
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

Application of Homomorphic Encryption on Neural
Network in Prediction of Acute Lymphoid Leukemia

Ishfaque Qamar Khilji1, Kamonashish Saha2, Jushan Amin Shonon3, Muhammad Iqbal Hossain4
Department of Computer Science and Engineering

BRAC University
Dhaka, Bangladesh

Abstract—Machine learning is now becoming a widely used
mechanism and applying it in certain sensitive fields like medical
and financial data has only made things easier. Accurate
Diagnosis of cancer is essential in treating it properly. Medical
tests regarding cancer in recent times are quite expensive and not
available in many parts of the world. CryptoNets, on the other
hand, is an exhibit of the use of Neural-Networks over data
encrypted with Homomorphic Encryption. This project
demonstrates the use of Homomorphic Encryption for
outsourcing neural-network predictions in case of Acute
Lymphoid Leukemia (ALL). By using CryptoNets, the patients
or doctors in need of the service can encrypt their data using
Homomorphic Encryption and send only the encrypted message
to the service provider (hospital or model owner). Since
Homomorphic Encryptions allow the provider to operate on the
data while it is encrypted, the provider can make predictions
using a pre-trained Neural-Network while the data remains
encrypted all throughout the process and finally sending the
prediction to the user who can decrypt the results. During the
process the service provider (hospital or the model owner) gains
no knowledge about the data that was used or the result since
everything is encrypted throughout the process. Our work
proposes a Neural Network model which will be able to predict
ALL-Acute Lymphoid Leukemia with approximate 80%
accuracy using the C_NMC Challenge dataset. Prior to building
our own model, we used the dataset and pre-process it using a
different approach. We then ran on different machine learning
and Neural Network models like VGG16, SVM, AlexNet,
ResNet50 and compared the validation accuracies of these
models with our own model which lastly gives better accuracy
than the rest of the models used. We then use our own pre-
trained Neural Network to make predictions using CryptoNets.
We were able to achieve an encrypted prediction of about 78%
which is close to what we achieved when validating our own CNN
model that has a validation accuracy of 80% for prediction of
Acute Lymphoid Leukemia (ALL).

Keywords—CryptoNets; neural network; Acute Lymphoid
Leukemia (ALL); homomorphic

I. INTRODUCTION
We are trying to make a system where there will be an

assurance about privacy and will also give an initial prediction
i.e. whether the patient has ALL (blood cancer) or not. This
will also decrease the cost of the system because the initial
tests are expensive and in our model the price will be less to
give an initial prediction. This system can be used in case of
banks, hospitals and other sectors. In our model we included
Homomorphic encryption as mentioned earlier. In this system,

it will allow one party to have a public key such as in hospitals
where a lot of patients can send their data through the public
key which will be encrypted and stored in local servers (cloud
used in future works). The owner, in our case the hospital
administration, lab technicians, doctors and patients can have
policies to decrypt the data when necessary. This will ensure
the encryption and decryption in a proper manner and will also
ensure proper privacy of the user if they want to store or
export their information. In the encryption process, the owner
will only have the private key and will be able to decrypt the
data, on the other hand, the service provider does not have any
key and hence will not be able to decrypt the data and thus
they won’t know about the data inside or be able to get any
information about the predicted data. This will provide a better
privacy and will also decrease the overall cost since there is
only one private key.

Existing works of running machine learning models on
encrypted data include Grapel et al. [7], where they propose
confidential algorithms for binary classification based on
polynomial approximations to least-squares solutions found by
a small number of gradient descent steps. They show
experimental validation of the confidential machine learning
pipeline and discuss the give and takes involving
computational complexity, prediction accuracy and
cryptographic security. Zhan et al. [8] works say that their
paper considers how to conduct k-nearest neighbor
classification in the following scenario: multiple parties, each
having a private data set, want to collaboratively build a k-
nearest neighbor classifier without disclosing their private data
to each other or any other parties. They intend to develop a
secure protocol for multiple parties to carry out the desired
calculation. All the parties take part in the encryption and in
the calculation involved in learning the k-nearest neighbor
classifiers. Qi &Atallah, [9] say that they use techniques to
also solve the general multi-step k-NN search, and describe a
particular expression of it for the case of sequence data. The
protocols and correctness evidence can be extended to cope
with other privacy-preserving data mining tasks, like
classification and outlier detection. Aslett et al. [10][11]
propose modified algorithms in application of extreme random
forests, involving a new cryptographic stochastic fraction
estimator, and naïve Bayes, involving a semi-parametric
model for the class decision boundary, and demonstrate how
they are useful in learning while predicting from encrypted
data. They also exhibit that these methods perform
competitively on several different classification data sets and

350 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

provide detailed information about the calculative
practicalities of these and other FHE methods.

In our project, the unencrypted data will be first used to
train the neural network. The training data sets can be difficult
to find for these types of projects because they always have a
privacy issue and also, it’s not easily available. After training
and validation, our Neural Network model can be used to give
secure predictions regarding ALL to the target user. The
problem of such type is also called Privacy Preserving Data
Mining (Agrawal & Srikant) [23]. To come to the internal
concept of our project, we used CryptoNets where we use
Homomorphic Encryption on our own Neural Network to
secure ALL predictions. This is also a work on running Neural
Network and machine learning algorithms on encrypted data
but what we have done is a practical implementation of the
method in finding the secure predictions of a life threatening
disease which is the first of its kind in terms of applying
Neural Networks and Machine learning algorithms on
encrypted data.

We propose to make a Privacy Preserving Neural Network
model which can predict Blood Cancer as well as maintain the
privacy of the patient. In our research, at first, we have taken a
blood cancer dataset and successfully ran it on various Neural
Network and Machine learning models which would
accurately predict Acute Lymphoid Leukemia. The results are
then compared amongst them. Moreover, we then made our
own Neural Network model which is run on the dataset that
we are having which is modified at first in order to run on an
encryption application. The results are again compared with
that of the previous models to prove our NN model is better
than the others here. The model is then encrypted and HE
(homomorphic encryption wrapper) is implemented on it to do
computations and give predictions in a secure format. We are
in the process of having our own dataset collected from
different labs which we kept for future work. We want to
provide a system that will not only give the initial result of
whether it is cancer or non-cancer but will also be encrypted
and the result will only be known by the patient with the
private key which will ensure privacy.

Our objectives include detection of Blood Cancer
(Leukemia) from imagery test samples after proper
modification in order to run on the custom CryptoNets
application. A homomorphic encryption scheme on the whole
system which would be used to homomorphically encrypt the
images from the Neural Network on which computations and
predictions can be done even if the images are encrypted.
Comparative analysis is done among the first several models
run and then between them and our own NN model. The
results are then compared. Work on CryptoNets is done
currently in mainly 3 datasets: MNIST, CIFAR-10 and
Caltech-101. CryptoNets has not been used in practical
applications before. Thus, our contribution in detecting blood
Cancer using imagery in a privacy preserving model
(CryptoNets) will be the first of its kind. The process that we
introduce will pave a way for implementations in various
fields. This will ensure secure lives and provide customer
satisfaction.

II. BACKGROUND

A. Literature Survey
1) CNN Features: Shafique and Tehsin [1] used pre-

trained AlexNet and fine-tuning to classify ALL subtypes on
ALL-IDB augmented with 50 private images. Rehman et al.
[2] used a pre-trained AlexNet and fine-tuning to classify ALL
subtypes on a private dataset of 330 images. On the other
hand, Vogado et al [3] used different pre-trained CNNs as
fixed feature extractors to classify ALL on ALL-IDB.
Amongst all these, the most informative ones are selected
using PCA and classification is performed with an ensemble
of MLP, random forest and SVM.

2) Handcrafted Features: Mohapatra et al. [4] and
Madhloom et al. [5] use private dataset and classify using an
ensemble of SVM, KNN, Naïve Bayes and a KNN classifier.
Putzu and Ruberto [6] classify a number of features such as,
compactness area and ratio between cytoplasm and the
nucleus with an SVM using ALL-IDB. In the above case, the
dataset used is small compared to others and also tough to
compare the results. The private datasets are unavailable and
the public ALL-IDB datasets are given on their own
evaluation procedures. All these factors make comparisons
difficult.

Our project is divided into two parts of the programming
languages Python and C#. The Neural network model building
and comparisons of the ML and NN models are done in the
python part of the project. The encryption part after that where
the “CryptoNets” application created is done on C#. Grapel et
al. [7] suggested a use of homomorphic encryption for
machine learning algorithms where they focused on finding
the algorithms where training can be done over encrypted data
and hence were forced to use a learning algorithm where the
training algorithm can be expressed in a low degree
polynomial. Zhan et al. [8]; Qi &Atallah, [9] looked up for
nearest neighbor divisions but they do not give the same level
of accuracy as neural networks. Aslett et al. [10][11] presented
both of the algorithms such as naïve Bayes classifiers and
random forests but their model cannot work efficiently in
recognizing objects in images.

B. Homomorphic Encryption
Homomorphic encryption algorithms that require one

operation, such as addition, have been known for decades,
such as for the ones based on the RSA or Elgamal
cryptosystems. But a homomorphic encryption method that
allows an infinite number of two operations, i.e. addition and
multiplication, allows the computation of any circuit and thus
a complete solution of homomorphic (FHE) is gained. FHE
was first presented in Gentry [12]. In Gentry, the data
encrypted in the bits and for each bit in the message, a
separate ciphertext is produced. It is a sort of addition and
multiplication module represented by Boolean circuits with
XOR and AND gates. FHE in ciphertexts contain some
inherent noise which grows during homomorphic encryption
and it cannot be decrypted when it gets too large. To solve this
problem, Bootstrapping is used where the ciphertexts are
constantly refreshed and their noise is reduced [13][14]. The

351 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

parameters for Practical Homomorphic Encryption (PHE)
should be chosen which would not only increase the efficiency
but also preserve privacy and ensure security. In our project,
we have implemented tools such as Noise Growth Simulator
and Automatic Parameter Selection Module to help the user to
achieve maximum performance [15]. Somewhat homomorphic
encryption approaches can only evaluate a multiple but limited
number of addition and multiplication activities. SWHE
schemes refer to encryption systems that present certain
homomorphic characteristics but lack full homomorphic
capacity. The fully homomorphic encryption supported an
arbitrary number of multiplications and additions, and hence
compute any form of function on encrypted information. For
all forms of computations on the information warehoused in
the cloud, FHE must be embraced because it allows execution
of operations on encrypted records without decryption. As
such, the usage of FHE is a crucial step in enhancing cloud-
computing security.

C. Encoding
As described above, there is a discrepancy between the

atomic structures in neural networks (real numbers) and the
atomic structures in the homomorphic encryption schemes
(polynomials in Rn

t) [16]. An encoding scheme will map each
other in a manner that preserves the operations of addition and
multiplication. Such a scheme of encoding can be constructed
in several ways. For example, real numbers can be converted
to fixed precision numbers, and then their binary
representation can be used to convert them into a polynomial
with the binary expansion coefficients. This polynomial will
have the property of returning the encoded value when
evaluated at value 2. Another alternative is to encode as a
constant polynomial the fixed number of precisions. This
encoding is simple, but in the sense that only one polynomial
coefficient is being used may seem inefficient. One problem
with the scalar encoding is that when homomorphic operations
are performed, the only coefficient of the message
polynomials grows very rapidly.

D. Encoding Large Numbers
As we have already explained, in this encryption scheme, a

major challenge for computation is to prevent the coefficients
of the plaintext polynomials from overflowing, t. These forces
us to pick large values for t, which allows the noise to grow
faster in the cipher texts and reduces the total amount of noise
tolerated (with q fixed). Therefore, for security reasons, we
need to choose a larger q, and then a larger n. One way to
overcome this problem partially is to use the Chinese
Remainder Theorem (CRT). The concept of using multiple
primes is t1…tk; given a polynomial ∑aixi we can convert it
to k polynomials in such a way that the j-th polynomial is
∑[ai(modtj)]xi. Each such polynomial is encrypted and
manipulated identically. The CRT guarantees that we will be
able to decode back the result, as long as its coefficient does
not grow beyond ∏tj. Therefore, this method allows us to
encode exponentially large numbers while increasing time and
space linearly in the number of primes used.

E. Plaintext Space and Homomorphic Operations
Plaintext elements (messages encrypted by homomorphic

encryption schemes) can be represented as a polynomial ring

R, with coefficients minimalized modulo the integer, t.
Cipher text elements (encrypted plaintext elements) on the
other hand can be similarly represented but instead has
coefficients minimalized modulo the integer, q [15]. Formally,
this means that the plain-text space is the ring Rt := R/tR =
Zt[X]/(Xn + 1), and the ciphertext space is contained in the
ring Rq := R/qR = Zq[X]/(Xn + 1). However, some of
the elements in Rq are invalid ciphertext. A ciphertext created
by the function used for encryption in the scheme that we are
using encrypts one plaintext message polynomial m in Rt. If a
homomorphic addition (resp. multiplication) is done on
ciphertext that encrypts two plaintext messages for example
m1, m2 in Rt, the output ciphertext will encrypt the
summation of m1+m2 (resp. the product m1.m2). Plaintext
element computations are done in the ring Rt. Thus, in case of
homomorphic addition, the output ciphertext will encrypt the
coefficient wise summation m1+m2, where the coefficients
are likewise reduced modulo the plaintext modulus, t. In case
of homomorphic multiplication, the output ciphertext will
encrypt the product m1.m2 in Rt, meaning the polynomial
will likewise be reduced modulo Xn+1 where –1 will
substitute all powers of Xn and continued till no monomials of
n degree or higher than that is remaining. Just like
homomorphic addition, the coefficients of polynomial m1.m2
will likewise be deducted modulo integer, t.

F. Selecting Encryption Parameters
The particular scheme that is used in SEAL is the more

practical derivation of the YASHE scheme. Encryption
parameters of the scheme are: degree n, the moduli q and t, the
decomposition word size w, and distributions Xkey, Xerr.
Thus, parameters: = (n,q, t, w, Xkey, Xerr). These parameters
are explained in more details below.

● n, here is used as the maximum number of terms in the
polynomials used for showing the plaintext as well as
ciphertext elements. SEAL shows n always as a power
of 2. Xn + 1 polynomial is the polynomial
modulus, shown as polymodulus in SEAL.

● q, the coefficient modulus, is an integer modulus
operated in reduction of the coefficients of ciphertext
polynomials. SEAL represents q as coeff modulus.

● t, the plaintext modulus, is an integer modulus taken in
reduction of the coefficients of plaintext polynomials.
SEAL shows t, as plain modulus.

● Integer coefficients are decomposed into smaller parts
according to the integer base w. The integer calculates
the number w,q:=blogw(q)c+ 1 of parts when
decomposing an integer modulo q to the base w.
Practically, we take w, as a power of two, and take the
decomposition bit count as log2w. SEAL shows log2w
as decomposition bit count.

● Xkey distribution is a probability distribution on
polynomials of degree at most n-1 with integer
coefficients implemented to sample polynomials with
small coefficients that are taken in the key generation
procedure. In SEAL, coefficients are sampled
uniformly from [1,0,1].

352 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

● Likewise, the distribution Xerr on polynomials of
degree at most n-1 is used for sampling noise
polynomials, essential in time of both key generation
and encryption. SEAL has the distribution Xerr as a
shortened discontinuous Gaussian centered at zero
having standard deviation. SEAL has it called Noise
Standard Deviation.

G. Algorithms used
The encryption scheme we use is a public-key,

homomorphic encryption scheme, and consists of the
following algorithms [15]:

- A key generation algorithm KeyGen (parms) that, on
input the system parameters “parms”, generates a
public/private key pair (pk; sk) and a public evaluation
key, evk, which is used during homomorphic
multiplication.

- An encryption algorithm Enc(pk;m), that encrypts a
plaintext , m, using the public key, pk

- A decryption algorithm Dec (sk; c), that decrypts a
cipher text, c, with the private key, sk.

- A homomorphic addition operation Add (c1; c2) that,
given as input encryptions c1 and c2 of m1 and m2,
outputs a ciphertext encrypting the sum, m1 + m2

- A homomorphic multiplication operation Mult (c1; c2)
that, given encryptions c1 and c2 of m1 and m2,
outputs a ciphertext encrypting the product, m1. m2

H. Neural Network Models used
The term Neural Network is an artificial network which is

composed of circuits or neurons or artificial nodes. These are
leveled circuits and in layers and are usually found in an order
where the last layer is the input layer and the first being the
output layer. Each layer consists of nodes and they all are
incorporated with a value of the features of the project. In
these layers, the above or previous nodes of the layer compute
a function based on the nodes of the layers under it and the
first node in the stack becomes the output layer.

On pre-trained CNN models as well as SVM (Support
vector machine) models of our own. The CNN models that we
used include VGG16 and VGG19, AlexNet and ResNet. After
running these models with the mentioned dataset, we
compared the accuracies (both train and test accuracies).

1) VGG16 and 19: In VGG16 architecture, the images are
passed through a sequence of convolutional layers which are
of fixed size (224x224 RGB image). Thus, we use the default
image size for this model in our dataset. In one of the
configurations, it also utilizes a 1×1 convolution filter. The
convolution stride is fixed to 1 pixel. Spatial pooling is carried
out by five max-pooling layers, which follow some of the
convolutional layers (not all the convolutional layers are
followed by max-pooling). Max-pooling is performed over a
2×2 pixel window, with stride of 2. There are three fully
connected layers which have different depths in different
architectures. Amongst them, the first two have 4096
channels, and the third performs 2-way classification of the

Leukemia dataset and contains two channels for each
individual class and the last layer is a soft-max layer. This
configuration is the same in all the networks. We are using
pre-trained VGG16 and VGG19 models of ImageNet dataset.
Thus, in building our own VGG16 model we use the
“Weights” of ImageNet. We then extract features of our
dataset that are used through VGG16 and VGG19
convolutional base. After the feature extraction, the data then
passes through the layers described above (VGG 16 and VGG
19). The models are then fitted and trained for 100 epochs.

2) SVM: Supervised Vector Machine (SVM) is a
supervised machine learning algorithm which divides the
dataset into two classes and is mostly used for classification
and regression purposes. In order to train a linear support
vector machine, the machine learning approach is used. We
can use K-fold cross-validation where we can estimate error of
our mode. Since this will be used, we can enlarge our training
data by concatenating the train and the validation sets. After
the feature extraction using the convolutional base of VGG16,
the output tensor [2] is used in the model fitting of the SVM
model. Thus, no separate feature extractions of the pre-
processed images that are used are required. The model is run
for 100 epochs. Lastly, we ensure that the SVM classifier has
one hyper parameter which is a penalty parameter C of the
error term.

3) AlexNet: Classifying the image is a major problem and
AlexNet fixes it by taking the input image of one of 1000
different groups and generally giving output of a vector of
1000 numbers. There are two groups here instead of 1000 so
an output vector of only two will be present. The sum of all
output vector elements is 1. AlexNet takes an RGB image size
224x224 input picture from the preprocessed dataset.
Nevertheless, unless the image is not in RGB or in grayscale,
it is converted to RGB by replicating the single channel in
order to get a 3 channel RGB picture. AlexNet has 3 Fully
Connected Layers and 5 Convolutional Layers.

- Multiple Convolutional Kernels: Multiple
convolutional kernels are also many times called filters
that extract the necessary features out of an image
where the single convolutional layers consist of
multiple similar size kernels.

- The first two Convolutional layers: The third, fourth
and fifth layers of convolution are joined directly.
After the fifth convolutional layer comes an
Overlapping Max Pooling layer, whose output goes
through a sequence of two fully integrated layers. The
second fully integrated layer feeds heuristic SoftMax
labelling into two classes.

- Max Pooling layers: The depth is kept unaltered by
sampling the sample’s height and width. Overlapping
Max Pool layers are compared to Max Pool layers,
other than neighboring windows where the max is
estimated to overlap. Makers of the model used to pool
3x3 size windows between opposite windows, with two
steps. This overlapping complexity of pooling has

353 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

helped to lower the top -1 error rate by 0.4 percent, the
top-5 error rate by 0.3 percent, compared to using non-
overlapping 2x2 sized pooling windows with step 2,
giving identical output dimensions.

AlexNet’s use of the nonlinearity function within the
layers is an important feature. Activation functions of sigmoid
or Tanh functions used to be the traditional method of training
a neural network model. AlexNet has displayed that deep
CNNs can be trained much more rapidly using ReLU’s
nonlinearity feature rather than using saturated activation
functions such as tanh or sigmoid. Until feeding the data into
the layers and constructing the model, various techniques such
as image mirroring, shuffling and random cropping of images
in data augmentation to minimize overfitting. This is stated
earlier in this section, in which the data set explanation is
present.

In dropout, one neuron with a probability of 0.5 is
removed from the network. If a neuron is lost, this does not
lead to propagation which is either forward or backward.
Thus, each input goes through different architecture of the
network due to which the learned weight parameters are
therefore more robust, and are not readily overfitted. There is
no dropout during testing, and the entire network is utilized,
but output is scaled by a factor of 0.5 to adjust for the neurons
lost during training. Dropout raises the number of iterations
required to converge by a factor of 2 but AlexNet will
significantly overfit without it.

4) ResNet50: Above is a pre-trained model of the
ResNet50 architecture. The model has “50” layers with
weights. Residual Networks or ResNet creates networks
through models known as residual models and also known as
the degradation problem. Although increasing depth increases
the accuracy of the network, the problem increases when the
vanishing gradient arises. Another issue that occurs while
training the deeper network is greater training error as it adds
the layers when performing optimization on large parameter
space. The architecture of ResNet is identical to that of
VGGNet which has 3x3 filters. The ResNet50 model we will
use is a pre-trained model trained on the dataset ImageNet.

III. PROPOSED MODEL

A. Dataset Pre-Processing and Feature Selection
In 2018, another dataset with in excess of 10,000 preparing

pictures and a separate test set of ordinary B-lymphoid
forerunners and threatening B-lymphoblasts has been
discharged as an online test open to the general population. In
2019, it was made available for general use [24]. The
enormous size of this new dataset permits to make improved
classifiers dependent on profound neural systems and
furthermore gives an increasingly dependable correlation of
contending approaches. In this work we present our way to
deal with the arrangement of sound and dangerous cells on the
referenced dataset utilizing a convolutional neural system. The
test dataset [17,18,19,20,21], from now on alluded to as
C_NMC dataset, contains pictures of white platelets taken
from 154 individual subjects, 84 of which show ALL. Table I
gives a nitty gritty breakdown of the quantity of subjects and

cells in preparing and test sets. The dataset is imbalanced with
about twice the same number of ALL cells as ordinary cells.
Each picture has a goal of 450 × 450 pixels and contains just a
solitary cell as a result of preprocessing steps applied by the
dataset creators: A mechanized division calculation has been
utilized to isolate the cells from the foundation. Every pixel
that was resolved not to be a piece of the cell is hued totally
dark. In any case, since the division calculation isn’t great,
there are examples where parts of the cell are coincidentally
shaded dark or pointless foundation is incorporated.
Moreover, the sum total of what pictures have been
preprocessed with a stain-standardization system that performs
white-adjusting and fixes blunders acquainted due with
varieties in the recoloring compound [17]. See Fig. 1 for
instance pictures from the dataset.

Table I shows Composition of the dataset. At the time of
writing the ground truth for the final test set is not yet
released, so some information is missing.

Despite the fact that the dataset contains in excess of
10,000 pictures, a few information enlargement strategies can
be applied to build the measure of preparing information
further and improve the preparation of our convolutional
neural system. Since tiny pictures are invariant to flips and
turns, we perform level and vertical flips with 50% likelihood
each and pivots with an edge from [0, 360] degrees picked
consistently at irregular. Since convolutional neural systems
with pooling tasks or walks bigger than one are not flawlessly
interpretation invariant, we additionally perform arbitrary
interpretations of up to 20% of each side-length in flat and
vertical ways. Also, the pictures are further focus trimmed to
100 × 100 pixels to diminish the dimensionality of the
information. This will for the most part make learning a
classifier quicker and simpler. Despite the fact that the editing
disposes of huge pieces of the picture, it has no impact on the
arrangement exactness in light of the fact that without a doubt,
not very many cells are really bigger than this harvest. Much
of the time, pictures that are not totally dark outside of the
harvest are division disappointments that incorporate pieces of
the foundation. The dataset is further trimmed, labeled and
pre-processed into CIFAR-10 format so that we can run our
CryptoNet model with ease. This part is explained further in
the coming section.

Fig 1. Images in the Training Set. (a) ALL cell (b) Normal cell (c), ALL

cell with Part of the Cell Cut Off Due to an Imperfect Segmentation (d)
Normal cell with Superfluous Background Due to an Imperfect Segmentation.

354 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

TABLE I. TRAIN AND TEST SUBJECTS AND THE CORRESPONDING
NUMBER OF SAMPLES

Dataset part ALL
subjects

Normal
Subjects

ALL
cells

Normal
cells

Train 47 26 7272 3389

Preliminary Test 13 15 1219 648

Final test 9 8 ? ?

B. Model Description
According to the workflow diagram illustrated previously

in Fig. 2, firstly the C_NMC Challenge 2019 dataset is
modified, pre-processed to CIFAR-10 format, split into
training and test and taken in numpy arrays accordingly. The
conversion of the dataset to CIFAR-10 format is essential
because previously CryptoNets model has been run on mainly
three datasets, namely, Cifar-10,MNIST and Caltech-101 as
mentioned earlier of which Cifar-10 is much more convenient
in dealing with real-life image classification and has an
organized “labeling” along with “classes” of images in binary
format, all of which are convenient in running the CryptoNets
application using the SEAL version 3.2 HE-wrapper in C and
.NET framework version 4.6.2 [16].

The conversion of the dataset to numpy array and using it
to train our own cancer predicting Convolutional Neural
Network, generating encryption parameters and conversion of
test samples to binary version of CIFAR-10 are done prior to
building the CryptoNets wrapper around it is done using code
of python version 3.5.

1) Dataset Conversion and taking into Array
- After the pre-processing has been done; our 10,000

training images are at first separated equally and placed
into two different folders with names: “Cancer” and
“Normal”.

- From each class sub folder, we are taking 80% of the
images for training and 20% of the images testing.
After placing the images, the class subfolders and the
images inside the folder are iterated accordingly. An
array is first created with dimensions of 32x32 images
and an RGB value of “3”. Thus, the shape of the array
would be (32,32,3). For each class subfolder, each
image in the subfolder is sliced to obtain the “R”, “G”
and “B” values which are then into that array that are
concatenated as iteration is done over each image. The
array is then appended.

- For the “index” value, a separate array is declared.
Each class folders in the input directory would
correspond to an image label. Thus the “index” value is
assigned to each class folder namely “0” for “Cancer”
and “1” for “Normal”. Each class folder is iterated for
images inside and the assigned “index” value is
appended into an array for each iterated image in the
subfolder.

- The above steps are repeated for another class
subfolder.

- The above steps are repeated for the rest 20% of the
training images. The test and train image arrays and the
corresponding test and train image labels are saved in
variables “X_train,Y_train” and “X_test, Y_test”.
Since the label numpy array is being iterated and
concatenated within the same loop as the same array,
one-hot encoding is not necessary here. But we are
doing it anyway just to be on the safe side. Thus,
numpy arrays are then one-hot encoded where input,
that is, list of a ground truth table where “0” is Cancer
and “1” is Normal. Thus, the image data taken in the
test and train arrays are in Cifar -10 format as with
each image taken in “X” the corresponding “Y” label is
inserted in the arrays accordingly.

Fig 2. Overview of Proposed Approach.

355 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

2) Model Details
Our Neural Network model has 14 layers in total of which

3 are “Convolutional”, 3 are “Activation”, 2 “Dense” layers, 1
“flatten” layer before the output layer and the rest are “Mean
Pooling” and “Dropout” layers.

The model is put into training for 100 epochs. Our own
model is set to training using a different set of “Activation”
layer functions twice. At first training, the first 2 “Activation”
layers are “Relu” layers and the last “Activation” layer being a
“Sigmoid” layer. The model is again trained this time with
“Square” function instead of “Relu” and “Softmax” instead of
“Sigmoid”.

Below are the descriptions of the “Activation” functions
mentioned.

Sigmoid: Take the value of one of the nodes in the feeding
layer and evaluate the function

z ↦1/ (1+exp (-z))

Rectified Linear: Take the value of one of the nodes in
the feeding layer and compute the function

z ↦max(0,z)

Square Activation Layer: This layer squares the value at
each input node.

Softmax Layer: This activation function forces the values
of output neurons to take values between zero and one, so they
can represent probability scores.

“Sigmoid” and “Relu” activation functions are non-
polynomials. The fix was to estimate these functions with low-
degree polynomials but here we will be using a different
method [15]. We tried to manipulate the trade-off between
possessing a non-linear transformation required by the
learning algorithm and also need to maintain the degree of the
polynomials minimal to make the parameters of homomorphic
encryption realistic. We opted to use the non-linear lowest
degree polynomial function, which is the Square function: sqr
(z):=z^2. It has been suggested by a theoretical study of a
problem regarding neural networks with polynomial activation
functions and dedicated the majority of their study to the
square activation function [22]. For the training stage, the
sigmoid activation function is used to get reasonable terms of
error when running the gradient descent algorithm. However,
in the encrypted world, we don’t have a reasonable way to
deal with the sigmoid. Fortunately, once we have our weights
set and would like to make predictions, we can just take it out.
This is because the neural network’s prediction is given by the
index of its output vector’s maximum value, and since the
sigmoid function is increasing monotonously, whether we
apply it or not will not affect the prediction.

The validation accuracies for both the times are recorded.
For the first time the accuracy is recorded to be 78% and the
second time it is recorded to be 80%.

3) Converting Weights and Biases to CryptoNets Format
Once the model is training the next step is to convert the

weights and bias vectors to a format that CryptoNets
recognizes. CryptoNets expects the weights to be in a CSV

file where the weights for each layer are in a separate line.
One challenge is to collapse the immediate previous or next
linear layers into a single linear layer. For each layer with
trainable weights (a dense layer or a convolution layer) a bias
file and a weights file should be generated. Once done for all
the relevant layers, we combine all the weights into a one file
and all the biases into a second file. Below is the code snippet
of how the “weights” and “biases” of the “Convolutional” and
“Dense” layers are obtained as a separate file. A total of 10
files (5 for weights and 5 for biases) are generated for the 3
“Convolutional” and 2 “Dense” layers. Values in the files are
now in single columns. Thus, each column in each file of all
the weights and biases for each layer is transposed into single
rows. All the “weights.csv” and “bias.csv” files are combined
to a single “all_weights.csv” and “all_bias.csv” file

4) Building and Testing the Application without
Encryption

The model is first tested without any encryption
parameters. Prior to that, the “test.tsv” file is created in
python. At first we a create “.bin” file similar to the binary
version of the CIFAR-10 dataset for our test samples of the
cancer dataset which had been trimmed, pre-processed and
put into folders with labels “0” and “1” in order to work with
CryptoNets like the Cifar-10 dataset. The test samples of the
cancer dataset are thus arranged accordingly. The “.bin” file
hence is a batch file created containing a binary version of the
3527 test samples arranged in bytes in the .bin file. The model
is first tested without any encryption parameters. Prior to that,
the “test.tsv” file is created in python. At first we a create
“.bin” file similar to the binary version of the CIFAR-10
dataset for our test samples of the cancer dataset which had
been trimmed, pre-processed and put into folders with labels
“0” and “1” in order to work with CryptoNets like the Cifar-
10 dataset. The test samples of the cancer dataset are thus
arranged accordingly. The “.bin” file hence is a batch file
created containing a binary version of the 3527 test samples
arranged in bytes in the .bin file. The “.bin” is then converted
to “.tsv” file where should have one line per image where each
line contains 1 + 33232 tab separated columns in which the
first column is the label and the other column are the RGB
values of a 32*32 image. The bytes in the “.bin” file is
converted to strings when converting to “tsv”. This is done
using C#.

The application is coded in C# using “Visual Studio 2019”
and was tested in the windows environment used .Net
framework version 4.6.2. This project depends on SEAL
version 3.2. Thus a “Nuget” package containing SEAL, is
added as a reference which is essential. The “all weights” and
“all biases” are passed in the “WeightsReader” function and
the parameters are loaded. The string file is passed into the
application. The project is then built in x64 architecture in
release mode.

Prior to “building” the project, the line of code:

var Factory = new
RawFactory((ulong)batchSize);

is added. The use of the “RawFactory” function is
explained further.

356 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

5) Selecting Encryption Parameters
The theoretical process and mathematical formulae to

calculate the correct parameters are given in the previous
section “Parameter Selection”. To allow correctness the
parameters should support large enough numbers to be
processed. Much like in traditional programming where a
program might fail if numbers are allocated with insufficient
space (short integers vs. long integers or floats vs. doubles),
the same thing may happen when using homomorphic
encryption. Thus, the first step is to determine the amount of
space needed. When running without encryption (using the
RawFactory), CryptoNets keys track of the size of number
processes in the line of code:

Console.WriteLine("Max computed value {0}
({1})", RawMatrix.Max,
Math.Log(RawMatrix.Max) / Math.Log(2));

We print the maximum number used (in absolute value)
and the number of bits this number required to encode this
number. To determine the number of bits needed, we add 1 to
this number since an additional bit is required to hold the sign
of the number.

To provide the required number of bits, a number of prime
numbers is provided such that the product of these numbers is
at least the required number of bits. For example, if 70 bits are
needed, we can use 2 prime numbers with 35 bits each.
Working with more prime numbers increases the running
time. However, smaller primes allow more computation to be
done before the noise budget exceeds.

Noise budget is another important parameter of
Homomorphic Encryption. In a nut-shell, a freshly encrypted
number has a certain amount of noise budget. Every operation
on such numbers (addition, multiplication, etc.) reduces this
budget. Once this budget equals zero, the decryption will fail
to provide correct results. The amount of noise budget
available is determined by several parameters, the most
important of them are the dimension used. (N) and the size of
the prime numbers used as plaintext-modulus. The dimension
N should be a power of two, the larger it is, the greater the
noise budget is. However, the larger N is, the slower the
program runs. Typical values for “N” range from 2^12 to
2^15. On the other hand, a greater noise budget is available
when the plaintext modulus is smaller. However, working
with smaller plaintext modulus requires using more plaintext
modulus to achieve the required number of bits and therefore
slows down the application. Selecting a good set of parameters
is currently done manually.

After determining the required number of bits, select a
value for N and the number of primes to be used. 3 parameters
are specified to generate the encryption parameters that are to
be passed in the application. The code in python 3 generates
these parameters in the code, 3 parameters are set where “bits”
is the minimal number of bits of each prime, “ndegree” is the
number of bits in N and “count” is the number of primes to
generate. The code above generates parameters of
957181001729 and 957181034497.These parameters are
passed into the application and the line of code for the
CryptoNets build:

 var Factory = new EncryptedSealBfvFactory(new ulong[]
{ 957181001729, 957181034497 }, 16384);

where 16384 is the value of “N”. Since 2 prime numbers
were demanded with 39.8 bits each, these parameters can
support 79.6 bits.

The following is an output for a prediction sample
generated after the CryptoNets model is run is as follows:

Fig 3. Output for a Prediction Sample.

Here in Fig. 3, label “0” is correctly predicted with an
accuracy of 77.934% at an inference time of 55.20 ms.

IV. EXPERIMENTS AND RESULT ANALYSIS
Each model mentioned earlier in the paper is trained on a

PC of GTX 750ti, 8gb Ram and a processor of core i5 4th
generation. Each model is trained for100 epochs except for
AlexNet and ResNet which are trained for approximately 20
epochs since they are better CNN models with more
convolutional layers and training them for more epochs may
result in “overfitting”. The training and validation accuracies
of the models are illustrated below:

From Fig. 4, the VGG-16 model is trained for 100 epochs.
The training accuracy increases at a decreasing rate whereas
the validation accuracy decreases but is very much fluctuating.
At 100 epochs approaching, both the accuracies tend to
become constant.

Fig 4. Training and Validation Accuracy for VGG16.

Fig 5. Training and Validation Accuracies for SVM.

357 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

It can be seen from Fig. 5, that the training accuracy is
always constant at 100% which is practically unrealistic in
terms of machine learning. Hence, it can be stated that this is
due to overfitting of the data and we should not take this result
into account.

The AlexNet model is trained for 20 epochs as depicted by
the graph in Fig. 6. After 15 epochs, we see that the training
accuracy is approximately 73% which is higher than the
steady increasing validation accuracy of 68%. The model thus
is not over-fitting. Both the model’s training and testing
accuracy increases at a decreasing rate.

The ResNet50 model is trained for 20 epochs. The graph
depicts the Validation and Training accuracies of the model
after 15 epochs Fig. 7. We see that the training accuracy is
approximately 72.50% which is higher than the steady
increasing validation accuracy of 67.80%. The model it seems
is not overfitting. The model’s training accuracy increases at a
decreasing rate but the validation accuracy remains constant.

Fig 6. AlexNet Validation (Orange) and Train Accuracy (Blue).

Fig 7. ResNet50 Validation (Orange) and Train Accuracy (Blue).

Fig 8. Validation Accuracy using Square and Softmax.

Fig 9. Validation Accuracy using Relu and Sigmoid.

Our own Neural Network model is defined as above and is
trained for 100 epochs. Like mentioned earlier our model is
first fitted using the “Relu” function in the first two
“Activation” layers and “Sigmoid” function in the last
“Activation” layer and the Neural Network is trained. The
same process is repeated using the “Square” function instead
of “Relu” and “Softmax” instead of “Sigmoid”. The graph of
the validation accuracy of our own model using different sets
of functions twice is illustrated in Fig. 8 and 9. The graphs
were obtained from Tensorflow. Although the models with
different functions are trained for different numbers of epochs,
they are trained with the same dataset. Thus, there won’t be
much of a difference in accuracy.

The model with the “Square” and “Softmax” activation
functions have higher test or validation accuracy of 80% than
the previous AlexNet and Resnet models when compared and
also has more validation accuracy than that when the other
two functions are used to build our own model (Fig. 9).

Table II shows the comparison between all the other
models.

From Table II, we see that SVM has the most validation
accuracy. It is surprising how an ML model had performed
better than the rest of the Neural Network models. This may
be due to “over-fitting” of the model after put into training
taking the output tensor of the convolutional base of VGG16
into the model for feature extraction. The VGG19 model also
works the same way except that there are differences in layers.
Since we have included the work of VGG19 in our workflow
diagram, our implementation on this will be for future works.

TABLE II. COMPARISON BETWEEN OUR MODELS

 AlexNet ResNet50 VGG16 SVM CNN (our
model)

Training
accuracy

72.90%

72.50%

68.20%

100%

82.6%

Validation
Accuracy

68%

67.80%

64.80%

86%

80%

Encrypted
Neural
Network
(Accuracy)

 77.934

358 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

V. CONCLUSION
From the earlier validation accuracies of our current model

using different “Activation” functions and taking the
validation accuracies of the models into account, the model
with the “Square” and “Softmax” activation functions have
higher test or validation accuracy of 80% than the previous
“AlexNet” and “ResNet” models when compared and also has
more validation accuracy than that when the other two
functions are used to build or own model. The prediction
accuracy of our encrypted CNN model (77.934%) is slightly
less than that of the un-encrypted CNN model (80%). This
may be due to the noise generation which should reduce if
correct encryption parameters are selected. In our future work,
after creating the CryptoNet model, the model with the data
will be stored in the cloud and hence the cloud can charge
money for the storage and will also be financially beneficial
for both the user and the supplier. The cloud system does not
have any key and hence will not be able to decrypt the data
and hence it won’t know about the data inside or be able to get
any data about the predicted data. This will provide a better
privacy and will also decrease the overall cost and since there
is only one private key. The secure predictions of Acute
Lymphoid Leukemia (ALL) can thus be carried out through
the cloud and the particular patient can access the
corresponding results with ease.

According to our literature survey and our previous
research, it can be seen that there are several works which
used several machine learning and Neural Network algorithms
in classification of Acute Lymphoid Leukemia, however our
approach was different and we were able to attain a high
accuracy while encrypting our dataset and using our CNN
model.

Moreover, the CryptoNet model that we implemented here
is currently based on The Brakerski/Fan-Vercauteren (BFV,
2012) scheme from the built in SEAL library. Our future
works would also include implementing the CryptoNet model
for real life applications using the faster Cheon-Kim-Kim-
Song (CKKS, 2016) scheme for better accuracy in the
CryptoNet model used. We are currently in the process of
developing the algorithm using the CKKS scheme to precisely
suit our CryptoNets model and its calculations. Also, we are
collecting ALL- Acute Lymphoid Leukemia images with
“patient id”, “age”, and “gender”. For now, we have 290
images which is more than the ALL-IDB dataset which is
frequently used in detection of blood cancer using ML and NN
models. Previous works done on ALL detection used ALL-
IDB dataset which has about 270 ALL blood cancer images.
As of now, we are using the CNM-C dataset of our model
which is significantly larger than the ALL-IDB dataset and
has about 10000 training images of which we are using 3257
images for testing. We are hopeful to successfully collect
about 2000 images, label it and run it on our own CryptoNets
model for secure prediction of Cancer.

Moreover, it will provide a comparatively less expensive
preliminary screening and will also ensure the proper privacy
of the user.

REFERENCES
[1] S. Shafique and S. Tehsin, “Acute lymphoblastic leukemia detection and

classification of its subtypes using pretrained deep convolutional neural
networks”, Technology in cancer research & treatment, vol. 17, pp. 1-
533, 2018.

[2] A. Rehman, N. Abbas, T. Saba, S. I. u. Rahman, Z. Mehmood, and H.
Ko-livand, “Classification of acute lymphoblastic leukemia using deep
learning”, Microscopy Research and Technique, vol. 81, no. 11, pp.
1310–1317, 2018.

[3] L. H. S. Vogado, R. D. M. S. Veras, A. R. Andrade, F. H. D.
De Araujo,R. R. V. e Silva, and K. R. T. Aires, “Diagnosing leukemia
in blood smear images using an ensemble of classifiers and pre-trained
convolutional neural networks”, 30th SIBGRAPI Conference on
Graphics, Patterns and Images (SIBGRAPI), IEEE, pp. 367–373, 2017.

[4] S. Mohapatra, D. Patra, and S. Satpathy, “An ensemble classifier system
for early diagnosis of acute lymphoblastic leukemia in blood
microscopic images”, Neural Computing and Applications, vol. 24, no.
7-8, pp. 1887–1904, 2014.

[5] H. T. Madhloom, S. A. Kareem, and H. Ariffin, “A robust feature
extraction and selection method for the recognition of lymphocytes
versus acute lymphoblastic leukemia”, International conference on
advanced computer science applications and technologies (ACSAT) ,
IEEE, pp. 330–335, 2012.

[6] L.Putzu and C. Di Ruberto, “White blood cells identification and
counting from microscopic blood image”, in Proceedings of World
Academy of Science, Engineering and Technology, World Academy of
Science, Engineering and Technology (WASET), p. 363, 2013.

[7] T.Graepel, K. Lauter, and M. Naehrig, “Ml confidential: Machine
learning in encrypted data”, in International Conference on Information
Security and Cryptology, Springer, pp. 1–21, 2012.

[8] J. Z. Zhan, L. Chang, and S. Matwin, “Privacy preserving k-nearest
neighbor classification.”, IJ Network Security, vol. 1, no. 1, pp. 46–51,
2005.

[9] Y. Qi and M. J. Atallah, “Efficient privacy-preserving k-nearest
neighbor search”, The 28th International Conference on Distributed
Computing Systems , IEEE, pp. 311–319, 2008.

[10] L. J. Aslett, P. M. Esperan ̧ca, and C. C. Holmes, “Encrypted statistical
machine learning: New privacy preserving methods”,arXiv preprint
arXiv:1508.068, 2015.

[11] L. J. Aslett, P. M. Esperan ça, and C. C. Holmes, “A review of
homomorphic encryption and software tools for encrypted statistical
machine learning”,arXiv preprint arXiv:1508.06574 , 2015.

[12] C. Gentry et al., “Fully homomorphic encryption using ideal lattices.”,
in Stoc, vol. 9, pp. 169–178, 2009.

[13] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic
encryption from ring-lwe and security for key dependent messages”, in
Annual cryptology conference, Springer, pp. 505–524, 2011.

[14] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully
homomorphic encryption without bootstrapping”,ACM Transactions on
Computation Theory (TOCT), vol. 6, no. 3, p. 13, 2014.

[15] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and J.
Werns-ing, “Manual for using homomorphic encryption for
bioinformatics”, 2015.

[16] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J.
Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy”, in International Conference on
Machine Learning,pp. 201–210, 2016.

[17] R. Gupta, P. Mallick, R. Duggal, A. Gupta, and O. Sharma,
“Stain color normalization and segmentation of plasma cells in
microscopic images as a prelude to development of computer assisted
automated disease diagnostic tool in multiple myeloma”,Clinical
Lymphoma, Myeloma and Leukemia, vol. 17,no. 1, e99, 2017.

[18] A. Gupta, R. Duggal, R. Gupta, L. Kumar, N. Thakkar, and D. Satpathy,
“Gcti-sn: Geometry-inspired chemical and tissue invariant stain
normalization of microscopic medical images”, 2018.

[19] R. Duggal, A. Gupta, R. Gupta, M. Wadhwa, and C. Ahuja,
“Overlapping cell nuclei segmentation in microscopic images using
deep belief networks”,in Proceedings of the Tenth Indian Conference

359 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

on Computer Vision, Graphics and Image Processing, ACM, p. 82.42,
2016.

[20] R. Duggal, A. Gupta, and R. Gupta, “Segmentation of
overlapping/touching white blood cell nuclei using artificial neural
networks”,CME Series on Hemato-Oncopathology, All India Institute of
Medical Sciences (AIIMS). New Delhi,India, 2016.

[21] R. Duggal, A. Gupta, R. Gupta, and P. Mallick, “Sd-layer: Stain
deconvolutional layer for cnns in medical microscopic imaging”, in
International Conference on Medical Image Computing and Computer-
Assisted Intervention,Springer, pp. 435–443,2017.

[22] R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the computational
efficiency of training neural networks”, in Advances in neural
information processing systems, pp. 855–863, 2014.

[23] Agrawal, R. and Srikant, R. Privacy-preserving data mining. ACM
SIGMOD Record, 29(2), pp.439-450, 2000.

[24] "Gupta, A., & Gupta, R. ALL Challenge dataset of ISBI 2019 [Data set].
The Cancer Imaging Archive.
https://doi.org/10.7937/tcia.2019.dc64i46r",2019.

360 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Background
	A. Literature Survey
	1) CNN Features: Shafique and Tehsin [1] used pre-trained AlexNet and fine-tuning to classify ALL subtypes on ALL-IDB augmented with 50 private images. Rehman et al. [2] used a pre-trained AlexNet and fine-tuning to classify ALL subtypes on a private datas�
	2) Handcrafted Features: Mohapatra et al. [4] and Madhloom et al. [5] use private dataset and classify using an ensemble of SVM, KNN, Naïve Bayes and a KNN classifier. Putzu and Ruberto [6] classify a number of features such as, compactness area and ratio �

	B. Homomorphic Encryption
	C. Encoding
	D. Encoding Large Numbers
	E. Plaintext Space and Homomorphic Operations
	F. Selecting Encryption Parameters
	G. Algorithms used
	H. Neural Network Models used
	1) VGG16 and 19: In VGG16 architecture, the images are passed through a sequence of convolutional layers which are of fixed size (224x224 RGB image). Thus, we use the default image size for this model in our dataset. In one of the configurations, it also �
	2) SVM: Supervised Vector Machine (SVM) is a supervised machine learning algorithm which divides the dataset into two classes and is mostly used for classification and regression purposes. In order to train a linear support vector machine, the machine lear�
	3) AlexNet: Classifying the image is a major problem and AlexNet fixes it by taking the input image of one of 1000 different groups and generally giving output of a vector of 1000 numbers. There are two groups here instead of 1000 so an output vector of on�
	4) ResNet50: Above is a pre-trained model of the ResNet50 architecture. The model has “50” layers with weights. Residual Networks or ResNet creates networks through models known as residual models and also known as the degradation problem. Although increas�

	III. Proposed Model
	A. Dataset Pre-Processing and Feature Selection
	B. Model Description
	1) Dataset Conversion and taking into Array
	2) Model Details
	3) Converting Weights and Biases to CryptoNets Format
	4) Building and Testing the Application without Encryption
	5) Selecting Encryption Parameters

	IV. Experiments and Result Analysis
	V. Conclusion
	References

