
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

356 | P a g e

www.ijacsa.thesai.org

Resource Optimisation using Multithreading in

Support Vector Machine

Wong Soon Fook1

Faculty of Information Science and Technology

Universiti Kebangsaan Malaysia

Abdul Hadi Abd Rahman2*, Nor Samsiah Sani3

Afzan Adam4

Center for Artificial Intelligence Technology (CAIT)

Universiti Kebangsaan Malaysia

Abstract—Image processing is one of the most important

features for vision-based robotic and being used in various

applications to increase productivity. Various researchers

reported issues computation problem to detect objects in low cost

device such as vision-based robotic car. In the fast-paced

development of technology, a system that runs automatically with

the right results is essential to the completion of a job. This study

aims to propose an effective multithreading for road sign

recognition. We implemented multithreading algorithm for train

and detector processes in SVM to utilise the multicore CPU and

evaluate in various condition on by a Raspberry Pi platform. It

aims to solve the real-time computation issue using Pi camera.

Experimental results show significant improvement of

performance to the detection accuracy. In conclusion

multithreading significantly improve the detection performance

using Raspberry Pi processors with various image resolution and

number of SVM model.

Keywords—Robot vision; recognition; multithreading; real-

time

I. INTRODUCTION

Image processing is one of the most important features for
vision-based robotic and being used in various applications to
increase productivity. One of the interesting topic is object
recognition which has been evolved drastically. In robotic
contexts, the ability to understand the object helps robot to
make accurate and better decision [1][2]. However due to large
resource consumption for computation, multithreading method
are one the way to optimize using multi-tasking process and
fasten the computation in real-time application. Timing is an
important factor in image processing because the delay in time
or delivery of an image template would cause many issues in
the final decision. This lead to adoption the concept of
multithreading in low cost computing device such as Raspberry
Pi so that the results of recognition are accurate.

In addition, development of intelligent car robot is also a
symbol of modernization and development that is rapidly
changing [3]. Each features of cars and transportation are
created to help in the comfort and safety of everyone. As such,
this study focus on about vision-based robotic cars with
improvements in multithreading and image processing. A
multithreading algorithm is implemented to detect images such
as signage with the addition of multithreading to the system for
better performance. This method is applied on a machine
learning algorithm called Support Vector Machine as for image
training and detection process [4][5]. Evaluations of its

performance focused on variation of input, model and resource
optimization.

This paper is organized in five sections. Section I provides
an overview of issues and research gap. Section II presents the
related work on object recognition and multithreading.
Section III describes the research methodology implemented in
this study. Section IV presents the experimental result and
discussion on the finding. Finally, Section V concludes the
impact of this study.

II. RELATED WORKS

The use of Intelligent Robotic Car is very efficient when
the robot itself will move autonomously as the robot
understands each sign. Furthermore, it responds to the detected
sign without requiring the user to move it. However, various
researchers reported issues computation problem to detect
objects in low cost device such as Smart Car Robot [6][7]. This
is due to the Raspberry Pi has four cores but only the use of a
single core can be achieved. The use of this single core resulted
in the performance of the Raspberry Pi slowing down for the Pi
camera detecting the sign [8]. Images that can be detected
using the Support Vector Machine algorithm are also limited to
fast detection when only a single core is used resulting in
performance on the system. The detection using the Pi camera
is slower when more images are stored as SVM models [9] [3].

The simplest type of multithreading occurs when a thread
runs until it is blocked by an event that usually creates a long
latency [10]. Such a stop may be due to the cache having to
access the external chip memory, which may take hundreds of
CPU cycles for the data to be returned. Instead of waiting for a
stop to be completed, the threading processor will switch the
implementation to another thread that is ready to run. Only
when the data for the previous thread has arrived, will it allow
the previous data to be placed on the standby thread list. The
purpose of multithreading is to remove all interrupted data
dependencies from the implementation pipeline [11,12].
Because one thread is independent of another, there is a
possibility of a single instruction in a pipeline that requires
output from a longer direction in the planning. Conceptually, it
is similar to the primitive multitasking used in operating
systems; The analogy is that the time given to each active
thread is a CPU cycle. The most advanced type of
multithreading applies to superscalar processors. Whereas
normal superscalar processors issue multiple commands from
one thread per CPU cycle, in simultaneous multithreading

*Corresponding Author

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

357 | P a g e

www.ijacsa.thesai.org

(SMT) the superscalar processor can issue commands from
multiple threads per CPU cycle. Realizing that any single
thread has a limited amount of directive parallelism, this type
of multithreading attempts to exploit the parallelism found in
the various threads to minimize the rest associated with unused
issue slots.

The objectives of this study focused on further evaluation
of signal processing using the Pi camera with several variables
to test to improve system performance. Furthermore,
comparison of single core based Raspberry Pi with multicore
via multithreading so that CPU usage and Raspberry Pi
memory are analysed.

III. RESEARCH METHODOLOGY

This study is divided into five phases which contains
collection of data, annotation, training, detection using SVM
and improvement using multithreading procedure. In this phase
we considered issues when the increase in the number of
images in each SVM model for detection by a Pi camera
significantly improves performance to the detection accuracy
decreases. During the process of running on the device, the use
of 1 core on the Raspberry Pi greatly reduced the memory
usage which led to the loss of the stored image because lack of
support and storage of multiple images which delayed its
performance.

A. Data Collection

This project is about the detection of signage so the
collection of signage images is from the source
https://github.com/Moataz-E/deeplearning-traffic-signs. Each
description used has a different information. The images
collected are from a range of resolutions to be set to four
resolutions of 160x128, 240x192, 640,480 and 1296x736.
Increasing the resolution at each detection will test the system's
ability to function efficiently. Performance data during
benchmark detection testing were collected and reported for
performance evaluation using selected attribute such as
resolution and image amount.

B. Support Vector Machine

In machine learning, support vector machine (SVM) is a
learning models which integrates learning algorithms related to
data analysis used for classification and regression analysis.
Since a set of training examples, each labeled as belonging to
one or the other of two categories, SVM training algorithms
build models that provide new examples to one category or
another, they become binary linear classifiers that are non-
existent (though methods like scaling exist to use SVM in
probabilistic classification settings). The SVM model is a
representation of the samples as points in space, mapped so
that the separate categories are divided into as wide a gap as
possible as shown in Fig. 1. The new examples are then
mapped into the same space and predicted to become
categories based on the sides of the gap.

All training image were annotated to set the size limit to the
image to be detected. It aims to classify images by dividing
hyperplanes into non-linear datasets. Classification of each
object by maximizing the margin distance so that the data
points can be classified more confidently. SVM is one of the

low computation machine learning algorithms which is suitable
due to the limitations of the Raspberry Pi in handling high
demand process and algorithmic demand.

C. Multithreading

This study focuses more on internal performance than on
external performance, which is more on Raspberry Pi's
performance in the ability to carry out signage detection with
large picture storage and higher resolution images. Pre
evaluation were done for each SVM processes to trace the high
computation process for multithreading [13,14]. The sign-on
process is used to monitor and logged the performance of the
Raspberry Pi system for pre and post multithreading
evaluation.

In this phase, the detection of the trained signage using the
SVM algorithm. Signal detection using the Pi camera and
when the trained sign image is detected, green, red, blue or
white frames will appear around the image known as the image
marker for detected image. In computer architecture,
multithreading is the ability of a central processing unit (CPU)
(or single core in a multi-core processor) to execute multiple
processes or threads simultaneously supported by operating
systems. This approach is different from multiprocessing. In
multithreaded applications, processes and threads share single
or multiple core sources, including computing units, CPU
caches, and lookaside translation buffers (TLB). A
multiprocessing system includes multiple complete processing
units in one or more cores, multithreading is intended to
enhance single core use by using thread-level parallelism, as
well as command-level parallelism. Because the two
techniques complement each other, they are sometimes
combined in a multithreading CPU system and with a multi-
core CPU.

The multithreading algorithm as in Fig. 2 is deployed on
existing coding during model detection process. In pre-
evaluation, the image streamed from the Pi camera show
lagging issues but not at the capture stage, annotate the image
and train the image to the SVM model. This is caused by our
very large SVM model files with a very large number of
images will cause our computer performance and high CPU
memory usage. From a coding standpoint, the use of just one
thread per process in the fourth coding which results in
overloading of only one CPU memory will result in the
accuracy of the tracking results being dropped while we can
access all four cores on the Raspberry Pi 3B+ to split memory
usage CPU evenly. Due to memory limitations on only one
CPU, implementation of multithreading alternatives should
improve the tracking performance in real-time.

Fig. 1. Separation between Small and Large Margins of SVM.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

358 | P a g e

www.ijacsa.thesai.org

initiate PiCamera(set fps)
image to RGB
set myPath=[]
for each file in myPath
 append learningoutput.svm
end for
set thread = []
for each oneDetector in detectors
 thread = svmDetector
 thread.start()
 thread.append()
end for

Fig. 2. Multithreading in Support Vector Machine Algorithm Pseudocode.

IV. RESULT AND DISCUSSION

A. Comparison of CPU Memory usage in Frame Per Second

Fig. 3 shows the original code executed with the
performance monitoring taken during the execution of the
code. Currently only two processes are running - SVM model
detection and performance monitoring that can be seen in the
above diagram. From the system monitoring can look at
process identifier number 842, CPU usage was 85.3% with
9.4% memory by the coding. On the record it can be stated that
4 CPUs are used. From there the core usage guarantees by
looking at the number on us is the usage in the Raspberry Pi
core. It can be seen that only one core is used here and
subsequent tracking is still ongoing.

In Fig. 4, the output of coding added with multithreading
programming is presented. Originally, only one running
process is SVM model tracking code. With the use of
multithreading, it can be seen that the optimization of resource
is achieved show by the usage of the 4 CPU cores in an evenly
distributed processes. This is due to every 1 SVM model uses 1
thread to run the process from the original code compared to
usage of single thread to run the entire SVM model. Usage of
less than 50 with decrement of memory usage from 9.4% to
7.5%. The use of multithreading shows an improvement in
computing performance.

Table I shows a graph of thread usage on FPS performance.
The first experimental test used single thread computation with
a recorded 10 frame per second followed by the use of 2
threads resulted in an increased FPS of 15. The FPS in an
optimized solution using all 4 threads improved to 30 due to
the system's reluctance to run every single thread, containing
the process as a separate thread.

Fig. 3. Performance on Raspberry Pi without Multithreading.

Fig. 4. Performance on Raspberry Pi with Multithreading on 4 Processor.

TABLE I. PERFORMANCE ON RASPBERRY PI WITH MULTITHREADING

Parameters

Thread Used

Without Multithreading

1

Multithreading

2 4

FPS 10 15 30

Memory 9.4% 7.5% 7.6%

CPU Usage 85.3% 86.2% 80.3%

B. Comparison of Resolution with use of Multithreading on

Memory and CPU

Table II shows some of the resolutions used to run tests to
evaluate performance I various resolution conditions. The
evaluations considered important parameters such as time,
memory and CPU Usage which are presented in Table III. The
results indicate an improvement over time and memory in
various resolutions.

Fig. 5 shows the graph increasing with time as resolution
increases. The difference between using a thread and not using
a thread is a small amount of time recorded but improvements
have been made to the system. Time was recorded according to
the 5 recorded pictures and the last time the fifth picture was
taken to draw the graph. It can be seen that there is a slight
increase in graphs using threading compared to no threading.

TABLE II. RESOLUTION SPECIFICATIONS

Resolution Aspect Ratio Frame Rate FoV

160x128 4:3 30fps PARTIAL

240x192 4:3 49fps PARTIAL

640x480 4:3 42.1-60fps FULL

1296x736 16:9 1-49fps FULL

TABLE III. PERFORMANCE USING THREAD WITH VARIOUS RESOLUTIONS

Parameters
Resolution

160x128 240x192 640x480

Time (ms) 2.39 4.66 27.33

Memory 7.4% 7.7% 12.6%

CPU Usage 74.5% 93.2% 99.7%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

359 | P a g e

www.ijacsa.thesai.org

Fig. 5. Comparison of Thread usage with Time and Resolution.

C. Comparison of Various SVM Models and Images using

Multithreading

Table IV shows the use of threading for image processing
by increasing the image from 10 to 50 and improving the
trained SVM model. Increased processing time for uniform
images in 1.3 and 5 models. For the 30 images, time increased
drastically on the third model and gradually increased upon the
fifth model. For the 50 images, the time increases parallel to
capital 1 to 5. Visible in the 5th capital with 50 images using
threading is faster than the non-threading detection with 3
models and 30 images per model which is 23.7 tracking time.

TABLE IV. COMPARISON OF PERFORMANCE USING YARN WITH VARIABLE

NUMBER OF SVM MODELS

Model
Total Images

10 30 50

1 2.5 s 4.3 s 5.2 s

3 4.6 s 11.8 s 16.5 s

5 7.4 s 14.7 s 23.7 s

V. CONCLUSION

The development of the intelligent robotic system aims to
improve the computing performance by optimizing the
resources in a Raspberry Pi. Experimental results show a
significant improvement achieved using multithreading in
SVM processes. Based on the research conducted, there are
several suggestions for further improvements, such as deep
learning and algorithms like Fractal or any other machine
learning approach such as RNN. In conclusion, the study
intended to benefit road users so that they can receive
information about road signage with high performance.

ACKNOWLEDGMENT

The authors want to thank the University Kebangsaan
Malaysia for supporting and funding this research, grant code:
GGPM-2017-040.

REFERENCES

[1] F. F. Saad Mohmad Saad Ismail, S.N.S Abdullah, “Detection and
recognition via adaptive binarization and fuzzy clustering,” Pertanika J.
Sci. Technol., vol. 27, no. 4, pp. 1759–1781, 2019.

[2] G. Alipoor and E. Samadi, “Robust Gender Identification using EMD-
Based Cepstral Features,” Asia-Pacific Journal of. Information
Technology and Multimedia., vol. 07, no. 01, pp. 71–81, Jun. 2018.

[3] N.F.A Zainal, R. Din, M.F. Nasrudin, S. Abdullah, A.H.A Rahman,
S.N.S Abdullah, K.A.Z. Ariffin, S.M. Jaafar, N.A.A Majid. (2018).
Robotic Prototype And Module Specification For Increasing The
Interest Of Malaysian Students In Stem Education. - International
Journal Of Engineering And Technology (Uae).

[4] K. Vinothini and S. Jayanthy, “Road Sign Recognition System for
Autonomous Vehicle using Raspberry Pi,” in 2019 5th International
Conference on Advanced Computing & Communication Systems
(ICACCS), 2019, pp. 78–83.

[5] C. Day, L. McEachen, A. Khan, S. Sharma, and G. Masala, “Pedestrian
Recognition and Obstacle Avoidance for Autonomous Vehicles Using
Raspberry Pi,” 2020, pp. 51–69.

[6] V. Patchava, H. B. Kandala, and P. R. Babu, “A Smart Home
Automation technique with Raspberry Pi using IoT,” in 2015
International Conference on Smart Sensors and Systems (IC-SSS), 2015,
pp. 1–4.

[7] E. Bilgin and S. Robila, “Road sign recognition system on Raspberry
Pi,” in 2016 IEEE Long Island Systems, Applications and Technology
Conference (LISAT), 2016, pp. 1–5.

[8] S. Brahmbhatt, “Embedded Computer Vision: Running OpenCV
Programs on the Raspberry Pi,” in Practical OpenCV, Berkeley, CA:
Apress, 2013, pp. 201–218.

[9] M. R. Rizqullah, A. R. Anom Besari, I. Kurnianto Wibowo, R.
Setiawan, and D. Agata, “Design and Implementation of Middleware
System for IoT Devices based on Raspberry Pi,” in 2018 International
Electronics Symposium on Knowledge Creation and Intelligent
Computing (IES-KCIC), 2018, pp. 229–234.

[10] D. R. Rinku and M. Asha Rani, “Analysis of multi-threading time metric
on single and multi-core CPUs with Matrix Multiplication,” in 2017
Third International Conference on Advances in Electrical, Electronics,
Information, Communication and Bio-Informatics (AEEICB), 2017, pp.
152–155.

[11] W. F. Abaya, J. Basa, M. Sy, A. C. Abad, and E. P. Dadios, “Low cost
smart security camera with night vision capability using Raspberry Pi
and OpenCV,” in 2014 International Conference on Humanoid,
Nanotechnology, Information Technology, Communication and Control,
Environment and Management (HNICEM), 2014, pp. 1–6.

[12] Azmi, I., Shafei, M. S., Nasrudin, M. F., Sani, N. S., & Abd Rahman ,
A. H. . ArUcoRSV: Robot localisation using artificial marker. In J-H.
Kim, H. Myung, & S-M. Lee (Eds.), Robot Intelligence Technology and
Applications - 6th International Conference, RiTA 2018, Springer
Verlag, 2019, pp. 189-198.

[13] M. M. William et al., "Traffic Signs Detection and Recognition System
using Deep Learning," 2019 Ninth International Conference on
Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt,
2019, pp. 160-166.

[14] Zuraini Othman, Azizi Abdullah, Anton Satria Prabuwono. (2018). Iris
Localization Algorithm Using Region Growing and Support Vector
Machine. - Advanced Science Letters. 1005-1011.

0

100

160x128 240x192 640x480 1296x736

Ti
m
e
(s
)

Resolution No Yes

