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Abstract—The main challenges of predictive analytics revolve 
around the handling of datasets, especially the disproportionate 
distribution of instances among classes in addition to classifier-
suitability issues. This unequal spread causes imbalance learning 
and severely obstructs prediction accuracy. In this paper, the 
performances of six classifiers and the effect of data balancing 
(DB) and formation approaches for predicting pregnancy 
outcome (PO) were investigated. Synthetic minority 
oversampling technique (SMOTE), resampling with and without 
replacement, were adopted for data imbalance treatment.  Six 
classifiers including random forest (RF) were evaluated on each 
resampled dataset with four test modes using Waikato 
Environment for Knowledge Analysis and R programming 
libraries. The results of analysis of variance performed 
separately using F-measure and root mean squared error showed 
that mean performance of classifiers across the datasets varied 
significantly (F=117.9; p=0.00) at 95% confidence interval, while 
turkey multi-comparison test revealed RF(mean=0.78) and 
SMOTE (mean=0.73) as having significantly different means. 
The RF model on SMOTE produced each PO class accuracy 
≥0.89, area under the curve ≥ 0.96 and coverage of 97.8% and 
was adjudged the best classifier-DB method pair. However, there 
was no significant difference (F=0.07, 0.01; p=1.000) in the mean 
performances of classifiers across test data modes respectively. It 
reveals that train/test data modes insignificantly affect 
classification accuracy, although there are noticeable variations 
in computational cost. The methodology significantly enhance the 
predictive accuracy of minority classes and confirms the 
importance of data-imbalance treatment, and the suitability of 
RF for PO classification. 

Keywords—Imbalance learning; pregnancy outcome; random 
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I. INTRODUCTION 
Complications among pregnant women occur frequently 

and are the obvious sources of maternal mortality (MM) in 
addition to poor or undesirable pregnancy outcomes (POs). The 
frequency of MM in developing economies is 50 to 100% 
higher than those witnessed in developed countries [1].   
Pregnancy complications serve as predictors of MMs and other 
POs (i.e. stillbirth, miscarriage, preterm birth, full term birth 
etc). Miscarriage, which is an unexpected vaginal flow of 
blood before twenty-eight (28) weeks of pregnancy, is one of 
the anomalies noticed among pregnant women especially in 
Nigeria and other developing countries.  Globally, around 
eighty percent (80%) of maternal deaths and about ninety eight 
percent (98%) of stillbirths have been linked to direct obstetric 
complications, like haemorrhage, sepsis, side effects of 

abortion, preeclampsia and eclampsia, and prolonged 
obstructed labour [1]. Childbirth complications, maternal 
infections in pregnancy, maternal syndromes (as pre-eclampsia 
and diabetes), foetal growth limit and inherited complications 
are the main reason for the occurrence of stillbirths.  Preterm 
births are associated with multiple pregnancy complications 
and occurs in 5 to 18% of pregnancies and is also the adjudged 
cause of infant morbidity and mortality [2]. 

Improvements in maternal health care systems largely 
depend on the availability of pieces of knowledge required for 
the understanding of the effect of pregnancy risks factors, and 
greatly impact on the future of obstetric health care while 
attempting to curb maternal morbidity. Although, a significant 
progress has been recorded in the development of statistical 
predictive models for PO classification, with better results than 
clinical tests, there is still room for enhancements in terms of 
accuracy, interpretability of results and sensitivity to adverse 
outcomes [3].  Feature ranking and selection, and machine 
learning (ML) approaches are progressively being utilized for 
obstetrics outcome classification. However, the suitability of an 
algorithm to a particular problem domain may affect its 
performance — accuracy and computational costs. In addition, 
data from real-world domains are hardly perfect. Some are 
characterized by uneven distribution of target classes (i.e. some 
examples of classes may appear more frequently than others) 
and poses a challenge to data mining (DM) algorithms, as the 
effectiveness of any DM algorithm is reasonably dependent on 
the sensitivities to the less frequent (minority) target class 
[4,5].  Generally, DM algorithms are by default tailored for 
datasets with equal target class distribution (i.e, they were 
designed with the assumption of an evenly distributed target 
class samples), therefore producing poor or below optimal 
predictive results for the minority target class(es) when 
imbalanced datasets are encountered. This is because the built 
model was skewed towards the majority class because of their 
dominance in the training dataset [4]. The consequences of the 
class imbalance manifest when the built model is deployed to 
classify new sets of examples. External influences like missing 
data, inconsistencies or other forms of noise impact greatly on 
the imbalanced data distribution, than those that are balanced 
or near balanced, and produces a noisy classification model [5, 
6]. 

The main focus of predictive modelling, especially in 
medical researches, is the prediction of the minority target class 
because of the vital and very useful pieces of knowledge it 
conveys, despite its paucity in the dataset. Hence the need to 
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adopt methodologies capable of overcoming the class bias 
issues. Authors in [5], [7] and [8] describe three methods for 
correcting data imbalance anomaly: (1) data level through 
resampling, (2) algorithm modification-based approaches, and 
(3) the cost-sensitive approach. The widely adopted resampling 
approaches (data level approaches) are based on oversampling 
and under sampling techniques. This paper aims at determining 
the best classifier-resampling pair for the prediction of PO 
using maternal risk factors as predictors.  The objectives of this 
work were twofold; firstly, to compare different resampling 
techniques based on their ability to address class imbalance and 
guarantee high accuracy of individual PO classification. 
Secondly, to assess and perform comparative analysis on six 
ML algorithms based on their ability to correctly classify PO 
instances, especially those of the minority class labels.  This is 
achieved by evaluating and comparing classifiers’ 
performances on resampled dataset for the purpose of 
predicting PO. The remainder of this paper is organized into 
four sections. Section II gives related works associated with 
classification methods, dataset imbalance and resampling 
methods. In Section III, the experimental workflow is 
described with emphasis on dataset description, pre-processing 
and resampling, and predictive modelling. The results of the 
best performing models are described in Section IV while 
conclusions and future directions are given in Section V. 

II. LITERATURE REVIEW 

A. Classification and Prediction Models 
Classification is a data mining (DM) technique that assigns 

objects to targeted clusters. Although there are many types of 
algorithms available in DM for solving medical problems, 
random forests (RF), k-nearest neighbor (KNN), support vector 
machine (SVM), decision tree (DT), naïve Bayes (NB), and 
multi-layer perceptron (MLP) are considered in this paper for 
pregnancy outcome prediction (POP).  SVM has been known 
to outperform many ML algorithms in many applications, in 
terms of prediction accuracy and computational cost [9].  
Reference [10] employed SVM-based decision support system 
for preterm birth risks prediction. The model predicted when 
the birth is likely to occur and the possible outcome for the 
babies. The authors pointed out that SVM provided an 
excellent intelligent and comprehensive inference mechanism 
capable of enhancing the healthcare provided to pregnant 
women who are at risk with a true positive rate (TPR) of 
83.9%, a false positive rate (FPR) of 0.27, and receiver 
operating characteristic (ROC) area of 0.79.  Reference [11] 
utilized SVM-based decision support system for monitoring the 
process of child delivery. The data collected include data on 
heart rate, blood pressure, pulse, uterine contraction, cervical 
opening and urine volume from pregnant mothers in Indonesia. 
A total of 40 records were collected based on the earlier listed 
indicators and tested on the proposed SVM model.  For all the 
selected indicators, an average accuracy of 97.5% was 
obtained. Author in [12], SVM was used to predict fetal 
distress using fetal heart rate parameters. A total of 909 data 
examples with nine parameters were collected and partitioned 
into 332 normal fetuses, and 577 diagnosis of various 
pathological conditions. Analysis of results showed that SVM 
was able to detect fetal distress with an accuracy of 83.0%. 

Author in [13] compared two ML algorithms namely; SVM 
(with linear and non-linear kernels and logistic regression 
model for the prediction of preterm births. Data for the analysis 
were collected from a local hospital in India and included age, 
number of times pregnant, obesity, diabetes mellitus and 
hypertension with a 10-fold cross validation (10-FCV) for each 
run. The authors concluded that SVM provided a more 
accurate prediction with accuracy of 86% compared to the 
logistic regression model. 

Author in [15] proposed a neonatal mortality prediction 
system using real time medical measurement data based on 
C4.5 model. The adopted indicators included mean blood 
pressure, serum, pH, immature/total neutrophil ratio, serum 
sodium, serum glucose, respiratory rate, heart rate, and pO2 
blood oxygen level.  The C4.5 was applied to two sets of data; 
the summary observations obtained during the initial 12 hours 
of admission into the neonatal intensive health-care unit by the 
Canadian Neonatal Network from multiple NICU, and second 
was the data collected from Children’s Hospital of Eastern 
Ontario (CHEO), Canada and consists of real time medical 
measurement from a single, out born-only NICU. Analysis of 
findings revealed that summary data for the first 48 hours of 
NICU admission provided the best results in the overall with 
mean sensitivity of 63% and mean specificity of 94%. The 
authors noted that the results obtained were very significant as 
the values exceeded the minimum requirement of their clinical 
partners. Author in [16] DT (C4.5) was applied for the 
prediction of levels of risk in pregnant women. According to 
the authors, the C4.5 was adopted because it is powerful, 
popular, and efficient and can handle the delicate nature of 
pregnancy problems. For the analysis, 600 pregnant women 
who went for monthly check-up in Bangalore district hospital 
were interviewed and two sets of data were obtained namely; 
unstandardized and standardized pregnancy datasets. The 
authors concluded that C4.5 classifier provided better results 
on standardized pregnancy dataset than unstandardized dataset 
with accuracy of 71.3% and 66.1% respectively. Author in [17] 
proposed a preterm birth prediction in symptomatic women 
using DT modelling for biomarkers. The purpose of their study 
was to use recursive partitioning to identify gestational age-
specific and threshold values for infectious and endocrine 
biomarkers of every pending delivery. The preterm birth 
predictors considered were white blood cell count, cortisol, 
maternal age and corticotrophin-releasing hormone. Analysis 
of results from the DT showed that white blood cell greater 
than 12,000/mL prior to gestation of 28 weeks and 
corticotrophin-releasing hormone beyond 28 weeks provided 
more accurate biomarkers for the prediction of preterm birth 
within the first 48 hours. 

Author in [18] utilized DT, NB, kNN, ANN and SVM for 
the prediction of high-risk pregnancy cases. The purpose of 
this study was the timely detection and provision of immediate 
intervention for these at-risk pregnancy women. In their 
analysis, DT outperformed other classifiers with accuracy of 
97.01%, followed by ANN with accuracy of 93.40%, other 
classifiers performed in the average with SVM giving the worst 
accuracy of 76.39% in this context. Author in [19] adopted 
some DM tools to predict neonatal jaundice caused by 
hyperbilirubinemia. The aim of the work was to accurately 
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identify neonates at risk of developing severe 
hyperbilirubinemia in order to offer early medical attention and 
treatment. Two hundred and twenty seven (227) healthy new-
born infants with gestational age ≥ 35 weeks were enrolled for 
the experiment while bilirubin meter was used for capturing 
bilirubin levels from the time of birth to hospital discharge. An 
input space of 72 variables were collected and pruned to 62 via 
pre-processing. An interval of 8 hours was allowed between 
measurements for two months (February to March 2011) in 
Obstetrics Department of the Centro Hospitalar Tâmega e 
Sousa, E.P.E., North Portugal. The classifiers selected for the 
analysis included J48, simple classification and regression 
trees, NB, MLP, sequential minimal optimization (SMO) 
algorithm and simple logistic available in Waikato 
Environment for Knowledge Analysis (WEKA). The authors 
pointed out that only three classifiers namely; NB, MLP and 
simple logistic correctly predicted neonatal hyperbilirubinemia. 

Author in [20] used nine ML tools for the prediction of 
fetal health status based on maternal clinical history. Ninety six 
(96) pregnant women between 18 and 41 years in Istanbul were 
involved for the experiment between January 17, 2015 and 
February 21, 2017 with 97 fetuses (95 single and 1 twins) and 
23 input features. A 10-FCV was employed for training and 
testing using nine ML algorithms available in Azure ML 
system. These included averaged perceptron, boosted DT, 
Bayes point machine, decision forest, decision jungle, logistic 
regression, ANN and SVM. Result showed that features such 
as fetal age, age of mother, blood stereotype, test results, 
number of abortus, number of delivery and any illnesses of 
mother regarding pregnancy were significant factors that 
influenced fetal health status. Out of the selected algorithms, 
the authors pointed out that boosted DT, decision forest and 
decision jungle produced the best results with accuracy of 
89.5%. In conclusion, the authors noted prediction systems are 
vital tools that could be employed by both clinicians and 
pregnant women to remotely predict fetal health status in an 
early stage. 

Author in [21] proposed a hybrid system consisting of 
bijective soft set and back propagation ANN for the prediction 
of neonatal jaundice. The neonatal jaundice dataset comprising 
808 instances with 16 attributes collected from January to 
December, 2007 in neonatal intensive care unit in Cairo, 
Egypt, was used for the experiment. The proposed system was 
compared with bijective soft set, back propagation ANN, MLP, 
decision table and NB and found to provide the best accuracy 
of 99.1%.  Author in [22] utilized MLP to predict risk of 
diabetes mellitus that causes several complications during 
pregnancy. The experimental setting consisted of 394 pregnant 
women aged 21 years and above, eight attributes and 10-FCV 
test mode. Results revealed that MLP attained a precision of 
0.74, Recall of 74.1%, F-measure (Fm) of 74.1%, and ROC 
area of 77.9%. The authors concluded that MLP is an excellent 
tool for predicting gestational diabetes mellitus. 

The work reported in [23] employed SVM-based decision 
support system for preterm birth risks prediction. The SVM 
model predicted the likely to time birth occur and the possible 
outcome of babies’ status. The results of the empirical 
experiment showcased SVM as the most performing in terms 
of intelligent and comprehensive inference mechanism 

regarding decision support for at risk pregnant women. The 
result produced true positive rate of 83.9%, a false positive rate 
of 0.27, and receiver operating characteristic (ROC) area of 
0.79.  Refs. [24-27] deployed decision support tools that would 
provide needed assistance to practitioners in ensuring safety of 
vaginal births after cesarean delivery for women of child 
bearing age and in the general management of PO. Refs. [28-
29] have demonstrated the effectiveness of decision support 
systems in handling associations between two or more obstetric 
and neonatal emergencies. A comparative study of machine 
learning tools and statistical models was reported in [30] for 
the prediction of postpartum hemorrhage (PH) risks during 
labour with the aim of minimizing maternal morbidity and 
mortality. The experiments on data from 12 sites showed that 
all the models adopted in the study produced satisfactory 
results, although the extreme gradient boosting model 
(XGboost) had the best ability to discriminate among PH 
followed by random forests (RF) and lasso regression model.  
The effectiveness of ML methods in mining of electronic 
health data in the domain of atrial fibrillation (AF) induced 
risks prediction was reported in [31]. Out of a total of 
2,252,219 women used for the study, 1,225,533 developed AF 
during a selected 6-month interval. Two hundred (200) widely 
used electronic health record features, (age and sex inclusive), 
and random oversampling approach implemented with a 
single-layer, fully connected ANN yielded the optimal 
prediction of six-month incident AF, with an area under the 
receiver operating characteristic curve (AUC) of 80.0% and an 
F1 score of 11.0%. The ANN model performed only slightly 
better than the basic logistic regression consisting of known 
clinical risk factors for AF, which had 79.4% and 79.0% as 
AUC and F1 value respectively. The results confirmed the 
effectiveness of machine learning algorithms in the prediction 
of AF in patients. The performance of Fuzzy approach, SVM, 
RF and Naïve Bayes (NB) for the prediction of 
cardiotocograph‑based labour stage classification from patients 
with uterine contraction pressure during ante‑partum and intra
‑partum period, the proposed algorithm tend to be efficient and 
effective in terms of visual estimation to incorporate automated 
decision support system, which will help to reduce high risk of 
hospitalized patients.  Author in [32] experimental results of 
the impact computational intelligence on the precision of 
cardiovascular medicine was presented. The method was 
applied to neonatal coarctation classification and prediction by 
analyzing genome-wide DNA methylation of newborn blood 
DNA using in 24 isolated, non-syndromic cases. Six machine 
learning algorithms including deep learning was used for 
detection. Deep learning achieved the optimal performance 
with an AUC and sensitivity of 95% and 98% specificity at 
95% confidence interval.  The related works considered were 
based on a single dataset test mode. The significance of this 
work is the assessment of each classifier on varying dataset test 
modes. 

B. Data Resampling Approaches 
Real-world modelling problems are characterized by 

uneven target class spread.  These domains include but not 
limited to fraud, medicine, spam, web, telecommunications, 
education and churn customers. In the medical domains like 
obstetrics, the frequency of desirable outcomes is usually 
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higher than the adverse ones, thereby resulting in a data 
imbalance problem (DIP). During model building, the 
infrequent target class(es) have limited representation in the 
built model because of paucity of training samples, and 
therefore lacks the classification and prediction competences 
regarding such class(es).  The degree of imbalance is measured 
by the imbalance ratio (IR) — the ratio of the frequency of 
observations in the majority class to the tally of instances in the 
minority class [33], [34]. The notational description of DIP is 
as follows [35].   Given a dataset Q with m examples and n 
attributes, where 𝑄 = {𝑥𝑖 ,𝑦𝑖}, 𝑖 = 1,2, … ,𝑚 ,  and where 
𝑥𝑖 ∈ 𝑋 is a data-point in the attribute set 𝑋 = {𝑏1, … , 𝑏𝑛}, and 
𝑦𝑖 ∈ 𝑌 is an element in the set of target classes 𝑌 = {1, … , 𝑐}.  
A subset of the desirable (majority class) instances 𝐺 ⊂X, and 
subsets of minority class (adverse instances) 𝑈 ⊂ 𝑋 , where 
|𝐺| < |𝑈|  . The preprocessing via resampling applied the 
maternal dataset has the goal of balancing the training and 
testing sets Q such that|𝐺| ≡ |𝑈|. 

Since DM algorithms were designed to learn from balanced 
class training representatives, they produce models that are less 
equipped for classification of instances in minority class(es) 
whereas a good coverage is recorded for majority class 
elements, when confronted with DIP[5], [8]. Although three 
approaches — resampling, algorithm modification and cost-
sensitive approaches, are recommended for imbalance anomaly 
correction [5], this paper investigated the effect of resampling 
methodologies on predictive performance of some selected DM 
classifiers. The rationale for choosing resample approach is due 
to its simplicity, cost efficiency and classifier independence. 
Resampling methods operate either by adding elements to the 
minority class (oversampling) or reducing representatives of 
the majority class (undersampling). It can also combine both 
oversampling and undersampling approaches [34],[36]. 
Synthetic minority oversampling technique (SMOTE), is an 
oversampling approach that increases the elements of the 
minor class(es) by generating simulated data items in the 
nearness of the existing minority class instances, with the goal 
of flattening IR. Author in [36] describes two key stages for 
SMOTE implementation:  (1)  Clustering data-points based on 
class labels and finding kNN using euclidean distance between 
every minority data-point with respect to all other minority 
data items. The k least distance examples are chosen as the 
nearest neighbours. Euclidean distance (D) between one object 
with the minority class label (x) and another sample with the 
minority class label (y) for all features is defined by Eq. 1 [36]. 
(2) New data-points are constructed by inserting points 
between any two elements belonging to the minority class. One 
of its kNN will be randomized to be candidates in new data 
construction process. Thereafter, original minor data element 
(x) and one chosen candidate (y) will be used to generate new 
values among x and y. The process is defined by Eq. 2 

𝐷𝑥,𝑦 = ��(𝑥𝑐 − 𝑦𝑐)2
𝑛

𝑐=1

                                                            (1) 

𝑁𝑐(𝑥,𝑦) = 𝑥𝑐 + 𝑡. (𝑥𝑐 − 𝑦𝑐) 𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 1                         (2) 

where Nc(x, y) is the new data-point, n is the number of 
attributes and r is a random number between 0 and 1. 

Undersampling approaches generate a subgroup of the 
original dataset by deleting instances with the majority class 
label. Random undersampling takes place when observations 
that are deleted are arbitrarily picked from majority class until 
the data set becomes balanced whereas informative 
undersampling adopts available rules to mark items for 
deletion [37]. However, undersampling techniques seemingly 
impact the multi-class imbalanced data classification 
performance negatively if useful instances in each majority 
class are eliminated [38],[39]. 

C. Classifier Evaluation Metrics 
In predictive analytics, it is an essential task to assess the 

quality of the predictions in order to guide in classifier 
modelling for the specified problem domain. A contingency or 
confusion matrix (CM) is usually applied for such purposes, 
providing not only classification errors and accuracy, but also 
parameters to compute other measures [8],[35].  CM is actually 
not a performance measure as such, but the basis for deriving 
other measures. The basic CM for a binary classifier (Table I) 
uses four indicators (true positive (TP), false positive (FP), true 
negative (TN) and false-negative (FN)) to measure the 
classification performance of both classes independently. 

TABLE I. CM FOR A BINOMIAL CLASSIFICATION PROBLEM 
 

 
Predicted 
Positive  Negative  

Actual 
Positive  TP FN 
Negative  FP TN 

 

TP is the number of positive PO instances that are correctly 
classified while FP is the number of negative PO instances 
misclassified as positive. FN represents the tally of positive PO 
instances misclassified as negative whereas the negative 
instances that are correctly classified are defined by TN. These 
parameters are represented as percentages; TPR, FPR, true 
negative rate (TNR), and false negative rate (FNR) and defined 
in Equations 3 – 6 respectively, as follows. 

𝑇𝑃𝑅(𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                 (3) 

𝑇𝑁𝑅 (𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
                                               (4) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
                                                                          (5) 

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
                                                                         (6) 

TPR (or sensitivity) gives a measure of the proportion of 
actual positive examples which are correctly classified while 
FPR is the proportion of actual negative examples of PO which 
are incorrectly identified as positive PO instances.  FNR is the 
percentage of positive PO instances which are wrongly 
classified as negative POs while the TNR is the fraction of 
actual negative PO examples which are correctly classified. 
Accuracy (ACC) has been the widely used metric [8], [40]. It 
quantifies the predictive capability of elements in the test 
dataset. Although, it is easy to implement and interpret, it 
ignores class distribution and frequently skews in the direction 
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of the majority class. It is therefore not suitable for DIP 
scenario [35].  Apart from ACC (Eq. 7), there are other 
derivable measures that consider class inequality in their design 
— precision, recall and Fm given in Equations 8 - 10 
respectively and are suitable when the positive class label is the 
key issue whereas the ROC and area under the curve (AUC) 
capture performances of minority and majority classes. 
Precision is a fraction of the predicted positive POs that are 
actually positive while Fm defines the harmonic mean between 
precision and sensitivity. The Fm is a more complete measure 
because it combines precision and recall. 

𝐴𝐶𝐶 =
𝑇𝑁 + 𝑇𝑃

𝐹𝑃 + 𝑇𝑁 + 𝑇𝑃 + 𝑇𝑃
                                                     (7) 

Precision = 𝑇𝑃
𝑇𝑃+𝐹𝑃

                                                                         (8) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                      (9) 

𝐹𝑚 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

                                               (10) 

The ROC curve is a graph of TPR or sensitivity on the y-
axis against FPR on the x-axis while the extreme values are 0 
and 1. The total area enclosed by the ROC curve is described 
by AUC value and is given in Eq. 11. An AUC value of 100% 
depicts a perfect classification, the one close to 100% depicts a 
very good performance, while values lower than 50% depicts 
performance by chance or luck. Another widely used metric of 
interest, is the root mean squared error (RMSE) which 
measures the deviation between the classifier’s output and 
actual values. It is defined in Eq. 12 [40]. 

𝐴𝑈𝐶 =
1 + 𝑇𝑃𝑅 − 𝐹𝑃𝑅 

2
                                                          (11) 

𝑅𝑀𝑆𝐸 = �
1
𝑚
�(𝑜𝑢𝑡𝑝𝑢𝑡𝑐(𝑖) − 𝑎𝑐𝑡𝑢𝑎𝑙𝑐(𝑖))2
𝑚

𝑖=1

                   (12) 

where 𝑜𝑢𝑡𝑝𝑢𝑡𝑐(𝑖)  denotes the prediction probability of 
instance i, which belongs to class c, and 𝑎𝑐𝑡𝑢𝑎𝑙𝑐(𝑖) depicts the 
actual probability. 

III. EXPERIMENTAL SETTINGS 

A. Dataset Source and Preprocessing 
Data was acquired from secondary health facilities in Uyo, 

Nigeria. A total of one thousand six hundred and thirty-two 
(1,632) records were obtained from archives of retrospective 
observations of pregnant women recorded while they enrolled 
for antenatal care, with an input feature space of forty-two (42) 
attributes in excluding the target variable. Some of the 
attributes include; average maternal age, number of children 
delivered, previous medical history, abortion, miscarriage, 
prematurity, previous illness, number of attendances to 
antenatal care, antenatal registration, and mode of delivery, 
amongst other features. Attribute cleaning, aggregation and 
elimination of attributes with only a single domain value was 
performed. The resultant dataset which had thirty-five (35) 
attributes were subjected to feature ranking [41] and selection 

via PCA in WEKA software. Attributes with eigenvalue (EV) 
scores greater than or equal to unity [42] were thirteen (13) and 
together accounted for 67.13% variation of the target feature.  
Table II gives a description of attribute description and rank. 

As shown in Table II, the average maternal blood pressure 
topped the list with EV of 3.86 (11.7% proportion of variance), 
followed by average maternal weight (EV = 2.77, proportion = 
8.39%). The thirteenth rank attribute, average ascorbic acid 
level accounted for 3.17% variation with eigenvalue score of 
1.05. 

TABLE II. RANK AND DESCRIPTION OF SIGNIFICANT ATTRIBUTES 

Rank 
Attrib 
-ute 

Description EV 
Prop-
ortion 
(%) 

Cum-
ulative 
(%) 

1 Maternal 
BP 

Average maternal 
blood pressure 3.86 11.69  11.69 

2 Maternal 
Weight  

Average maternal 
weight  2.77 8.39  

 
20.29 

3 Hemoglobin 
Level 

Average number of 
red blood cells 
count  

2.37 7.18  
 
27.47 

4  PCV level  Average Packed 
Cell Volume count  1.92 5.82  

 
33.29 

5 Pulse Rate 
Average number of 
heart beats per 
minute  

1.54 4.67  
 
37.67 

6 Mode of 
Delivery 

Delivery method 
vaginal delivery =1;  
caesarean section = 
2 

1.42 4.30  
 
 
42.26 

7 Malaria 
Frequency  

Number of times 
maternal malaria 
Diagnosis 

1.39 4.21  46.47 

 
8 

Hepatitis C 

Indicates history of 
hepatitis C disease; 
presence=1, 
absence=2 

1.26 3.82 
 
50.29 

 
 
9 

Diabetes 
Status 

Maternal Diabetic 
status 
non-diabetic=0 
type1=1; type2=2, 
others=3 

1.18 3.60  
 
53.89 

 
10 

Herbal 
Ingestion 

Use of herbal 
medicinal products 
during pregnancy 

1.15 3.48  
 
57.37 

 
 
11 

Respiratory 
disorder 

Maternal 
respiratory disease 
status; presence=1, 
absence=2 

1.12 3.39  
 
60.76 

 
12 

Age Maternal age during 
pregnancy 1.06 3.20  63.96 

 
13 

 
Ascorbic 
acid Level 

Average amount of 
ascorbic acid in the 
body during 
pregnancy 

1.05 3.17  67.13 

 
14 

 
Pregnancy 
outcome 

Maternal delivery 
outcome 
miscarriage = 0; 
pre-term =1; full-
term=2, stillbirth=3 

- - 
 
- 
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Table II also reveals that PO consists of four distinct 
classes of instances — miscarriage, preterm, term and stillbirth. 
Out of the 1,632 records, 198 (12.1%) examples belong to 
miscarriage class, 65 (4.0%) are representatives of preterm 
births while 114 instances (7.0%) were stillbirths. Term births 
had majority of observations with a frequency of 1255 (76.9%) 
(while observations of preterm, still-births and miscarriage 
classes together have a tally of 23.1%). The distribution of 
class examples depicts a severe imbalanced situation where 
term births is the majority class whereas the other three classes 
(miscarriage, preterm, term and stillbirth) are in the minority 
with high IR values as follows; miscarriage (6.3), preterm 
(19.1) and stillbirth (11.0). 
 

B. Resampling Methodology 
The final stage of preprocessing implements three data 

resampling techniques based on oversampling and 
undersampling — SMOTE, resample with replacement (RRW) 
and resample without replacement (RRN). The implementation 
was performed in WEKA version 3.8.4 using default values of 
“weka.filters.supervised.instance.resample” function and R 
library.   The distribution of class labels in the resultant 
datasets (Table III) depicts a substantial reduction in the 
severity of imbalance in the resampled datasets than the 
original datset (ORD). There is a uniform spread in the RRW 
method and a near balance distribution in the SMOTE dataset. 
The RRN approach randomly eliminated 847 (67.5%) 
instances of the majority PO class (term births) while other PO 
classes remained unchanged. The IR of the resampled dataset, 
given in Table IV and Fig. 1, reveals a maximum inter class IR 
deviation of 0.43 for SMOTE while zero (0) deviation is 
observed for RRW dataset. 

TABLE III. DISTRIBUTION OF TARGET LABELS DATASET 

Dataset 
Code 

Resample 
Method 

Misca-
rriage 
(%) 

Pret-
erm 
(%) 

Term 
(%) 

Still  
Birth  
(%) 

Total  

ORD Original data 198 
(12.1) 

65 
(4.0) 

1255 
(76.9) 

114  
(7.0) 

1632 

SMOTE 
Oversamp-
ling 
(SMOTE) 

1188 
(25.5) 

1300 
(27.9) 

1255 
(27.0) 

912 
 
(25.2) 

4655 

RRN 

Random 
resampling 
without 
replacement 

198 
(25.2) 

65 
(8.3) 

408 
(53.0) 

114 
(14.5) 

 
785 

RRW 

Random 
resample  
with 
replacement 

408 
(25) 

408 
(25) 

408 
(25) 

408 
(25) 

1632 

TABLE IV. ANALYSIS OF IR IN THE ORIGINAL AND RESAMPLED DATASETS 

Dataset 
Code  

Miscarriage 
(%) 

Preterm 
(%) 

Term 
(%) 

Still Birth (%) 

ORD 6.3 19.3 1 11.0 

SMOTE 1.09 1 1.03 1.43 

RRN 2.06 6.27 1 3.58 

RRW 1 1 1 1 

 
Fig. 1. Visualization of IR for ORD and Resampled Datasets 

The RRN dataset has a maximum IR value of 6.27 for 
preterm class which was hitherto 19.3, while stillbirth drifted to 
3.58 from 11.0. This produces a significant balance effect 
when compared with the ORD dataset. 

C. Predictive Modeling and Performance Comparison 
The input features correspond to the significant attributes 

selected during preprocessing with PCA while PO is the target 
variable. The predictive modeling was performed in WEKA 
3.8.4 platform using six classifiers; DT, SVM, KNN, RF, NB 
and MLP. The default WEKA parameters of each classifier 
were used for model building and testing processes as follows; 

• DT was implemented with C4.5 algorithm with 0.25 as 
the confidence level, the minimum number of item-sets 
per leaf was set to 2 while leaf pruning was utilized to 
get the final tree. 

• SVM was trained with John Platt's SMO, Polykernel 
function, an internal parameter of 1.0 for the exponent 
of each kernel function and a penalty parameter at 1.0. 
The model adopted a batch processing mode with a 
bag-size of 100. 

• kNN was invoked through Instance based learning (Ibl) 
function with one neighbour for returning the output 
class. Brute force search algorithm was used for nearest 
neighbours selection based on euclidean distance. The 
process was iterated with a batch processing size of 
100. 

• NB parameters were based on weight learning without 
kernel estimator and supervised discretization functions. 

• MLP used backpropagation to learn a multi-layered 
perceptron. It used a learning rate of 0.3 and momentum 
of 0.2. 

• RF constructed a forest of random trees with an 
unlimited depth and 100 as the maximum number of 
iterations. 

The models were built and executed with each resampled 
dataset by adopting four test modes— two based on k-fold 
cross validation while the other two relied on percentage 
splitting ratio namely; 10-FCV, 5-fold cross validation (5-
FCV), 80% split for training and 20% for testing (80-20) and 
70% split for training and 30% for testing (70-30). Since all the 
classes of PO are of interest in this work, the performances of 

Miscarriage Preterm Term Still Birth

ORD

25
20
15

0

499 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 6, 2020 

the classifiers were evaluated based on derivatives from ROC 
curve — sensitivity, specificity, recall, precision, AUC and 
other performance measures including kapa statistic (KS), 
RMSE and CM parameters [43]. Generally, for DIP treatment, 
measures such as Fm and AUC are recommended rather than 
traditional classification ACC. Since Fm, combines precision 
and recall (it eliminates the limitations of other single metric) 
and also imposes an enhanced inter-class performance 
equilibrium [44] while RMSE is widely used error measure for 
classifier evaluation, both measures are more suitable for real-
world applications and therefore adopted for the comparative 
analysis. The overall results (Table V) depict Fm and RMSE 
values across dataset and classifiers for all the test modes while 
weighted averages across dataset and classifiers are presented 
in Tables VI and VII. 

The results in Table V, show that the Fm  and RMSE values 
were moderately high for ORD dataset. However due to the 
imbalance effect, predictions based on the ORD dataset will be 
biased towards the term births class. The performance of RF on 
SMOTE dataset (Fm   ≥ 0.92) was the best followed by kNN in 
RRW (Fm ≥ 0.81) dataset. In terms of RMSE, the least error 
value was recorded by RF in SMOTE dataset (RMSE= 0.18) 
with 10-FCV test mode. The weighted averages in Tables VI 
and VII, which also appear graphically in Fig. 2 and 3, clearly 
exposed the performances of the resampled datasets across test 
modes and classifiers respectively. The average classification 
result from the resampled dataset is highest with SMOTE 
dataset (Fm = 0.73) in 10-FCV and 80-20 datasets while the 
least value (Fm = 0.53) was attributed to NB in 10-FCV and 80-
20 datasets. The performances in terms of both Fm and RMSE 
for RF and DT are almost the same as evidenced in overlapped 
trajectories in Fig. 3 and are the topmost performing classifiers 
while NB is the least performing algorithm. 

All Fm and RMSE differences across classifiers and 
datasets are significant with 95% confidence using a two-way 
analysis of variance (ANOVA) test in R programming 
environment. The interaction effect [41] between test modes, 
resampled datasets and classifiers provided evidence of the 
existence of a significant interaction between the effects of 
datasets and classifiers, (F=117.94; p=0.000), while interaction 
between test mode and other factors yielded no significant 
effect (F=0.07,0.01;p=1.000 respectively) at 95% confidence 
level. 

A similar result was observed with RMSE as the response 
variable — classifier and dataset interaction produced 
(F=17.24; p= 0.00) while interaction involving test modes 
produced insignificant effects (F = 0.17, 0.14; p= 0.00).  This 
implies that prediction accuracy varies significantly across 
classifiers and dataset only. Turkey’s multiple comparison test 
[45] showed that the difference between means of dataset pairs 
and classifier pairs are significantly different. The confidence 
intervals for SMOTE (mean = 0.73), RF (mean=0.78) are 
different from others in their respective groups with similar 
trend significantly observed with RMSE as the dependent 
variable. However, test modes do not affect the quality of 
predictions significantly. 

TABLE V. PERFORMANCE COMPARISON CLASSIFIERS ON RESAMPLED 
DATASETS AND TEST MODES 

C
la

ss
ifi

er
 

R
es

am
pl

in
g 

M
et

ho
d 

 

Test Modes 
5-FCV 10-FCV Train 

(70%) 
Train 
(80%) 

Fm RMS
E 

Fm RMS
E 

Fm RMS
E 

Fm RMS
E 

N
B

 

ORD .7
3 

.32 .7
3 

0.32 .7
0 

.33 .7
1 

.32 

SMOT
E 

.3
2 

.53 .2
9 

.53 .3
3 

.53 .3
0 

.54 

RRN .5
9 

.38 .6
0 

.38 .6
1 

.38 .5
9 

.41 

RRW .5
3 

.40 .5
2 

.41 .5
2 

.41 .5
2 

.41 

M
LP

 

ORD .7
7 

.26 .7
6 

.26 .8
0 

.30 .7
9 

.30 

SMOT
E 

.6
6 

.34 .6
6 

.34 .6
3 

.35 .6
7 

.33 

RRN .5
6 

.67 .5
8 

.36 .6
3 

.37 .5
5 

.38 

RRW .5
8 

.37 .6
0 

.37 .6
0 

.36 .5
8 

.36 

K
N

N
 

ORD .7
4 

.34 .7
4 

.34 .7
1 

.35 .6
9 

.36 

SMOT
E 

.8
9 

.23 .8
9 

.23 .8
8 

.24 .8
8 

.23 

RRN .5
2 

.47 .5
2 

.47 .5
3 

.47 .5
1 

.47 

RRW .8
2 

.27 .8
4 

.26 .8
1 

.29 .8
4 

.27 

SV
M

 

ORD .7
6 

.35 .7
5 

.35 .6
8 

.35 .6
9 

.36 

SMOT
E 

.7
1 

.40 .7
1 

.40 .7
2 

.39 .7
1 

.40 

RRN .6
3 

.38 .6
4 

.38 .6
6 

.38 .6
5 

.38 

RRW .5
0 

.40 .5
0 

.39 .4
9 

.40 .4
9 

.39 

R
F 

ORD .7
9 

.29 .7
9 

.29 .8
0 

.30 .7
6 

.33 

SMOT
E 

.9
4 

.20 .9
4 

.18 .9
2 

.20 .9
3 

.19 

RRN .5
6 

.39 .5
6 

.39 .5
9 

.39 .5
2 

.41 

RRW .8
4 

.24 .8
5 

.23 .8
2 

.26 .8
3 

.24 

D
T 

ORD .7
6 

.33 .8
1 

.26 .7
8 

.31 .8
0 

.30 

SMOT
E 

.8
8 

.23 .8
8 

.23 .8
6 

.25 .8
7 

.23 

RRN .5
8 

.36 .5
8 

.37 .7
0 

.35 .5
5 

.37 

RRW .7
9 

.29 .8
0 

.28 .7
3 

.32 .7
9 

.28 

TABLE VI. WEIGHTED AVERAGE OF FM AND RMSE ACROSS DATASETS 

Dataset 
 

5-FCV 10-FCV Train (70%) Train (80%) 
Fm RMSE Fm RMSE Fm RMSE Fm RMSE 

ORD 0.76 0.32 0.76 0.31 0.73 0.33 0.74 0.33 

SMOTE 0.73 0.32 0.73 0.32 0.72 0.33 0.73 0.32 

RRN 0.57 0.45 0.58 0.39 0.63 0.39 0.57 0.40 

RRW 0.68 0.35 0.65 0.34 0.63 0.36 0.64 0.34 
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TABLE VII. WEIGHTED AVERAGE ACROSS CLASSIFIERS 

Datase
t 

5-FCV 10-FCV Train 
 (70%) 

Train  
(80%) 

Fm RMS
E Fm RMS

E Fm RMS
E Fm RMS

E 

NB 0.5
4 0.41 0.5

3 0.41 0.5
4 0.41 0.5

3 0.42 

MLP 0.6
4 0.41 0.6

5 0.33 0.6
7 0.35 0.6

5 0.34 

KNN 0.7
4 0.33 0.7

5 0.33 0.7
3 0.34 0.7

3 0.33 

SVM 0.6
5 0.38 0.6

5 0.38 0.6
4 0.38 0.6

4 0.38 

RF 0.7
8 0.28 0.7

9 0.27 0.7
8 0.29 0.7

6 0.29 

DT 0.7
7 0.29 0.7

8 0.27 0.7
8 0.30 0.7

7 0.28 

0.8
0.6

0
Fm RMSE

5-FCV 10-FCV Train(70%) Train(80%)

ORD SMOTE RRN RRR

Fm RMSE Fm RMSE Fm RMSE

0.4
0.2

 
Fig. 2. Graph of Weighted Averages of Fm and RMSE Across Datasets. 

 
Fig. 3. Graph of Weighted Averages of Fm and RMSE Across Classifiers. 

IV. EVALUATION OF RF CLASSIFICATION AND DISCUSSION 
The results obtained from PO predictions on all classes 

using RF classifier and SMOTE dataset in all test mode are 
reported in Tables VIII and IX. 

TABLE VIII. RF CLASS PREDICTIONS WITH SMOTE ACROSS TEST MODES 

Test mode KS Coverage 
(%) 

ACC 
(%) 

Time 
(secs) 

5-FCV .89 98.1 92 1.57 

10-FCV .90 97.8 93.1   1.5 

Train (70%) .88 98.3 91.9 0.16 

Train (80%) .89 98.0 93.0 .07 

TABLE IX. RF CLASS PREDICTIONS EVALUATION WITH SMOTE 

Test 
mode Class TPR FPR PR RE FM AUC 

5-
FC

V
 Stillbirth .90 .02 .92 .90 .91 .97 

Term .87 .06 .84 .87 .86 .96 
Preterm .96 .01 .98 .96 .97 .99 
Miscarriage .92 .02 .93 .92 .93 .99 

10
-F

C
V

 Stillbirth .94 .02 .93 .91 .92 .96 
Term .89 .06 .85 .89 .87 .96 
Preterm .96 .01 .98 .96 .97 .99 
Miscarriage .93 .02 .94 .93 .94 .99 

Tr
ai

n 
(7

0%
) 

Stillbirth .88 .03 .88 .88 .88 .97 
Term .88 .07 .82 .88 .85 .95 
Preterm .96 .01 .98 .96 .97 1.0 
Miscarriage .91 .01 .96 .91 .93 .99 

Tr
ai

n 
(8

0%
) 

Stillbirth .86 .02 .92 .86 .89 .96 
Term .89 .07 .82 .89 .85 .95 
Preterm .96 .01 .97 .96 .96 .99 
Miscarriage .93 .013 .96 .93 .95 .99 

 
Fig. 4. Graph of RF 10-FCV Performance of PO Classes with SMOTE. 

Excellent coverage of instances is expressed in the results 
with (ACC ≥ 91.9% and coverage > 97.8%) across the test 
modes. The time used ranges from 0.07 seconds to 1.57 
seconds with 80-20 dataset split having the least time due to 
the number of testing instances used. Average class predictions 
were greater than 91.8% with 10-FCV having the highest 
average ACC of 93.1% although computationally expensive. 
As shown in Table IX, preterm class has the highest sensitivity 
of 96% in all test modes while the least score is observed for 
Term class in all test modes except 10-FCV (89%). A similar 
trend is observed for Fm where term birth earned the least score 
of 85% in both Train (70%) and Train (80%) test modes. All 
the performance measures reported in this work depict very 
good results therefore confirming the suitability of the 
approach.  

The summary of RF predictions using 10-FCV test mode 
— since it had the highest ACC and KS values (Table VIII) 
and least classification error (RMSE=0.18) as shown in 
Table V, is given in Fig. 4 while associated ROC curves for all 
the PO classes are presented in Fig. 5 to 8. 

The sensitivity, precision, recall and Fm for all classes are 
excellent (ACC ≥ 89). The RMSE=0.01 is least for preterm 
births in almost all the test modes while term-birth was the 
least performing class — RMSE = 0.07. The AUC for each 

0.1
0.0

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Fm

10-FCV

Fm Fm Fm

0

0.2

0.4

0.6

0.8

1

1.2

TPR FPR Precision Recall F-Measure AUC

Stillbirth Term Preterm Miscarriage
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class of PO (still birth = 96.36%, term birth = 95.84%, preterm 
= 99.12% and miscarriage = 98.76%) depict an enhancement in 
the results as compared to the ORD dataset. The sensitivity 
also recorded very good results in all categories of PO (still 
=94%, Term =89%, preterm =96%, miscarriage =93%) with 
insignificant FPR in each class (0.01≤ FPR ≥0.06). 

 
Fig. 5. ROC Curve for Still Birth Prediction. 

 

 
Fig. 6. ROC Curve for Term Birth Class Prediction. 

 
Fig. 7. ROC Curve for Preterm Birth Class Pprediction. 

 

 
Fig. 8. ROC Curve for Miscarriage Class Prediction. 

V. CONCLUSION 
The work reported in this paper implemented a comparative 

predictive analytics on six machine learning algorithms (RF, 
DT, NB, SVM, MLP, kNN) and three data imbalance 
treatment approaches (RRW,RRN, SMOTE) for the prediction 
of POs using four test dataset modes (10-FCV, 5-FCV, Train 
(70%), Train (80%)). The aim was to identify the best classifier 
for PO classification using pregnancy risk factors. The process 
commenced with data collection and preprocessing — data 
cleaning, integration, feature selection and imbalance 
treatment. Feature rank analysis identified 13 principal 
attributes based on EV scores from PCA, which the other 
analytic stages depended on. SMOTE, RRN and RRW datasets 
drastically reduced the IR when compared to ORD dataset and 
were used for classification and prediction by the six ML 
algorithms. The experiment was conducted on four different 
test modes while derivatives of CM and other standard metrics 
were used to evaluate the performances of the different 
classifiers. 

The results of ANOVA performed separately using Fm and 
RMSE showed that mean performance of classifiers across the 
datasets varied significantly (F=117.94; p=0.00) at 95% 
confidence interval, while turkey multi-comparison test 
revealed RF (mean=0.78) and SMOTE (mean=0.73) as having 
outstandingly significant means. In addition, RF model on 
SMOTE dataset produced ACC ≥ 0.89, AUC ≥ 0.96 and 
coverage of 97.8% for each PO class which depict a very good 
performance and was the best performing classifier. However, 
there was no significant difference (F=0.07, 0.01; p=1.000) in 
the mean performance of classifiers and datasets across test 
data modes respectively. The results significantly enhance the 
predictive accuracy of all the classes (especially adverse PO 
class) and confirmed the importance of data-imbalance 
treatment and the suitability of RF for PO classification. In 
terms of the adopted resampling methods, SMOTE produced 
the least IR among the various classes while RF and DT were 
the two most performing classifiers. This implies that 
oversampling is better than random unsdersampling 
methodology in the treatment of DIP maternal health domian. 
The results further proved that train/test data modes 
insignificantly affect classification accuracy in a balanced data 
setting, although there are noticeable variations in 
computational cost. The results of preprocessing identified 13 
pregnancy risk factors that significantly impact on PO, 
therefore provide the right information for the early diagnosis 
and treatment of the adverse POs thereby reducing MM. The 
performance of these models on binary classification problems 
and discovery of optimal classifiers’ parameters for improved 
performance are directions for future work. 
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