient alignment with a
reduced response time, including in the detection of mutations
and gaps.

This work is organized as follows. Section I is a general
introduction of the problem. Section II is dedicated to
presenting the studies and works carried out during the last
five years in this area of competence. Section III gives an
overview of the different string matching algorithms.
Section IV presents, in a detailed and in-depth way, the
operating principle of the DTC approach. The results of
comparing DTC algorithm with the other approaches are
presented and discussed in Section V.

II. RELATED WORKS

Given the importance of string matching algorithms, in
determining the functional and structural relationships of the
biological sequence, several studies and works have been
carried out. This section is dedicated to presenting the studies
and works carried out during the last five years in this area of
competence:

In 2015, a research team made up of professors: Nadia
B.N, Lecroq T and Elloumi M, conducted a study [10]
presenting an algorithm which extends the variants of Boyer-
Moore's exact string matching algorithm. The goal of this
work is to solve the problem of exact pattern matching in a set
of similar DNA sequences, in which only the pattern can be
preprocessed.

In another work carried out in 2015 [11], new methods for
matching key motifs in secondary RNA structures, based on
the notion of structural chains, were proposed. In this
approach, new correspondence algorithms to solve the
problem of structural matching problem were used. This
solution also made it possible to respond to various
combinatorial requests encountered during the pairing of
secondary RNA structures.

In 2017 a comparative study [12] was performed on exact
string matching algorithms in the field of DNA sequence
analysis by Iji and Mahalakshmi. This work was essentially

based on the response time, the alignment accuracy of the
DNA sequences and the temporal complexity of the
algorithms in question. The results revealed that the Boyer-
Moore algorithm provides the highest accuracy while the
Reverse Colussi algorithm provides the shortest run time.

In another study carried out in 2019 by [13], a new
solution was used, based on massive multithreaded
exploitation with a focus on the latest Intel architectures based
on Advanced Vector Extensions 512 (AVX-512). The goal is
to address the limited acceptance of the Smith-Waterman
algorithm by the computational requirements of large protein
databases often used for local sequence alignment.

Recently in 2019, a new treatment method [14] based on
the comparison of sequences without using explicit pair
pairing, was proposed by S. Kouchaki, A. Tapinos and D. L.
Robertson.This approach provides a viable solution to the
functions of the textual representation of sequences data.

One of the most recent studies in this area was done in
2020. In this study [15], an algorithm called Maximal Average
Shift (MAS) was presented. Its operating principle consists in
finding a pattern scan order which maximizes the average
length of the offset. In this work, two MAS extensions were
also presented: the first optimizes the MAS scanning speed, by
means of the result of the analysis in the previous window,
while the second optimizes its processing time by deploying
q-grams. The results of this study revealed that these methods
have better average scanning speed performance than previous
chain matching algorithms for DNA sequences.

String Matching Algorithms

String matching algorithms play a key role in analyzing of
biological sequences and they are divided into two categories:

1) The "exact string matching", whose algorithms are

below, used to find the exact substring match; 2) The

approximate match, which attempts to approximately find

strings that correspond to a given pattern. The following

algorithms: Rabin Karp [16] and [17], Brute Force [18] and

Fuzzy string searching [19], are often used in this area of

matching. In this section we will give a brief overview of

string matching algorithms, focusing on their spatial and

temporal complexities. Then a comparative study on said

algorithms will be described.

A. Description of the String Matching Algorithms

1) Smith-Waterman algorithm [2]: This algorithm was

invented by Temple F. Smith and Michael S. Waterman in

1981. It is often used in DNA sequence alignment, especially

for gene prediction, phylogeny or function prediction. Its

operating principle is to give an alignment corresponding to

the best matching score between the nucleotides of the subject

sequences. It relies on dynamic programming using similarity

matrices or substitution matrices. Alignment is accomplished

by inserting "gaps" or “INDELs” into the reference sequence

or subject sequence in order to increase the number of

matching characters between the two sequences. The

preprocessing phase requires temporal (𝑚+ σ) and spatial (σ)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

280 | P a g e

www.ijacsa.thesai.org

complexities. The search phase of the algorithm requires a

quadratic time complexity.

2) Needleman–Wunsch algorithm [1]: This algorithm is

often used in the maximum global alignment of two character

chains, especially protein or DNA sequences. The algorithm

looks for the maximum score alignment. This was the first

application of dynamic programming for the comparison of

biological sequences. The processing time to search for a

pattern in a given text is Ο(𝑚𝑛).

3) Boyer-Moore algorithm [20]: Boyer-Moore is

considered one of the most commonly used string matching

algorithms in everyday applications. The operating principle

of this approach is based on the analysis of the characters of

the text from right to left starting with the rightmost. If a

complete match is detected, it deploys two precomputed

functions to shift the window to the right, known by the

matching shift and occurrence shift. The temporal complexity

of Boyer Moore is of order Ο(𝑚𝑛).

4) Turbo-Boyer-Moore algorithm [21]: The Turbo-BM

algorithm is a variant of the Boyer-Moore algorithm. Unlike

the original Boyor More, this modified version does not

require additional pretreatment and occupies only one constant

additional space. It consists of recalling the text factor that

corresponds to a suffix of the model during the last attempt,

and this only in the case of a correct suffix offset. The

peculiarity of this improvement is that it is possible to perform

a turbo shift by neglecting said text factor. The temporal

complexity of this algorithm is Ο (m.n).

5) Tuned Boyer-Moore Algorithm [22]: The Tuned

Boyer-Moore is another variant of Boyer-Moore algorithm,

intended to increase the speed of treatment. The principle of

this approach is to optimize the matching verification phase

between the character of the pattern and the character of the

window. To avoid redoing this verification, which is very

expensive in terms of response time, this method takes several

shifts before performing a real characters comparison; the

order of the comparisons between the characters of a pattern

and text during each attempt not posing any more constraints.

The temporal complexity of this algorithm is also of order Ο

(mn).

6) Brute force algorithm [18]: The Brute force matching

string algorithm is a classic alignment model, which does not

require preprocessing. This approach attempts to verify, at all

positions of the text, the position of occurrence of the pattern.

The extracted patterns are compared one by one. The search

window is moved exactly one position from right to left. The

search can begin in any order (from left to right / from right to

left). The temporal complexity of the search phase is equal to

Ο (mn) and to a minimum comparison of 2 expected

characters.

7) Deterministic Finite Automaton algorithm [23]: This

algorithm consists of searching for a given sequence through

the use of a finite state automaton. Each character in the model

has a state, and each match sends the automaton to a new

state. After matching all the characters in the pattern, the

automaton switches to the approval state. In this case, the

automaton will return to a suitable state depending on the

primary state and the entered character. This algorithm has a

temporal complexity of order O (n) since each character is

examined once. This technique is very efficient because it

examines each character of the text exactly once and displays

all valid time shifts.

8) Karp-Rabin algorithm [17]: The Rabin-Karp algorithm

calculates a numeric value (hash) for the pattern p and for

each substring of m characters from text. Then, it confronts

numerical values instead of confronting the real symbols. At

the moment when a match is detected, the pattern is compared

to the substring by a naive approach. If not, it goes to the next

substring of the sequence to compare with p. The hash method

deployed in this algorithm provides a simple process by

avoiding a quadratic number of character comparisons in most

practical situations. The time complexity of the algorithm is

Ο(𝑚+𝑛).

9) Knuth Morris-Pratt algorithm [24]: This algorithm

was developed by Morris and Pratt as the first linear time-

match algorithm based on the analysis of the naive algorithm.

The Knuth-Morris-Pratt algorithm preserves the information

that the naive approach has consumed during the text analysis

period. This approach avoids the exhaustion of the

information through a temporal complexity of order (𝑚 + 𝑛).

The use of this algorithm is effective because it minimizes the

total number of comparisons of the pattern with the input

string.

10) Reverse Colussi algorithm [25]: The Reverse Colussi

string matching algorithm is another Boyer-Moore derivative.

This algorithm consists of partitioning all the positions of the

pattern into two disjoint subsets. The comparison of characters

is carried out using a specific order declared in a matrix. The

process requires a pretreatment step of order Ο(𝑚2) while the

search complexity is Ο(𝑛) in the most complex cases

performed in comparison of characters.

11) Apostolico-Giancarlo algorithm [26]: Boyer-Moore

algorithm is difficult to analyze because after each search, it

does not memorize the characters already found. To remedy

this, Apostolico and Giancarlo have designed an algorithm

that records the length of the longest suffix of the text that

ends at the correct position of the window at the end of each

search. The spatial and temporal complexity of this algorithm

is similar to that of Boyer-Moore Ο (m+𝑛). During the search

phase, only the last information m of the table break is needed

for each attempt so that the size of the table break can be

reduced to Ο (n). The disadvantage of the Apostolico-

Giancarlo algorithm is that it happens, in some cases, to

perform up to (32n) comparisons of text characters.

12) Raita algorithm [27]: Raita's algorithm was produced

by Tim Raita in 1992. The pretreatment phase of the Raita

algorithm consists of calculating the bad character shift

function (Boyer-Moore). It first compares the last character of

the pattern with the rightmost text character of the window, in

the case of matching, it continues to compare the first

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

281 | P a g e

www.ijacsa.thesai.org

character of the pattern with the leftmost text character of the

window. If again the match is found, it makes a comparison

between the character of the middle of the pattern with the text

character of the middle of the window. Finally, if the match is

found, it continues to compare the other characters from the

penultimate to the last, eventually by comparing again the

character of the medium. During the preprocessing phase, the

Raita algorithm requires temporal complexity (𝑚 + 𝑛) and

spatial complexity Ο(𝑛). While in the search phase this

algorithm has an extreme quadratic time complexity.

13) Reverse Factor algorithm [28]: The Reverse Factor

algorithm results from the use of the smallest inverse pattern

suffix automaton, to match some prefixes of the pattern by

scanning the character of the window from right-to-left and

improving the shift length. The pretreatment phase is linear in

time and space. During this phase, the algorithm tries to

calculate the smallest automaton suffix for the inverse pattern.

During the search phase, the Reverse Factor algorithm

analyzes the characters of the window from right to left until

any the completion of any transition defined for the current

character of the window from the current state of the

automaton. At this point, it is easy to know which is the

longest prefix length of the matched pattern. The Reverse

Factor algorithm requires quadratic time complexity in the

worst case, but is optimal on average. It performs O (n.log (m)

/ m) inspections of text character on average.

14) Berry-RavinrASYdran algorithm [29]: This algorithm

consists in ensuring shifts by taking into account the bad

character shift (Boyer-Moore algorithm) for the two

consecutive text characters immediately to the right of the

window. In the preprocessing phase, which requires spatial

and temporal complexity of order (𝑚+n2), the algorithm

attempts to compute for each pair of characters (a, b) with a, b

in Σ the occurrence the most to the right of ab. The search step

of the Berry-Ravindran algorithm has a time complexity

Ο(𝑚+𝑛).

15) Aho–Corasick algorithm [30]: Aho-Corasick algorithm

falls into the category of dictionary matching algorithms

because it performs the localization of the elements of a finite

set of strings (the "dictionary") in an entered text. This is

achieved by ensuring a correspondence to all chains

simultaneously. Both the preprocessing phase and the search

phase require a complexity of order O (m + n).

16) Alpha Skip Search algorithm [31]: This algorithm uses

buckets of positions for each factor of length log (m). The

preprocessing phase requires temporal and spatial complexity

of order O (m). The worst case of this pretreatment phase is

linear if the size of the alphabet is considered a constant. The

temporal complexity of the search phase in the worst case is

quadratic, but the expected number of text character

comparisons is O(log (m).(n / (m-log (m)))).

B. Comparative Study of the String Matching Algorithms

Iji and Mahalakshmi [6] performed a comparative study of
the aforementioned algorithms (Table I) using the sequence
JN222368 (Genbank) with a size of 3481 characters. In case

of a larger or smaller sequence size the process and the results
in terms of accuracy do not change in contrast to the execution
time which proportionally depends on the size of the
sequences. The tests were conducted using the online tools
EMBOSS and GENE Wise.

The results of this study revealed that the Boyer-Moore
(BM) chain matching algorithm provides the highest accuracy,
83%, with an execution rate of about 84 ms. The Reverse
Colussi (RC) chain matching algorithm provides the shortest
execution time (≈57 ms) with an accuracy of 79%. To prove
the performance of the proposed approach, DTC was tested
with the two best algorithms BM and RC. The experimental
results of this test are presented in Section IV.

TABLE I. COMPARATIVE STUDY OF STRING MATCHING ALGORITHMS

Algorithm complexity Accuracy Execution Time

Brute Force Ο(𝑚𝑛) 66.7% ≈ 85𝑚𝑠

Deterministic
Finite

Automaton
Ο(𝑛) 72% ≈ 65𝑚𝑠

Rabin-Karp Ο(𝑚𝑛) 70% ≈ 72𝑚𝑠

Morris-Pratt Ο(𝑛 + 𝑚) 65% ≈ 68𝑚𝑠

Colussi Ο(𝑛) 74% ≈ 58𝑚𝑠

Boyer-Moore Ο(𝑚𝑛) 83% ≈ 84𝑚𝑠

Turbo-BM Ο(𝑚𝑛) 82.52% ≈ 86𝑚𝑠

Tuned Boyer-

Moore
Ο(𝑚𝑛) 82.1% ≈ 88𝑚𝑠

Reverse Colussi Ο(𝑛) 79% ≈ 57𝑚𝑠

Apostolico-

Giancarlo
Ο(𝑛) 74% ≈ 61𝑚𝑠

Smith-Waterman Ο(𝑚𝑛) 71.4% ≈ 81𝑚𝑠

Needleman–

Wunsch
Ο(𝑚𝑛) 60% ≈ 85𝑚𝑠

Raita Ο(𝑚𝑛) 76% ≈ 82𝑚𝑠

Reverse Factor Ο(𝑚𝑛) 75.4% ≈ 82𝑚𝑠

Berry-Ravindran Ο(𝑚 + 𝑛) 77% ≈ 74𝑚𝑠

Aho–Corasick Ο(𝑚 + 𝑛) 79.7% ≈ 70𝑚𝑠

Alpha Skip Search Ο(𝑚𝑛) 78.5% ≈ 83𝑚𝑠

III. DTC ALGORITHM

Unlike the aforementioned algorithms, which attempt to
find a point-by-point correspondence of strings, the DTC
approach addresses this problem in its entirety by performing
a superposition of the discrete representation of the test points
on the continuous representation of the reference points. In
this section, the principle of operation of the algorithm will be
presented in detail:

Given two sets of points, F= {𝑓𝑖 ∊ 𝑅𝑑}𝑖=1
𝑛 (the model set)

and 𝑆𝐹 = {𝑆𝑓𝑗 ∊ 𝑅𝑑}𝑗=1
𝑚≤𝑛 (the data set) in the

multidimensional

space (𝑁𝐷)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

282 | P a g e

www.ijacsa.thesai.org

For this application, SF and F respectively represent the
DNA sequence in question and the sequence of references.
The said sequences are composed of nucleotides in the form of
the alphabets (nucleotide) T, C, A and G.

The alignment attempts to find the correspondences
between these two points clouds to compare. In this work, we
propose an implementation of DTC, as a method of alignment
of DNA sequences according to mathematical metrics. Each
nucleotide of F and SF is represented by an abscissa (position
in the sequence) and an ordinate (a code corresponding to the
type of the nucleotide). For our application case, the
nucleotides were assigned the following codes: (A = 200, C =
- 200, T = 400 and G = -400).

Generally, to decide if the form SF is included in the form
F (Fig. 1), one starts by finding a point-by-point
correspondence between SF and F and possibly looking for a
transformation which would superimpose SF on F.

In the case where one opts for the search for the
transformation T (which checks the superposition of SF in F),
a direct search of the latter, without any prior knowledge of
the correspondence of the SF points with respect to those of F,
may be very consuming in terms of execution time caused by
the large number of possibilities to test (combinatorial
explosion).

It should be noted that the existence of such a
transformation T would obviously confirm the inclusion of SF
in F. In this respect, the DTC algorithm has the ultimate goal
of finding the transformation T in order to confirm the
inclusion of SF in F.

Recalling that the origin of the difficulty (combinatorial
explosion) comes from the discrete nature of the clouds of
points to be treated. The solution proposed by DTC to avoid
this problem is to make a transition from the discrete
representation to continuous representation of one of the
entities (F).

In this case, with a continuous representation of F by a
polynomial interpolation (SF would be retained in its discrete
representation), the problem of deciding if SF is included in F
thus becomes the research, not of T, but at first of a
transformation T’ which would bring back SF, on the
continuous representation of F.

Fig. 1. Alignment of SF on F (∆:F and □:SF) Search for Transformation T.

Thus the existence of T' could induce the probable
existence of T, and therefore, will confirm the inclusion of SF
in F.

In fact, the algorithm consists in avoiding a direct search
for T but rather in carrying out a search for a transformation
T', which would ensure the superposition of SF on the
continuous representation of F.

It should be noted that the existence of such a
transformation T' is necessary but not sufficient to confirm the
inclusion (total or partial) of SF in F. Indeed, the
transformation T' (if it exists) must ensure that SF is returned
to the continuous representation of F. And if for points𝑃𝑠𝑓𝑖

∈

𝑆𝐹there exists a point 𝑃𝑓𝑗
∈ 𝐹 such that𝑇′(𝑃𝑠𝑓𝑖

) = 𝑃𝑓𝑗
then T'

= T then SF is totally or partially included in F.

The DTC algorithm is developed to deal with arbitrary
models defined by cloud of points models in a N-dimensional
(ND) space. In the case of our application, the models of the
clouds will be considered in a space of 2 dimensions (2D).

The points of F are given in the 𝑂𝑥𝑦plane.

Let 𝑃𝑥𝑦 be the interpolation polynomial in the 𝑂𝑥𝑦 plane.

Because of this, for each point 𝑓𝑖 = {𝑥𝑖 , 𝑦𝑖}belongs to F, we
have:

𝑃𝑥𝑦(𝑥𝑖) = 𝑦𝑖 (1)

This representation will be called (R).

There are different interpolation methods to represent R. In
order for the degree of the polynomial to not depend on the
size of the point cloud F, the DTC algorithm uses the "cubic
spline" interpolation which is a third degree polynomial
succession (piecewise interpolation), which also ensures the
continuity and the differentiability over the entire interpolation
interval (Fig. 2).

Search for transformation T':

The purpose of the transformation T' sought is to bring
back the cloud SF on the cubic interpolation of the form F
along the plane 𝑂𝑥𝑦.

The desired transformation T' is expressed in
homogeneous coordinates.

Fig. 2. Cubic Spline Interpolation of F.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

283 | P a g e

www.ijacsa.thesai.org

If we consider (𝑥𝑆𝐹𝑗
, 𝑦𝑆𝐹𝑗

)the coordinates of a point 𝑗 ∊

𝑆𝐹 and (𝑥′
𝑆𝐹𝑗

, 𝑦′
𝑆𝐹𝑗

)its transformation by T', the transformed

points of SF must verify R namely:

𝑃𝑥𝑦 (𝑥′
𝑆𝐹𝑗

) = 𝑦′
𝑆𝐹𝑗

 (2)

The parameters of the transformation T' described in DTC
relates to a three-dimensional space are:

Three translations: 𝑡𝑥, 𝑡𝑦 , 𝑡𝑧

𝑡𝑥 : Translation along the axis𝑂𝑥.

𝑡𝑦 : Translation along the axis𝑂𝑦.

𝑡𝑧 : Translation along the axis 𝑂𝑧.

Three rotations: 𝜃𝑥, 𝜃𝑦,𝜃𝑧

𝜃𝑥 : Rotation along the axis 𝑂𝑥.

𝜃𝑦 : Rotation along the axis 𝑂𝑦.

𝜃𝑧 : Rotation along the axis 𝑂𝑧.

Three scale factors: 𝜆𝑥 , 𝜆𝑦,𝜆𝑧

𝜆𝑥 : Scale factor along the axis 𝑂𝑥.

𝜆𝑦 : Scale factor along the axis 𝑂𝑦.

𝜆𝑧 : Scale factor along the axis 𝑂𝑧.

In this work we deal with the problem of alignment of the
biological sequences, the transformation T' becomes a
function with a single parameter which is the translation tx
according to axis Ox (Fig. 3).

𝑥′
𝑆𝐹𝑗

= 𝑥𝑆𝐹𝑗+𝑡𝑥
 (3)

𝑦′
𝑆𝐹𝑗

= 𝑦𝑆𝐹𝑗
 (4)

Fig. 3. Illustration for T' Research.

The notation of R can thus be written as:

𝑃𝑥𝑦 (𝑥′𝑆𝐹𝑗
) − 𝑦′𝑆𝐹𝑗

= 0 (5)

Or:

(𝑃𝑥𝑦 (𝑥′𝑆𝐹𝑗
) − 𝑦′𝑆𝐹𝑗

)
2

= 0 (6)

Applied to all SF points:

∑ √((Pxy (x′SFj
) − y′SFj

)
2

)m
j=1 = 0 (7)

Consider QT as the following expression:

𝑄𝑇(𝑡𝑦) = ∑ √((𝑃𝑥𝑦 (𝑥′
𝑆𝐹𝑗

) − 𝑦′
𝑆𝐹𝑗

)
2

)𝑚
𝑗=1 (8)

Based on this definition, we now look for the parameters
of the transformation T' which minimizes the QT function.

The obtained function QT is a non-linear equation which is
continuous and differentiable.

After the step of adjusting the points of SF on the
continuous representation of F (defined by T'), we associate
each point of SF with its isomorph, which is its nearest
neighbor in F according to a type of distance and a
predetermined threshold (ε) (Fig. 4(a)).

𝑃𝑗 ∊ 𝑆𝐹: 𝑇 (𝑥𝑆𝐹𝑗
, 𝑦𝑆𝐹𝑗

) = (𝑥′′𝑆𝐹𝑗
, 𝑦′′𝑆𝐹𝑗

)and if 𝑃𝑖(xFi
, yFi

)

is the isomorph of the point 𝑃𝑗 of SF defined by T

(Fig. 4(b)).The Root Mean Score (RMS) which is used to
measure the global precision of the superposition of SF in F is:

𝑅𝑀𝑆 =
1

𝑚
√∑ (𝑥′′𝑆𝐹𝑗

− 𝑥𝐹𝑖
)

2

+ (𝑦′′𝑆𝐹𝑗
− 𝑦𝐹𝑖

)
2

𝑚
𝑗=1 (9)

At this stage, since the isomorphs of the points of SF in F
are known, it would be possible, if necessary, to refine the
superposition.

RMS is also formulated as a non-linear function.
Generally, the transformation T thus found, provides directly
T′ and therefore the solution of the RMS is already found
(Fig. 4).

Nevertheless, some refinements can be operated according
to a predefined RMS threshold. After determining the
parameter of the RMS (𝑡𝑦

′) , only the points of SF whose

distance to their isomorphs in F, are less than a threshold ε
fixed in advance. If all the distances between the points of SF
to their isomorphs in F, do not exceed ε, then SF is declared
included in F. If SF is declared not included in F, the DTC
algorithm can process the Largest Common Point Set (LCP)
between the two sequences. Indeed, the isomorphic pairs
which do not respect the predefined threshold ε would be
eliminated, and a revival of a refinement of RMS will take
place for a better superposition of the remaining points of SF
on the points of F.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

284 | P a g e

www.ijacsa.thesai.org

Fig. 4. a: Illustration for Isomorphs Research/b: Illustration for T Research

/c: Illustration for Calculation of the Corresponding RMS.

IV. EXPERIMENTAL RESULTS

As mentioned in Section III, a survey of exact string
matching algorithms for motif detection in the protein
sequence was performed. The results of this comparative
study are shown in Table I. Following this analytical study,
the aforementioned algorithms were analyzed in terms of time
complexity, response time and accuracy using online tools
such as EMBOSS and GENE Wise. The sequence studied in
this work is JN222368 for Genbank belonging to the marine
sponge. Experimental results revealed that the Boyer-Moore
(BM) chain matching algorithm provided the highest accuracy
83% with a run rate of about 84 ms. The Reverse Colussi (RC)
chain matching algorithm provides the shortest execution time
(≈57 ms) with an accuracy of 79%. These results have sparked
the interest in implementing the DTC algorithm to test it in
terms of execution time and accuracy. To do this, the test
environment and conditions were unified by downloading a
partial Genbank database containing 7682 sequences of
different sizes including our sequence of interest JN222368.
Subsequently, the DTC algorithm has been implemented as
well as the other two reference algorithms Boyer-Moore and
Reverse Colussi in the Java programming language. The
machine used was a 2.40 GHz Intel Core i7 processor with 8
GB of RAM. Table II presents the results of comparison of
DTC approach with the aforementioned algorithms.

Where m represents the size of F and n represents the size
of SF.

TABLE II. COMPARISON OF DTC WITH BOYER MOORE AND REVERSE

COLUSSI

Algorithms Execution Time Time Complexity

(BM) 74 ms Ο(𝑚𝑛)

(RC) 51ms Ο(𝑛)

(DTC) 42ms O (m log (n))

For this type of test, the three algorithms have an accuracy
of 100%. This is an excellent result for ensuring alignment in
restricted databases as an example for the deployment in
mutation prediction software, stored on a local server, which
will make it possible to compare them with the new sequenced
genomes. However, to increase the challenge in terms of
accuracy, it would be wise to perform tests (Big Data) by
accessing online databases.

As far as temporal complexity is concerned, the proposed
algorithm has a log complexity O (m log (n)), unlike BM O
(m + n) and RC O (m2). This explains the reduced response
time of DTC approach (42 ms), compared to other BM (74
ms) and RC (51ms) algorithms. This means that our algorithm
is faster than all 18 algorithms that were the subject of that
aforementioned study. Another advantage that has led to this
performance in terms of processing time consists in the
possibility of storing the interpolations of the reference
sequences. This practice has allowed us to save preprocessing
time. To demonstrate the temporal complexity of DTC, a test
was also performed. It consists in finding an alignment of the
form SF on the reference form F (JN222368) with different
sizes of SF. The response time and the success rate of this test
are shown in Table III.

In this case, for the different sizes of SF, the response time
follows a logarithmic evolution (Fig. (5).

This logarithmic complexity makes DTC more efficient in
terms of response time in the processing of long sequences. As
the results of this test show, the processing time of 600
characters is the same for 3481 characters (15 ms).

In the contrary of our algorithm, BM and RC fail to detect
mutations and Gaps. To determine the performance of DTC in
detecting mutations and Gaps, tests were performed on the
same sequence (with a size of 3481) by simulating mutations
(Table IV) and gaps (Table V). The search was carried out as
indicated above in a database containing 7682 other sequences
of different sizes.

Mutation test: To simulate mutations, nucleotide
modifications were made (5 to 60% of the modifications) on
our sequence of interest. The results of this test are shown in
Table IV.

The results of this test revealed that up to a mutation rate
of 60% the algorithm remains insensitive to mutations and the
variation of the response time remains marginal despite the
considerable change in the rate of mutations. The change
choice of 60% is beyond this rate of change, it would no
longer be a mutation, but another problem for which the
algorithm provides another solution.

Gap test: The representation of the DNA sequences is a
succession of the alphabets A, C, G and T. For the simulation
of the gaps some SF nucleotides will be replaced by a letter x
(unknown) which, in F, would be isomorphic to A, C, G or T.
The gap phenomenon is often encountered in sequence
alignment and some algorithms find it difficult to treat it (such
as Boyer Moore and Reverse Collusi).

DTC approach is still very efficient in terms of gap
treatment because any gap corresponds to the reduction of the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

285 | P a g e

www.ijacsa.thesai.org

size of the SF sub-sequence, which generates a reduction in
processing time when the gap rate increases.

As shown in the table, the processing of the sequence with
5% gaps lasted longer (25 ms) than with 60% gaps (18 ms).

This explains the performance of DTC in solving this
phenomenon often encountered during DNA sequencing.

TABLE III. RESPONSE TIME AND DTC SUCCESS RATE FOR ALIGNMENT OF

DIFFERENT SF SIZES ON F

Size of SF Success rate % Response time (ms)

60

100 %

10

120 12

600 15

1000 17

2000 24

3000 16

3481 15

Fig. 5. Average Run Time for each Size of SF.

TABLE IV. SUCCESS RATE OF ALIGNMENT AND RESPONSE TIME FOR THE

CASE OF MUTATIONS

Mutation rate % Response time (ms)

5 24

15 27

25 25

35 27

45 29

50 30

60 31

TABLE V. SUCCESS RATE OF ALIGNMENT AND RESPONSE TIME FOR THE

CASE OF GAPS

Gap rate % Response time (ms)

5 25

15 23

25 23

35 23

45 22

50 21

60 18

V. CONCLUSION

The field of analysis and interpretation of DNA sequences
is essential for determining the functional and structural
relationships of said sequences. To do this, software based on
intelligent algorithms has been made available to the scientific
community. In this work, we have presented and compared the
DTC algorithm based on polynomial interpolation with
algorithms commonly used in this field of application namely:
Boyer Moore and Reverse Collussi. The peculiarity of DTC
algorithm is that it ensures the exact string matching and the
approximate matching with a very short response time,
avoiding the preprocessing time by storing the interpolations
of the reference sequences. The satisfactory results of the
proposed approach, encourage to realize our own software for
the detection of gene mutations predisposing to various
genetic diseases.

On the other hand, it is possible to apply the DTC
algorithm to facilitate and accelerate the implementation of
metagenomic analysis as a tool for rapid and precise diagnosis
or prognosis of cancers. The metagenomic approach allows us
to gain a fairly precise understanding of the molecular
mechanisms at work in the emergence and progression of
cancer. The application of DTC will make it possible to
identify relevant bioindicators / biomarkers (bacterial taxa /
genes or metabolic profiles) in order to be able to propose
diagnostic and therapeutic approaches for the population-
specific. The expected potency of DTC plus the "exhaustive"
aspect of metagenomics would also allow the discovery of
new genes or biotechnological functions.

ACKNOWLEDGMENTS

We would like to thank the Technical Support Units for
Scientific Research (MARWAN) of the National Center for
Scientific and Technical Research (CNRST) in Rabat,
Morocco for using the HPC platform.

AUTHORS’ CONTRIBUTIONS

All authors are equally contributed in this work and this
paper.

Wajih Rhalem: Participated in all experiments,
coordinated the data-analysis and contributed to the writing of
the manuscript.

Jamal El Mhamdi: Coordinated the mouse work, designed
the research plan and organized the study.

Mourad Raji: Participated in all experiments, coordinated
the data-analysis and contributed to the writing of the
manuscript

Ahmed Hammouch: Coordinated the mouse work,
designed the research plan and organized the study.

Aqili Nabil: Participated in all experiments, coordinated
the data-analysis and contributed to the writing of the
manuscript.

Nassim Kharmoum: Participated in all experiments,
coordinated the data-analysis and contributed to the writing of
the manuscript.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

286 | P a g e

www.ijacsa.thesai.org

Hassan Ghazal: Participated in all experiments, designed
the research plan, coordinated the data-analysis and
contributed to the writing of the manuscript

ETHICS

This article is original and contains unpublished material.
The corresponding authors have read and approved the
manuscript and no ethical issues involved.

REFERENCES

[1] B. Needleman, Saul, Wunsch and D. Christian, “A general method
applicable to the search for similarities” in the amino acid sequence of
two proteins. Journal of Molecular Biology, vol. 48, pp. 443–453, 1970.

[2] T. F. Smith and M. S. Waterman, “Identification of Common Molecular
Subsequences”, Journal of Molecular Biology, Vol. 147, pp:195–197.
1981.

[3] M. Raji and A. Cossé-Barbi, “Shape recognition and chirality measure:
reestablishing the link between similarity and dissimilarity in discrete
space. Chemometrics and intelligent laboratory systems, vol. 47, pp.
219_225, 1999.

[4] W. Rhalem, M. Raji, A. Hammouch and J. El Mhamdi, “An automated
time-shift alignment algorithm based on Discret to continuous
approach”. Journal of Computer science, vol. 15, pp. 463-474, 2019.

[5] W. Rhalem, J. El Mhamdi, M. Raji, A. Hammouch, Abd-
ErrahimMaazouzi , S. Raoui , S. Amzazi , S. Hamdi and H. Ghazal
Application of a discrete to continuous approach based -alignment
algorithm for Capillary Electrophoresis DNA sequencing correction.
Advances in Intelligent Systems and Computing-Springer Book. vol. 4
pp.141-148, 2019.

[6] N. Aqili, A. Maazouzi, M. Raji, A. Jilbab and S. Chaoukiet al., “On-line
signature verification using point pattern matching algorithm”
Proceedings of the International Conference on Electrical and
Information Technologies, May 4-7, IEEE Xplore Press, Tangiers,
Morocco, pp: 410-413, 2016.

[7] A. Maazouzi, N. Aqili, M. Raji and A. Hammouch, “A speaker
recognition system using power spectrum density and similarity
measurements”, Proceedings of the 3rd World Conference Complex
Systems, Nov. 23-25, IEEE Xplore Press, Marrakech, Morocco, pp: 1-5,
2015.

[8] N. Aqili, A. Hammouch and M. Raji, “PPM translation, rotation and
scale in d-dimensional space by the discrete to continuous approach”.
Int. Rev. Comput. Softw., vol.11, pp. 270-276, 2016.

[9] N. Aqili, A. Maazouzi, M. Raji, A. Jilbab and A. Hammouch,
“Fingerprint matching algorithm based on discrete to continuous
approach. Proceedings of the International Conference on Electrical and
Information Technologies”, IEEE Xplore Press, Tangiers, Morocco, pp:
414-417, 2016.

[10] N. Nadia Ben, T. Lecroq and M. Elloumi, “A fast Boyer-Moore type
pattern matching algorithm for highly similar sequences”. Int. J. Data
Mining and Bioinformatics, vol. 13, pp. 266-288. 2015.

[11] R. Beal and D. Adjerh “Efficient pattern matching for RNA secondary
structures”. Theoretical Computer Science. Vol. 592, pp 59-71, 2015.

[12] N. Iji and T. Mahalakshmi, “Survey of Exact String Matching Algorithm
for Detecting Patterns in Protein Sequence”. Advances in Computational
Sciences and Technology. vol. 10, pp: 2707-2720, 2017.

[13] E. Rucci, C. Garcia Sanchez, G. Botella Juan, A.D. Giusti, M. Naiouf
and M. Prieto-Matias, “SWIMM 2.0: Enhanced Smith–Waterman on
Intel’s Multicore and Manycore Architectures Based on AVX-512

Vector Extensions”. International Journal of Parallel Programming, vol
47, pp. 296-316, 2019.

[14] S. Kouchaki, A.Tapinos and D. L. Robertson, “A signal processing
method for alignment-free metagenomic binning: multi-resolution
genomic binary patterns”. Scientific Reports, vol. 9, 2019.

[15] C. Ryu, T. Lecroq and K. Park, “Fast string matching for DNA
sequences”. Theoretical Computer Science, vol. 812, pp. 137-148, 2020.

[16] M. Karp, Richard, Rabin and O. Michael, “Efficient randomized pattern-
matching algorithms”. IBM Journal of Research and Development, vol.
31, pp. 249–260. 1987.

[17] E. Rasywir, Y. Pratama, Hendrawan and M. Istoningtyas, “ Removal of
modulo as hashing modification process in essay scoring system using
rabin-karp”, International Conference on Electrical Engineering and
Computer Science, ICECOS pp. 159-164, 2018.

[18] L. Yehia and C. Eng, “Largescale population genomics versus deep
phenotyping: Brute force or elegant pragmatism towards precision
medicine” npj Genomic Medicine, vol. 4., 2019.

[19] A. Kumar, M. Singh and A.R. Pais, “Fuzzy string matching algorithm
for spam detection in twitter Communications” in Computer and
Information Science, vol. 939, pp. 289-301, 2019.

[20] R. S. Boyer and J.S, Moore, “A Fast String Searching Algorithm”.
Comm. ACM. New York, NY, USA, Association for Computing
Machinery, vol. 2, pp. 762–772, 1977.

[21] M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W.
Plandowski and W. Rytter, Deux méthodes pour accélérer l'algorithme
de Boyer-Moore. Théorie des Automates et Applications, Actes des 2e
Journées Franco-Belges, D. Krobed., Rouen, France, PUR, vol. 176, pp.
45-63, 1992.

[22] A. Hume and D.M. Sunday, “Fast string searching” Software - Practice
& Experience, vol. 21, pp. 1221-1248, 1991.

[23] M. Crochemore and C. Hancart, Automata for Matching Patterns.
Handbook of Formal Languages, Linear Modeling: Background and
Application, G. Rozenberg and A. Salomaa ed., Springer-Verlag, Berlin,
vol. 2, pp. 399-462, 1997.

[24] J.H. Morris, and V.R. Pratt, “A linear pattern-matching algorithm”,
Technical Report 40, University of California, Berkeley. 1970.

[25] L. Colussi, “Fastest pattern matching in strings”, Journal of Algorithms,
vol. 16, pp. 163-189, 1994.

[26] A. Apostolico, R.Giancarlo, “The Boyer-Moore-Galil string searching
strategies revisited”. SIAM Journal on Computing, vol. 15, pp. 98-105,
1986.

[27] T. Raita, “Tuning the Boyer-Moore-Horspool string searching
algorithm”, Software - Practice & Experience, vol. 22, pp. 879-884,
1992.

[28] T. Lecroq, “A variation on the Boyer-Moore algorithm”. Theoretical
Computer Science. Elsevier, vol. 92, pp. 119-144,1992.

[29] T. Berry, and S. Ravindran. “A fast string matching algorithm and
experimental results”. Proceedings of the Prague Stringology Club
Workshop`99, J. Holub and M. Simánek ed., Collaborative Report DC-
99-05, Czech Technical University, Prague, Czech Republic, pp 16-26,
1999.

[30] V. Aho, Alfred, Corasick and J. Margaret, “Efficient string matching:
An aid to bibliographic search”, Communications of the ACM, vol. 18,
pp.333–340, 1975.

[31] C. Charras, T. Lecroq and J.D. Pehoushek, “A very fast string matching
algorithm for small alphabets and long patterns”, Proceedings of the 9th
Annual Symposium on Combinatorial Pattern Matching, M. Farach-
Colton ed., Piscataway, New Jersey, Lecture Notes in Computer
Science. Springer-Verlag, Berlin, vol. 1448, pp. 55-64, 1998.

https://www-scopus-com.eressources.imist.ma/sourceid/20571?origin=recordpage
https://www-scopus-com.eressources.imist.ma/authid/detail.uri?authorId=55328676100&eid=2-s2.0-85049665912
https://www-scopus-com.eressources.imist.ma/authid/detail.uri?authorId=35179207400&eid=2-s2.0-85049665912
https://www-scopus-com.eressources.imist.ma/authid/detail.uri?authorId=13806991900&eid=2-s2.0-85049665912
https://www-scopus-com.eressources.imist.ma/authid/detail.uri?authorId=13806991900&eid=2-s2.0-85049665912
https://www-scopus-com.eressources.imist.ma/authid/detail.uri?authorId=57192705150&eid=2-s2.0-85049665912
https://www-scopus-com.eressources.imist.ma/authid/detail.uri?authorId=57192705150&eid=2-s2.0-85049665912
https://www-scopus-com.eressources.imist.ma/authid/detail.uri?authorId=57192705150&eid=2-s2.0-85049665912
https://www-scopus-com.eressources.imist.ma/authid/detail.uri?authorId=57192705150&eid=2-s2.0-85049665912
https://www-scopus-com.eressources.imist.ma/authid/detail.uri?authorId=57192705150&eid=2-s2.0-85049665912
https://www-scopus-com.eressources.imist.ma/authid/detail.uri?authorId=36942119700&eid=2-s2.0-85072722457
https://www-scopus-com.eressources.imist.ma/authid/detail.uri?authorId=6603360470&eid=2-s2.0-85072722457
https://www-scopus-com.eressources.imist.ma/sourceid/20571?origin=recordpage
https://www-scopus-com.eressources.imist.ma/authid/detail.uri?authorId=57206726967&eid=2-s2.0-85062519252
https://www-scopus-com.eressources.imist.ma/authid/detail.uri?authorId=57206722883&eid=2-s2.0-85062519252
https://www-scopus-com.eressources.imist.ma/authid/detail.uri?authorId=57206722883&eid=2-s2.0-85062519252
https://www-scopus-com.eressources.imist.ma/authid/detail.uri?authorId=57206720114&eid=2-s2.0-85062519252
https://www-scopus-com.eressources.imist.ma/sourceid/21100852132?origin=recordpage
https://www-scopus-com.eressources.imist.ma/authid/detail.uri?authorId=23985907200&eid=2-s2.0-85065794314
https://www-scopus-com.eressources.imist.ma/sourceid/17700155007?origin=recordpage
https://www-scopus-com.eressources.imist.ma/sourceid/17700155007?origin=recordpage

