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Abstract—The comparison of genomic sequences plays a key 

role in determining the structural and functional relationships 

between genes. This comparison is carried out by identifying the 

similarities, differences and mutations between genomic 

sequences. This makes it possible to study and analyze the genetic 

and the evolutionary relationships between organisms. 

Alignment algorithms have been in the spotlight for the last few 

decades, due to a vast genomic data explosion. They have 

attracted a great deal of interest from many researchers who 

focus on the development of practical solutions to ensure effective 

alignments with an optimal response time. In this paper, a novel 

algorithm based on Discrete To Continuous "DTC" approach 

has been developed. The proposed methodology was compared 

against other existing methods, which are largely based on the 

concept of string matching. Experimental results show that the 

DTC algorithm delivers supremely efficient alignment with a 

reduced response time. 

Keywords—Alignment algorithms; genomic sequences; 

dynamic polynomial interpolation; mutations 

I. INTRODUCTION 

Bioinformatics is the intersection of biology and 
informatics because it is a field that covers life sciences 
disciplines such as genomics, proteomics and biology through 
computer methods. The main mission of this research area is 
to analyze and interpret deoxyribonucleic acid (DNA) 
sequences in central databases, accessible worldwide, to 
enable scientists to present and search biological information. 

The DNA sequence is an ordered collection of alphabets of 
the four nucleotides A, C, G and T containing the information 
necessary for the survival and reproduction of living beings. 
Analyzing this sequence is then important and useful for both 
research on the life of organisms and for biomedical 
engineering. 

Comparison of DNA sequences is done through softwares 
based on alignment algorithms that give results in the form of 
score and percentages of similarities and identities, and whose 

dynamic programming plays a considerable role.  Dynamic 
programming relies on a relationship between the optimal 
solution of the problem and that of a finite number of sub-
problems. Concretely, this means that it would be possible to 
deduce the optimal solution of a problem from an optimal 
solution of a sub-problem. 

With regard to sequence alignment, three types of 
alignment of the DNA sequences can be distinguished: 

1) Global alignment: used when the sequences are about 

the same length because the alignment is done on all their 

lengths. This type of alignment was first proposed by 

Needleman and Wunsch [1]. 

2) Semi-global alignment: used in the case where one 

sequence is shorter than the other or when one looks for 

overlaps at the ends without counting the penalties of the gaps. 

3) Local Alignment: that searches for the two most 

conserved sub-regions between two sequences and only these 

two regions will be aligned. Smith and Waterman algorithm 

[2]  is the most used in this matter. 

In this study, a new DNA sequence alignment algorithm 
Discrete-To-Continuous (DTC), will be presented to ensure 
the three types of alignment: Global, Semi Global and Local. 
DTC relies on dynamic programming based on polynomial 
interpolation of data. This approach was originally applied in 
shape recognition and chirality measurement [3]. 
Subsequently, DTC has been adapted to tackle other areas of 
application, namely: the alignment of time-shifted signals [4], 
correction of the DNA-electropherogram errors resulting from 
capillary electrophoresis sequencing experiments [5], online 
signature matching [6], speech recognition [7], algorithmic 
geometry [8] and fingerprint matching [9]. 

Unlike string matching algorithms, which try to find a 
point-to-point correspondence of the chains, the DTC 
approach solves this problem in its entirety by superimposing 
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the discrete representation of the test points on the continuous 
representation of the reference points. In section IV, the 
operating principle of the algorithm will be presented in detail. 

In order to ensure the performance of this approach, the 
programming and adaptation of DTC in the DNA sequence 
alignment domain were carried out. For this purpose, a 
comparative study was carried out in terms of accuracy, 
temporal complexity and response time with other algorithms 
that were the subject of a benchmarking study on a DNA 
sequence. The sequence studied in this work is JN222368 for 
Genbank belonging to the marine sponge. 

For an efficient comparison, the test environment and 
conditions were unified by downloading a partial Genbank 
database containing 7682 sequences of different sizes, 
including the sequence in question JN222368. Subsequently, 
the DTC algorithm was implemented as well as the other 
reference algorithms in the Java programming language. The 
machine used was a 2.40 GHz Intel Core i7 processor with 8 
GB of RAM. Experimental results show that the DTC 
algoritm delivers supremely efficient alignment with a 
reduced response time, including in the detection of mutations 
and gaps. 

This work is organized as follows. Section I is a general 
introduction of the problem. Section II is dedicated to 
presenting the studies and works carried out during the last 
five years in this area of competence. Section III gives an 
overview of the different string matching algorithms. 
Section IV presents, in a detailed and in-depth way, the 
operating principle of the DTC approach. The results of 
comparing DTC algorithm with the other approaches are 
presented and discussed in Section V. 

II. RELATED WORKS 

Given the importance of string matching algorithms, in 
determining the functional and structural relationships of the 
biological sequence, several studies and works have been 
carried out. This section is dedicated to presenting the studies 
and works carried out during the last five years in this area of 
competence: 

In 2015, a research team made up of professors: Nadia 
B.N, Lecroq T and Elloumi M, conducted a study [10] 
presenting an algorithm which extends the variants of Boyer-
Moore's exact string matching algorithm. The goal of this 
work is to solve the problem of exact pattern matching in a set 
of similar DNA sequences, in which only the pattern can be 
preprocessed. 

In another work carried out in 2015 [11], new methods for 
matching key motifs in secondary RNA structures, based on 
the notion of structural chains, were proposed. In this 
approach, new correspondence algorithms to solve the 
problem of structural matching problem were used. This 
solution also made it possible to respond to various 
combinatorial requests encountered during the pairing of 
secondary RNA structures. 

In 2017 a comparative study [12] was performed on exact 
string matching algorithms in the field of DNA sequence 
analysis by Iji and Mahalakshmi. This work was essentially 

based on the response time, the alignment accuracy of the 
DNA sequences and the temporal complexity of the 
algorithms in question. The results revealed that the Boyer-
Moore algorithm provides the highest accuracy while the 
Reverse Colussi algorithm provides the shortest run time. 

In another study carried out in 2019 by [13], a new 
solution was used, based on massive multithreaded 
exploitation with a focus on the latest Intel architectures based 
on Advanced Vector Extensions 512 (AVX-512). The goal is 
to address the limited acceptance of the Smith-Waterman 
algorithm by the computational requirements of large protein 
databases often used for local sequence alignment. 

Recently in 2019, a new treatment method [14] based on 
the comparison of sequences without using explicit pair 
pairing, was proposed by S. Kouchaki, A. Tapinos and D. L. 
Robertson.This approach provides a viable solution to the 
functions of the textual representation of sequences data. 

One of the most recent studies in this area was done in 
2020. In this study [15], an algorithm called Maximal Average 
Shift (MAS) was presented. Its operating principle consists in 
finding a pattern scan order which maximizes the average 
length of the offset. In this work, two MAS extensions were 
also presented: the first optimizes the MAS scanning speed, by 
means of the result of the analysis in the previous window, 
while the second optimizes its processing time by deploying 
q-grams. The results of this study revealed that these methods 
have better average scanning speed performance than previous 
chain matching algorithms for DNA sequences. 

String Matching Algorithms 

String matching algorithms play a key role in analyzing of 
biological sequences and they are divided into two categories: 

1) The "exact string matching", whose algorithms are 

below, used to find the exact substring match; 2) The 

approximate match, which attempts to approximately find 

strings that correspond to a given pattern. The following 

algorithms: Rabin Karp [16] and [17], Brute Force [18] and 

Fuzzy string searching [19], are often used in this area of 

matching. In this section we will give a brief overview of 

string matching algorithms, focusing on their spatial and 

temporal complexities. Then a comparative study on said 

algorithms will be described. 

A. Description of the String Matching Algorithms 

1) Smith-Waterman algorithm [2]: This algorithm was 

invented by Temple F. Smith and Michael S. Waterman in 

1981. It is often used in DNA sequence alignment, especially 

for gene prediction, phylogeny or function prediction. Its 

operating principle is to give an alignment corresponding to 

the best matching score between the nucleotides of the subject 

sequences. It relies on dynamic programming using similarity 

matrices or substitution matrices. Alignment is accomplished 

by inserting "gaps" or “INDELs” into the reference sequence 

or subject sequence in order to increase the number of 

matching characters between the two sequences. The 

preprocessing phase requires temporal (𝑚+ σ) and spatial (σ) 
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complexities. The search phase of the algorithm requires a 

quadratic time complexity. 

2) Needleman–Wunsch algorithm [1]: This algorithm is 

often used in the maximum global alignment of two character 

chains, especially protein or DNA sequences. The algorithm 

looks for the maximum score alignment. This was the first 

application of dynamic programming for the comparison of 

biological sequences. The processing time to search for a 

pattern in a given text is Ο(𝑚𝑛). 

3) Boyer-Moore algorithm [20]: Boyer-Moore is 

considered one of the most commonly used string matching 

algorithms in everyday applications. The operating principle 

of this approach is based on the analysis of the characters of 

the text from right to left starting with the rightmost. If a 

complete match is detected, it deploys two precomputed 

functions to shift the window to the right, known by the 

matching shift and occurrence shift. The temporal complexity 

of Boyer Moore is of order Ο(𝑚𝑛). 

4) Turbo-Boyer-Moore algorithm [21]: The Turbo-BM 

algorithm is a variant of the Boyer-Moore algorithm. Unlike 

the original Boyor More, this modified version does not 

require additional pretreatment and occupies only one constant 

additional space. It consists of recalling the text factor that 

corresponds to a suffix of the model during the last attempt, 

and this only in the case of a correct suffix offset. The 

peculiarity of this improvement is that it is possible to perform 

a turbo shift by neglecting said text factor. The temporal 

complexity of this algorithm is Ο (m.n). 

5) Tuned Boyer-Moore Algorithm [22]: The Tuned 

Boyer-Moore is another variant of Boyer-Moore algorithm, 

intended to increase the speed of treatment. The principle of 

this approach is to optimize the matching verification phase 

between the character of the pattern and the character of the 

window. To avoid redoing this verification, which is very 

expensive in terms of response time, this method takes several 

shifts before performing a real characters comparison; the 

order of the comparisons between the characters of a pattern 

and text during each attempt not posing any more constraints. 

The temporal complexity of this algorithm is also of order Ο 

(mn). 

6) Brute force algorithm [18]: The Brute force matching 

string algorithm is a classic alignment model, which does not 

require preprocessing. This approach attempts to verify, at all 

positions of the text, the position of occurrence of the pattern. 

The extracted patterns are compared one by one. The search 

window is moved exactly one position from right to left. The 

search can begin in any order (from left to right / from right to 

left). The temporal complexity of the search phase is equal to 

Ο (mn) and to a minimum comparison of 2 expected 

characters. 

7) Deterministic Finite Automaton algorithm [23]: This 

algorithm consists of searching for a given sequence through 

the use of a finite state automaton. Each character in the model 

has a state, and each match sends the automaton to a new 

state. After matching all the characters in the pattern, the 

automaton switches to the approval state. In this case, the 

automaton will return to a suitable state depending on the 

primary state and the entered character. This algorithm has a 

temporal complexity of order O (n) since each character is 

examined once. This technique is very efficient because it 

examines each character of the text exactly once and displays 

all valid time shifts. 

8) Karp-Rabin algorithm [17]: The Rabin-Karp algorithm 

calculates a numeric value (hash) for the pattern p and for 

each substring of m characters from text. Then, it confronts 

numerical values instead of confronting the real symbols. At 

the moment when a match is detected, the pattern is compared 

to the substring by a naive approach. If not, it goes to the next 

substring of the sequence to compare with p. The hash method 

deployed in this algorithm provides a simple process by 

avoiding a quadratic number of character comparisons in most 

practical situations. The time complexity of the algorithm is 

Ο(𝑚+𝑛). 

9) Knuth Morris-Pratt algorithm [24]: This algorithm 

was developed by Morris and Pratt as the first linear time-

match algorithm based on the analysis of the naive algorithm. 

The Knuth-Morris-Pratt algorithm preserves the information 

that the naive approach has consumed during the text analysis 

period. This approach avoids the exhaustion of the 

information through a temporal complexity of order (𝑚 + 𝑛). 

The use of this algorithm is effective because it minimizes the 

total number of comparisons of the pattern with the input 

string. 

10) Reverse Colussi algorithm  [25]: The Reverse Colussi 

string matching algorithm is another Boyer-Moore derivative. 

This algorithm consists of partitioning all the positions of the 

pattern into two disjoint subsets. The comparison of characters 

is carried out using a specific order declared in a matrix. The 

process requires a pretreatment step of order Ο(𝑚2) while the 

search complexity is  Ο(𝑛) in the most complex cases 

performed in comparison of characters. 

11) Apostolico-Giancarlo algorithm [26]: Boyer-Moore 

algorithm is difficult to analyze because after each search, it 

does not memorize the characters already found. To remedy 

this, Apostolico and Giancarlo have designed an algorithm 

that records the length of the longest suffix of the text that 

ends at the correct position of the window at the end of each 

search. The spatial and temporal complexity of this algorithm 

is similar to that of Boyer-Moore Ο (m+𝑛). During the search 

phase, only the last information m of the table break is needed 

for each attempt so that the size of the table break can be 

reduced to Ο (n). The disadvantage of the Apostolico-

Giancarlo algorithm is that it happens, in some cases, to 

perform up to (32n) comparisons of text characters. 

12) Raita algorithm  [27]: Raita's algorithm was produced 

by Tim Raita in 1992. The pretreatment phase of the Raita 

algorithm consists of calculating the bad character shift 

function (Boyer-Moore). It first compares the last character of 

the pattern with the rightmost text character of the window, in 

the case of matching, it continues to compare the first 
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character of the pattern with the leftmost text character of the 

window. If again the match is found, it makes a comparison 

between the character of the middle of the pattern with the text 

character of the middle of the window. Finally, if the match is 

found, it continues to compare the other characters from the 

penultimate to the last, eventually by comparing again the 

character of the medium. During the preprocessing phase, the 

Raita algorithm requires temporal complexity (𝑚 + 𝑛) and 

spatial complexity Ο(𝑛). While in the search phase this 

algorithm has an extreme quadratic time complexity. 

13) Reverse Factor algorithm [28]: The Reverse Factor 

algorithm results from the use of the smallest inverse pattern 

suffix automaton, to match some prefixes of the pattern by 

scanning the character of the window from right-to-left and 

improving the shift length. The pretreatment phase is linear in 

time and space. During this phase, the algorithm tries to 

calculate the smallest automaton suffix for the inverse pattern. 

During the search phase, the Reverse Factor algorithm 

analyzes the characters of the window from right to left until 

any the completion of any transition defined for the current 

character of the window from the current state of the 

automaton. At this point, it is easy to know which is the 

longest prefix length of the matched pattern. The Reverse 

Factor algorithm requires quadratic time complexity in the 

worst case, but is optimal on average. It performs O (n.log (m) 

/ m) inspections of text character on average. 

14) Berry-RavinrASYdran algorithm [29]: This algorithm 

consists in ensuring shifts by taking into account the bad 

character shift (Boyer-Moore algorithm) for the two 

consecutive text characters immediately to the right of the 

window. In the preprocessing phase, which requires spatial 

and temporal complexity of order (𝑚+n2), the algorithm 

attempts to compute for each pair of characters (a, b) with a, b 

in Σ the occurrence the most to the right of ab. The search step 

of the Berry-Ravindran algorithm has a time complexity 

Ο(𝑚+𝑛). 

15) Aho–Corasick algorithm [30]: Aho-Corasick algorithm 

falls into the category of dictionary matching algorithms 

because it performs the localization of the elements of a finite 

set of strings (the "dictionary") in an entered text. This is 

achieved by ensuring a correspondence to all chains 

simultaneously. Both the preprocessing phase and the search 

phase require a complexity of order O (m + n). 

16) Alpha Skip Search algorithm [31]: This algorithm uses 

buckets of positions for each factor of length log (m). The 

preprocessing phase requires temporal and spatial complexity 

of order O (m). The worst case of this pretreatment phase is 

linear if the size of the alphabet is considered a constant. The 

temporal complexity of the search phase in the worst case  is 

quadratic, but the expected number of text character 

comparisons is O(log (m).(n / (m-log (m)))). 

B. Comparative Study of the String Matching Algorithms 

Iji and Mahalakshmi [6] performed a comparative study of 
the aforementioned algorithms (Table I) using the sequence 
JN222368 (Genbank) with a size of 3481 characters. In case 

of a larger or smaller sequence size the process and the results 
in terms of accuracy do not change in contrast to the execution 
time which proportionally depends on the size of the 
sequences. The tests were conducted using the online tools 
EMBOSS and GENE Wise. 

The results of this study revealed that the Boyer-Moore 
(BM) chain matching algorithm provides the highest accuracy, 
83%, with an execution rate of about 84 ms. The Reverse 
Colussi (RC) chain matching algorithm provides the shortest 
execution time (≈57 ms) with an accuracy of 79%. To prove 
the performance of the proposed approach, DTC was tested 
with the two best algorithms BM and RC. The experimental 
results of this test are presented in Section IV. 

TABLE I. COMPARATIVE STUDY OF STRING MATCHING ALGORITHMS 

Algorithm complexity Accuracy Execution Time 

Brute Force Ο(𝑚𝑛) 66.7% ≈ 85𝑚𝑠 

Deterministic 
Finite 

Automaton 
Ο(𝑛) 72%        ≈ 65𝑚𝑠 

Rabin-Karp Ο(𝑚𝑛) 70% ≈ 72𝑚𝑠 

Morris-Pratt Ο(𝑛 + 𝑚) 65% ≈ 68𝑚𝑠 

Colussi Ο(𝑛) 74% ≈ 58𝑚𝑠 

Boyer-Moore Ο(𝑚𝑛) 83% ≈ 84𝑚𝑠 

Turbo-BM Ο(𝑚𝑛) 82.52% ≈ 86𝑚𝑠 

Tuned Boyer-

Moore 
Ο(𝑚𝑛) 82.1% ≈ 88𝑚𝑠 

Reverse Colussi Ο(𝑛) 79% ≈ 57𝑚𝑠 

Apostolico-

Giancarlo 
Ο(𝑛) 74% ≈ 61𝑚𝑠 

Smith-Waterman Ο(𝑚𝑛) 71.4% ≈ 81𝑚𝑠 

Needleman–

Wunsch 
Ο(𝑚𝑛) 60% ≈ 85𝑚𝑠 

Raita Ο(𝑚𝑛) 76% ≈ 82𝑚𝑠 

Reverse Factor Ο(𝑚𝑛) 75.4% ≈ 82𝑚𝑠 

Berry-Ravindran Ο(𝑚 + 𝑛) 77% ≈ 74𝑚𝑠 

Aho–Corasick Ο(𝑚 + 𝑛) 79.7% ≈ 70𝑚𝑠 

Alpha Skip Search Ο(𝑚𝑛) 78.5% ≈ 83𝑚𝑠 

III. DTC ALGORITHM 

Unlike the aforementioned algorithms, which attempt to 
find a point-by-point correspondence of strings, the DTC 
approach addresses this problem in its entirety by performing 
a superposition of the discrete representation of the test points 
on the continuous representation of the reference points. In 
this section, the principle of operation of the algorithm will be 
presented in detail: 

Given two sets of points, F= {𝑓𝑖 ∊ 𝑅𝑑}𝑖=1 
𝑛 (the model set) 

and 𝑆𝐹 = {𝑆𝑓𝑗 ∊ 𝑅𝑑}𝑗=1
𝑚≤𝑛  (the data set) in the 

multidimensional 

space (𝑁𝐷) 
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For this application, SF and F respectively represent the 
DNA sequence in question and the sequence of references. 
The said sequences are composed of nucleotides in the form of 
the alphabets (nucleotide) T, C, A and G. 

The alignment attempts to find the correspondences 
between these two points clouds to compare. In this work, we 
propose an implementation of DTC, as a method of alignment 
of DNA sequences according to mathematical metrics. Each 
nucleotide of F and SF is represented by an abscissa (position 
in the sequence) and an ordinate (a code corresponding to the 
type of the nucleotide). For our application case, the 
nucleotides were assigned the following codes: (A = 200, C = 
- 200, T = 400 and G = -400). 

Generally, to decide if the form SF is included in the form 
F (Fig. 1), one starts by finding a point-by-point 
correspondence between SF and F and possibly looking for a 
transformation which would superimpose SF on F. 

In the case where one opts for the search for the 
transformation T (which checks the superposition of SF in F), 
a direct search of the latter, without any prior knowledge of 
the correspondence of the SF points with respect to those of F, 
may be very consuming in terms of execution time caused by 
the large number of possibilities to test (combinatorial 
explosion). 

It should be noted that the existence of such a 
transformation T would obviously confirm the inclusion of SF 
in F.  In this respect, the DTC algorithm has the ultimate goal 
of finding the transformation T in order to confirm the 
inclusion of SF in F. 

Recalling that the origin of the difficulty (combinatorial 
explosion) comes from the discrete nature of the clouds of 
points to be treated. The solution proposed by DTC to avoid 
this problem is to make a transition from the discrete 
representation to continuous representation of one of the 
entities (F). 

In this case, with a continuous representation of F by a 
polynomial interpolation (SF would be retained in its discrete 
representation), the problem of deciding if SF is included in F 
thus becomes the research, not of T, but at first of a 
transformation T’ which would bring back SF, on the 
continuous representation of F. 

 

Fig. 1. Alignment of SF on F (∆:F and □:SF) Search for Transformation T. 

Thus the existence of T' could induce the probable 
existence of T, and therefore, will confirm the inclusion of SF 
in F. 

In fact, the algorithm consists in avoiding a direct search 
for T but rather in carrying out a search for a transformation 
T', which would ensure the superposition of SF on the 
continuous representation of F. 

It should be noted that the existence of such a 
transformation T' is necessary but not sufficient to confirm the 
inclusion (total or partial) of SF in F. Indeed, the 
transformation T' (if it exists) must ensure that SF is returned 
to the continuous representation of F. And if for points𝑃𝑠𝑓𝑖

∈

𝑆𝐹there exists a point 𝑃𝑓𝑗
∈ 𝐹 such that𝑇′(𝑃𝑠𝑓𝑖

) = 𝑃𝑓𝑗
then T' 

= T then SF is totally or partially included in F. 

The DTC algorithm is developed to deal with arbitrary 
models defined by cloud of points models in a N-dimensional 
(ND) space. In the case of our application, the models of the 
clouds will be considered in a space of 2 dimensions (2D). 

The points of F are given in the 𝑂𝑥𝑦plane. 

Let 𝑃𝑥𝑦  be the interpolation polynomial in the 𝑂𝑥𝑦  plane. 

Because of this, for each point 𝑓𝑖 = {𝑥𝑖 , 𝑦𝑖}belongs to F, we 
have: 

𝑃𝑥𝑦(𝑥𝑖) = 𝑦𝑖               (1) 

This representation will be called (R). 

There are different interpolation methods to represent R. In 
order for the degree of the polynomial to not depend on the 
size of the point cloud F, the DTC algorithm uses the "cubic 
spline" interpolation which is a third degree polynomial 
succession (piecewise interpolation), which also ensures the 
continuity and the differentiability over the entire interpolation 
interval (Fig. 2). 

Search for transformation T': 

The purpose of the transformation T' sought is to bring 
back the cloud SF on the cubic interpolation of the form F 
along the plane 𝑂𝑥𝑦. 

The desired transformation T' is expressed in 
homogeneous coordinates. 

 

Fig. 2. Cubic Spline Interpolation of F. 
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If we consider (𝑥𝑆𝐹𝑗
, 𝑦𝑆𝐹𝑗

)the coordinates of a point 𝑗 ∊

𝑆𝐹 and (𝑥′
𝑆𝐹𝑗

, 𝑦′
𝑆𝐹𝑗

)its transformation by T', the transformed 

points of SF must verify R namely: 

 

𝑃𝑥𝑦 (𝑥′
𝑆𝐹𝑗

) = 𝑦′
𝑆𝐹𝑗

             (2) 

The parameters of the transformation T' described in DTC 
relates to a three-dimensional space are: 

Three translations: 𝑡𝑥, 𝑡𝑦 , 𝑡𝑧  

𝑡𝑥 : Translation along the axis𝑂𝑥. 

𝑡𝑦 : Translation along the axis𝑂𝑦. 

𝑡𝑧 : Translation along the axis 𝑂𝑧. 

Three rotations: 𝜃𝑥, 𝜃𝑦,𝜃𝑧 

𝜃𝑥 : Rotation along the axis 𝑂𝑥. 

𝜃𝑦 : Rotation along the axis 𝑂𝑦. 

𝜃𝑧 : Rotation along the axis  𝑂𝑧. 

Three scale factors: 𝜆𝑥 , 𝜆𝑦,𝜆𝑧  

𝜆𝑥  : Scale factor along the axis  𝑂𝑥. 

𝜆𝑦 : Scale factor along the axis 𝑂𝑦. 

𝜆𝑧 : Scale factor along the axis 𝑂𝑧. 

In this work we deal with the problem of alignment of the 
biological sequences, the transformation T' becomes a 
function with a single parameter which is the translation tx 
according to axis Ox (Fig. 3). 

𝑥′
𝑆𝐹𝑗

= 𝑥𝑆𝐹𝑗+𝑡𝑥
              (3) 

𝑦′
𝑆𝐹𝑗

= 𝑦𝑆𝐹𝑗
              (4) 

 

  

Fig. 3. Illustration for T' Research. 

The notation of R can thus be written as: 

𝑃𝑥𝑦 (𝑥′𝑆𝐹𝑗
) − 𝑦′𝑆𝐹𝑗

= 0             (5) 

Or: 

(𝑃𝑥𝑦 (𝑥′𝑆𝐹𝑗
) − 𝑦′𝑆𝐹𝑗

)
2

= 0                 (6) 

Applied to all SF points: 

∑ √((Pxy (x′SFj
) − y′SFj

)
2

)m
j=1   = 0           (7) 

Consider QT as the following expression: 

𝑄𝑇(𝑡𝑦) = ∑ √((𝑃𝑥𝑦 (𝑥′
𝑆𝐹𝑗

) − 𝑦′
𝑆𝐹𝑗

)
2

)𝑚
𝑗=1            (8) 

Based on this definition, we now look for the parameters 
of the transformation T' which minimizes the QT function. 

The obtained function QT is a non-linear equation which is 
continuous and differentiable. 

After the step of adjusting the points of SF on the 
continuous representation of F (defined by T'), we associate 
each point of SF with its isomorph, which is its nearest 
neighbor in F according to a type of distance and a 
predetermined threshold (ε) (Fig. 4(a)). 

𝑃𝑗 ∊ 𝑆𝐹: 𝑇 (𝑥𝑆𝐹𝑗
, 𝑦𝑆𝐹𝑗

) = (𝑥′′𝑆𝐹𝑗
, 𝑦′′𝑆𝐹𝑗

)and if 𝑃𝑖(xFi
, yFi

) 

is the isomorph of the point 𝑃𝑗 of SF defined by T 

(Fig. 4(b)).The Root Mean Score (RMS) which is used to 
measure the global precision of the superposition of SF in F is: 

𝑅𝑀𝑆 =  
1

𝑚
√∑ (𝑥′′𝑆𝐹𝑗

− 𝑥𝐹𝑖
)

2

+ (𝑦′′𝑆𝐹𝑗
− 𝑦𝐹𝑖

)
2

𝑚
𝑗=1           (9) 

At this stage, since the isomorphs of the points of SF in F 
are known, it would be possible, if necessary, to refine the 
superposition. 

RMS is also formulated as a non-linear function. 
Generally, the transformation T thus found, provides directly 
T′ and therefore the solution of the RMS is already found 
(Fig. 4). 

Nevertheless, some refinements can be operated according 
to a predefined RMS threshold. After determining the 
parameter of the RMS (𝑡𝑦 

′ ) , only the points of SF whose 

distance to their isomorphs in F, are less than a threshold ε 
fixed in advance. If all the distances between the points of SF 
to their isomorphs in F, do not exceed ε, then SF is declared 
included in F. If SF is declared not included in F, the DTC 
algorithm can process the Largest Common Point Set (LCP) 
between the two sequences. Indeed, the isomorphic pairs 
which do not respect the predefined threshold ε would be 
eliminated, and a revival of a refinement of RMS will take 
place for a better superposition of the remaining points of SF 
on the points of F. 
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Fig. 4. a: Illustration for Isomorphs Research/b: Illustration for T Research 

/c: Illustration for Calculation of the Corresponding RMS. 

IV. EXPERIMENTAL RESULTS 

As mentioned in Section III, a survey of exact string 
matching algorithms for motif detection in the protein 
sequence was performed. The results of this comparative 
study are shown in Table I. Following this analytical study, 
the aforementioned algorithms were analyzed in terms of time 
complexity, response time and accuracy using online tools 
such as EMBOSS and GENE Wise. The sequence studied in 
this work is JN222368 for Genbank belonging to the marine 
sponge. Experimental results revealed that the Boyer-Moore 
(BM) chain matching algorithm provided the highest accuracy 
83% with a run rate of about 84 ms. The Reverse Colussi (RC) 
chain matching algorithm provides the shortest execution time 
(≈57 ms) with an accuracy of 79%. These results have sparked 
the interest in implementing the DTC algorithm to test it in 
terms of execution time and accuracy. To do this, the test 
environment and conditions were unified by downloading a 
partial Genbank database containing 7682 sequences of 
different sizes including our sequence of interest JN222368. 
Subsequently, the DTC algorithm has been implemented as 
well as the other two reference algorithms Boyer-Moore and 
Reverse Colussi in the Java programming language. The 
machine used was a 2.40 GHz Intel Core i7 processor with 8 
GB of RAM. Table II presents the results of comparison of 
DTC approach with the aforementioned algorithms. 

Where m represents the size of F and n represents the size 
of SF. 

TABLE II. COMPARISON OF DTC WITH BOYER MOORE AND REVERSE 

COLUSSI 

Algorithms Execution Time  Time Complexity 

(BM) 74 ms Ο(𝑚𝑛) 

(RC) 51ms Ο(𝑛) 

(DTC) 42ms O (m log (n)) 

For this type of test, the three algorithms have an accuracy 
of 100%. This is an excellent result for ensuring alignment in 
restricted databases as an example for the deployment in 
mutation prediction software, stored on a local server, which 
will make it possible to compare them with the new sequenced 
genomes. However, to increase the challenge in terms of 
accuracy, it would be wise to perform tests (Big Data) by 
accessing online databases. 

As far as temporal complexity is concerned, the proposed 
algorithm has a log complexity O (m log (n)), unlike BM O 
(m + n) and RC O (m2). This explains the reduced response 
time of DTC approach (42 ms), compared to other BM (74 
ms) and RC (51ms) algorithms. This means that our algorithm 
is faster than all 18 algorithms that were the subject of that 
aforementioned study. Another advantage that has led to this 
performance in terms of processing time consists in the 
possibility of storing the interpolations of the reference 
sequences. This practice has allowed us to save preprocessing 
time. To demonstrate the temporal complexity of DTC, a test 
was also performed. It consists in finding an alignment of the 
form SF on the reference form F (JN222368) with different 
sizes of SF. The response time and the success rate of this test 
are shown in Table III. 

In this case, for the different sizes of SF, the response time 
follows a logarithmic evolution (Fig. (5). 

This logarithmic complexity makes DTC more efficient in 
terms of response time in the processing of long sequences. As 
the results of this test show, the processing time of 600 
characters is the same for 3481 characters (15 ms). 

In the contrary of our algorithm, BM and RC fail to detect 
mutations and Gaps. To determine the performance of DTC in 
detecting mutations and Gaps, tests were performed on the 
same sequence (with a size of 3481) by simulating mutations 
(Table IV) and gaps (Table V). The search was carried out as 
indicated above in a database containing 7682 other sequences 
of different sizes. 

Mutation test: To simulate mutations, nucleotide 
modifications were made (5 to 60% of the modifications) on 
our sequence of interest. The results of this test are shown in 
Table IV. 

The results of this test revealed that up to a mutation rate 
of 60% the algorithm remains insensitive to mutations and the 
variation of the response time remains marginal despite the 
considerable change in the rate of mutations. The change 
choice of 60% is beyond this rate of change, it would no 
longer be a mutation, but another problem for which the 
algorithm provides another solution. 

Gap test: The representation of the DNA sequences is a 
succession of the alphabets A, C, G and T. For the simulation 
of the gaps some SF nucleotides will be replaced by a letter x 
(unknown) which, in F, would be isomorphic to A, C, G or T. 
The gap phenomenon is often encountered in sequence 
alignment and some algorithms find it difficult to treat it (such 
as Boyer Moore and Reverse Collusi). 

DTC approach is still very efficient in terms of gap 
treatment because any gap corresponds to the reduction of the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 4, 2020 

285 | P a g e  

www.ijacsa.thesai.org 

size of the SF sub-sequence, which generates a reduction in 
processing time when the gap rate increases. 

As shown in the table, the processing of the sequence with 
5% gaps lasted longer (25 ms) than with 60% gaps (18 ms). 

This explains the performance of DTC in solving this 
phenomenon often encountered during DNA sequencing. 

TABLE III. RESPONSE TIME AND DTC SUCCESS RATE FOR ALIGNMENT OF 

DIFFERENT SF SIZES ON F 

Size of SF Success rate % Response time (ms) 

60 

100 % 

10 

120 12 

600 15 

1000 17 

2000 24 

3000 16 

3481 15 

 

Fig. 5. Average Run Time for each Size of SF. 

TABLE IV. SUCCESS RATE OF ALIGNMENT AND RESPONSE TIME FOR THE 

CASE OF MUTATIONS 

Mutation rate % Response time (ms) 

5 24 

15 27 

25 25 

35 27 

45 29 

50 30 

60 31 

TABLE V. SUCCESS RATE OF ALIGNMENT AND RESPONSE TIME FOR THE 

CASE OF GAPS 

Gap rate % Response time (ms) 

5 25 

15 23 

25 23 

35 23 

45 22 

50 21 

60 18 

V. CONCLUSION 

The field of analysis and interpretation of DNA sequences 
is essential for determining the functional and structural 
relationships of said sequences. To do this, software based on 
intelligent algorithms has been made available to the scientific 
community. In this work, we have presented and compared the 
DTC algorithm based on polynomial interpolation with 
algorithms commonly used in this field of application namely: 
Boyer Moore and Reverse Collussi. The peculiarity of DTC 
algorithm is that it ensures the exact string matching and the 
approximate matching with a very short response time, 
avoiding the preprocessing time by storing the interpolations 
of the reference sequences. The satisfactory results of the 
proposed approach, encourage to realize our own software for 
the detection of gene mutations predisposing to various 
genetic diseases. 

On the other hand, it is possible to apply the DTC 
algorithm to facilitate and accelerate the implementation of 
metagenomic analysis as a tool for rapid and precise diagnosis 
or prognosis of cancers. The metagenomic approach allows us 
to gain a fairly precise understanding of the molecular 
mechanisms at work in the emergence and progression of 
cancer. The application of DTC will make it possible to 
identify relevant bioindicators / biomarkers (bacterial taxa / 
genes or metabolic profiles) in order to be able to propose 
diagnostic and therapeutic approaches for the population-
specific. The expected potency of DTC plus the "exhaustive" 
aspect of metagenomics would also allow the discovery of 
new genes or biotechnological functions. 
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