
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 7, 2020

553 | P a g e

www.ijacsa.thesai.org

Genetic Algorithms for the Multiple Travelling

Salesman Problem

Maha Ata Al-Furhud
1
, Zakir Hussain Ahmed

2

Department of Computer Science, College of Computer and Information Sciences, Jouf University, Al-Jouf, KSA
1

Department of Mathematics and Statistics, College of Science
2

Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, KSA
2

Department of Computer Science, College of Computer and Information Sciences
1, 2

Al Imam Mohammad Ibn Saud Islamic University, Riyadh, KSA
1, 2

Abstract—We consider the multiple travelling salesman

Problem (MTSP) that is one of the generalization of the

travelling salesman problem (TSP). For solving this problem

genetic algorithms (GAs) based on numerous crossover operators

have been described in the literature. Choosing effective

crossover operator can give effective GA. Generally, the

crossover operators that are developed for the TSP are applied to

the MTSP. We propose to develop simple and effective GAs using

sequential constructive crossover (SCX), adaptive SCX, greedy

SCX, reverse greedy SCX and comprehensive SCX for solving

the MTSP. The effectiveness of the crossover operators is

demonstrated by comparing among them and with another

crossover operator on some instances from TSPLIB of various

sizes with different number of salesmen. The experimental study

shows the promising results by the crossover operators,

especially CSCX, for the MTSP.

Keywords—Multiple travelling salesman problem; NP-hard;

genetic algorithm; sequential constructive crossover; adaptive;

greedy; comprehensive

I. INTRODUCTION

The travelling salesman problem (TSP) is one well-known
multidisciplinary problem in operations research and computer
science, which aims to find a least length (cost) Hamiltonian
cycle (circuit) in a network of cities. The problem can be
defined as: Given a set of cities (nodes) and the distances
among them. Starting from and finishing at single depot city, a
salesman should visit all remaining cities exactly once such
that the total travelling distance (cost) by the salesman is
minimized. The TSP has been extensively studied by several
researchers, and hence, several useful approaches have been
suggested to solve it. However, certain problems require
additional salesman, and thus, the multiple TSP (MTSP) is
defined to generalize the usual TSP. In MTSP, all salesmen
begin from and finish their journey at a single depot city. Each
city, except the depot city, should be visited by only one
salesman such that the total travelling distance (cost) by all
salesmen is minimized [1].

The MTSP can be formally defined as: Let there are m
salesmen placed at single depot in a n-city network, dij, (i, j=1,
2, ..., n) be the distance (cost) between the cities i and j, and
„city 1‟ be the „depot‟ with the remaining cities, 2, 3, …, n be
the intermediate cities. Each of the salesmen is to start from
the depot and after touring his set of cities should return to the

depot. The tours should have no common cities (except the
depot). The purpose is to obtain the optimum tour plan, i.e.,
the order of cities for each salesman, so that the total
distance(cost) of the tour is minimum. Clearly, if m = 1, the
problem becomes usual TSP.

The distance matrix may represent cost, time, etc.
Depending on the nature of the distance matrix, the TSPs are
divided into two types - asymmetric and symmetric. If dij =

dji, i, j, then it is symmetric; otherwise, asymmetric. For n-
city usual asymmetric TSP, there are (n-1)! possible number
of routes. So, for 5-city problem instance, there are 24
probable routes, and there are possibly 120 routes for 6-city
problem. However, for 10-city problem, there are 362,880
possible routes, which is huge. Thus, the computational work
is directly proportional to the problem size. It is very hard to
solve large sized instances, if not impossible. In addition, the
MTSP needs first to determine the cities allocated to each
salesman, then to order the optimal sequence of cities in each
salesman‟s tour, so, it is more complicated than TSP. Since,
the TSP is NP-hard, hence, MTSP is also NP-hard [2].

The MTSP is the most challenging optimization problem
in operations research and computer science paving the ways
to various scheduling and routing problems. The MTSP seems
to be more appropriate than the TSP for practical applications
and can be used to simulate many real-life applications. The
problem can be applied on job scheduling where multiple
parallel production lines are present [3]. Also, the vehicle
routing problem can be modelled as the MTSP. The MTSP
can be applied to another kind of TSP variant where a
salesman visits n cities over a period spanning m weeks but
returns to the home city during weekends [4]. The school bus
scheduling problem is an application of the MTSP that obtains
a bus loading pattern so that the total number of ways is
minimized, the total distance travelled by all buses is kept at
minimum, no bus is overloaded and the time required to
traverse any route does not surpass a maximum allowed policy
[5]. Crew scheduling is another application of the MTSP as
reported in [6], where investigated the problem to schedule
multiple photographers‟ groups to many schools. The
applications also include print press scheduling [4], interview
scheduling [7], mission planning [8], and the design of global
navigation satellite surveying system networks [9].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 7, 2020

554 | P a g e

www.ijacsa.thesai.org

The MTSP may be extended to many variations [1].
Number of depots may be single or multiple. Similarly, paths
(tours) may be closed or open. A closed path begins and ends
at a single depot, whereas an open path does not require
returning to the original depot. This paper considers the MTSP
that allows all salesmen to start from same depot and end their
tours at the original depot.

The MTSP is very difficult, and no any polynomial-time
algorithm is available for the problem. So, finding its optimal
solution is very tough, if not impossible. Hence, researchers
are looking for finding better heuristic solutions within an
acceptable computational time, rather, finding accurate
optimal solutions to the MTSP as well as other difficult
optimization problems. Therefore, one must go for heuristic
methods for solving the MTSP. Artificial neural network
(ANN) [10], simulated annealing (SA) [11], genetic algorithm
(GA) [12], particle swarm optimization (PSO) [13], ant colony
optimization (ACO) [14], etc. are a few such approaches.

In the recent years, several GAs have been developed
successfully for various difficult optimization problems, for
example the quadratic assignment problem [15], the minimum
spanning tree problem [16], and the TSP [17]. GAs first
developed by John Holland in 1970s that are based on
survival-of-the-fittest theory among different species created
by arbitrary variations in the chromosomes‟ structure in the
biology. The GA is very successful because it is simple,
flexible and easy to encode. A GA always begins with an
initial chromosome population that goes through mainly three
basic operations, namely selection, crossover and mutation, in
successive generations to produce better populations. In
selection method, chromosomes are probabilistically copied to
the next (iteration) generation. Crossover selects randomly
two parent chromosomes and mates them to form new
offspring chromosome(s). Mutation occasionally alters value
(gene) at a chromosome position. The crossover along with
selection is the most influential process in genetic search.
Mutation diverges the search space and defends genetic
material losses that may resulted from selection and crossover
operators. Hence, probability of implementing mutation
operator is fixed very low, while probability of implementing
crossover is fixed very high [18]. Out of three genetic
operators, crossover is the most vital operator, and hence,
several crossovers have been used in GAs for the MTSP
which are proposed for the TSP. Still, most crossover
operators do not lead good GA. Selecting good crossover can
lead to a successful GA. An experimental study reported on
six crossover operators in [19] showed that sequential
constructive crossover (SCX) is the best operator. Recently,
several modified versions of SCX, namely adaptive SCX
(ASCX) [17], greedy SCX (GSCX) [20], reverse greedy SCX
(RGSCX) [21] and comprehensive SCX (CSCX) [21], and
were suggested for the TSP which showed very good results
for the TSP.

In this study, we first reduce the MTSP to the TSP by
introducing some artificial depots and then develop different
simple GAs using five crossover operators - SCX, ASCX,
GSCX, RGSCX and CSCX for the MTSP. These crossover
operators are first applied manually on a pair of parents to
create offspring(s). The effectiveness of the crossover

operators is demonstrated by comparing among them and with
two-part chromosome crossover (TCX) [12], on some
instances from TSPLIB of various sizes with different number
of salesmen. The comparative study shows the effectiveness
of the crossover operators, especially CSCX, for the MTSP.

This paper is prearranged as follows. Section II reviews
the related research. Simple genetic algorithms for the MTSP
are described in Section III. The comparative study is
described in Section IV. Finally, conclusions and future
investigations are reported in Section V.

II. LITERATURE REVIEW

The MTSP is one of the most tough NP-hard problems.
The MTSP is not well-studied like the usual TSP. For a
detailed survey of MTSP and its variations, its practical
applications, solution approaches proposed so far, the reader is
referred to [1]. As this study proposes genetic algorithms
(GAs) for solving the problem, we give literature survey on
GAs, especially crossover operators used in different GAs for
the MTSP.

For solving the MTSP, the first GAs were proposed in [6].
For solving the MTSP that models hot rolling scheduling in
Shanghai Baoshan Iron and Steel Complex, GAs are proposed
in [22]. First, the problem is modeled as an MTSP, which is
then converted into usual TSP and finally, applied a modified
GA for finding solution of the problem.

In [23], grouping GAs have been proposed for the MTSP
that obtain better solutions. Additionally, another objective
function that minimizes the maximum (cost) distance travelled
by any single salesman is considered.

In addition, several crossover operators that were
developed for the TSP have been modified and applied to the
MTSP. The ordered crossover (OX) [24], cycle crossover
(CX) [25], partially mapped crossover (PMX) [26], edge
recombination crossover (ERX) [27], alternating edges
crossover (AEX) [27] and sequential constructive crossover
(SCX) [28] etc. are the most widely used crossover operators
for the TSP. However, these crossover operators cannot be
applied directly in GAs with the two-part chromosome
representation.

In [12], the two-part chromosome crossover (TCX) that
minimizes the size of search space of the MTSP is developed
to find solution for the problem. A comparative study has been
reported against three distinct crossover methods, namely
OX+A, PMX+A and CX+A, for bi-objective MTSP that
considers total distance and longest tour as objective functions
to be minimized. As reported, TCX finds better solutions than
other three crossover operators.

In [29], a modified two-part chromosome crossover is
proposed for the problem. As reported, the algorithm assigns
various number of cities for different salesman and obtained
good solutions.

In [4], a combined crossover operator, OX + A (OX
combined with an asexual crossover [30]) was proposed for
the two-part chromosome method. The OX and the asexual
crossover were employed for the 1st and 2nd parts

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 7, 2020

555 | P a g e

www.ijacsa.thesai.org

respectively of the chromosome. That is, each part of the
chromosome is considered and processed separately using two
different crossover methods. The theoretical properties of the
method is investigated as well as computational efficiency of
the method is reported. As reported, the newer technique
minimizes the search space and obtains better solutions.

In [19], one chromosome representation is used and
applied six crossover operators, OX, PMX, CX, ERX, AEX
and SCX for solving the MTSP. As reported, the SCX is the
best operator.

III. SIMPLE GENETIC ALGORITHMS FOR THE MTSP

A. Reduced Distance Matrix

The multiple-TSP can be transformed to the single-TSP by
assuming single salesman. Similarly, the problem with n cities
and m salesmen can be transformed into the usual TSP with
n+m-1 cities by adding m-1 artificial depots (namely, n+1, …,
n+m-1) [31]. Further, the VRP can be transformed to the
MTSP by deleting capacity constraints [32]. However, we
transform the MTSP to the TSP by adding m-1 artificial
depots. An example of a solution of the MTSP with n=8, m=2
is shown in Fig. 1(a), whereas its transformation to the TSP is
depicted in Fig. 1(b).

Further, the original distance matrix and the reduced
distance matrix with one artificial depot „city 9‟, for the same
problem are shown in Tables I and II, respectively.

In general, GAs are very successful heuristic methods in
obtaining solutions for the usual TSP and its different
variations. GAs do not assure that the obtained solutions are
optimal, but they usually obtain better and near optimal
solutions very quickly.

Fig. 1. Example of a Solution of the MTSP and its Transformation to the

TSP with Artificial city 9.

TABLE I. THE DISTANCE MATRIX

City 1 2 3 4 5 6 7 8

1 999 75 99 9 35 63 8 11

2 51 999 86 46 88 29 20 15

3 100 5 999 16 28 35 28 2

4 20 45 11 999 59 53 49 8

5 86 63 33 65 999 76 72 5

6 36 53 89 31 21 999 52 6

7 58 31 43 67 52 60 999 9

8 15 95 66 14 54 8 87 999

TABLE II. THE REDUCED DISTANCE MATRIX

City 1 2 3 4 5 6 7 8 9

1 999 75 99 9 35 63 8 11 999

2 51 999 86 46 88 29 20 15 51

3 100 5 999 16 28 35 28 2 100

4 20 45 11 999 59 53 49 8 20

5 86 63 33 65 999 76 72 5 86

6 36 53 89 31 21 999 52 6 36

7 58 31 43 67 52 60 999 9 58

8 15 95 66 14 54 8 87 999 15

9 999 75 99 9 35 63 8 11 999

B. Chromosome Representation

To use GA for any optimization problem, one should find
a method to represent solutions by legal chromosomes so that
crossover produces legal chromosomes. There are three
representation methods used for chromosome for the MTSP.
They are one chromosome method [22], two chromosomes
method [33], and two-part chromosome method [34-35].
Brown et al. [36] proposed another chromosome
representation method which is inspired from the chromosome
representation described in [34]. This representation consists
of two sections - main section and group section. The main
section of the chromosome consists of n real-valued genes and
group section consist of m integer-valued genes. The integer
part of the real-valued gene i in the main section indicates the
salesman assigned to city i, whereas fractional part determines
the order in which city i is visited. Group section simply
shows various groups exist in the solution in the way they
appear in the main section. This is a deviation from the
representation described in [34], where groups can appear in
any order in the group section. Singh and Baghel [23]
proposed another chromosome representation method which
represents chromosome as a set of m tours, i.e., there is no
sequence among the tours. As reported, GA using this
representation method is found to be superior.

We are going to choose one-chromosome with artificial
depots. An example of our chromosome for n = 8 with m = 2
is shown in Fig. 2.

1 4 3 2 9 6 7 5 8

Fig. 2. An Example of our One Chromosome for 8 Cities with 2 Salesmen.

In this chromosome, (1, 4, 3, 2, 9, 6, 7, 5, 8), there are
(8+2-1=) 9 genes including artificial depot city 9. This
chromosome represents the tour {1→4→3→ 2→9→6→
7→5→8→1}. That means, the 1

st
 salesman visited cities 1, 4,

3 and 2 sequentially, and the 2
nd

 salesman visited cities 6, 7, 5,
and 8 sequentially. The objective function is defined as total
distances travelled by the salesmen, which is
(9+11+5+51+63+52+52+5+15=) 263 for this tour.

A set of random of chromosomes is generated initially
(initial population) to start the genetic search process, which
are then evaluated and gone through a selection procedure for
creating mating pool. In GAs, the crossover operator executes
very important role. Generally, the crossover operators
developed for the usual TSP, are considered for its variations

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 7, 2020

556 | P a g e

www.ijacsa.thesai.org

also. Numerous crossover operators are developed for the
usual TSP and among them SCX, adaptive SCX, greedy SCX,
reverse greedy SCX and comprehensive SCX are considered
and discussed here.

C. Sequential Constructive Crossover Operator

In [28], the sequential constructive crossover (SCX)
operator is developed for the TSP, and then is updated in [37].
It creates only one offspring at a time that uses better edges
available in the parents. Moreover, it uses some better edges
which are not available in either of the parents. The main
characteristic of SCX is to sequentially examine the parents to
consider first legitimate (unvisited) cities seen after the current
city. If no legitimate city is seen in a parent, it examines from
the beginning of (wrapping around) the parent. It then
compares their distances from the present city to choose the
next city of the child. It is effectively applied to various
combinatorial optimization problems ([15], [38]-[41]). We
apply this crossover operator for the MTSP. It is seen that the
SCX may lead to infeasible chromosomes (tours). So, we
applied swap algorithm on the infeasible chromosomes to
make them feasible. The swap algorithm randomly selects two
cities and exchanges them. We now illustrate the SCX using
following parent chromosomes with 9-city and 2-salesman, P1:
(1, 5, 7, 2, 9, 4, 3, 6, 8) and P2: (1, 4, 6, 3, 7, 9, 2, 5, 8) with
total travel distances 265 and 420 respectively using the
reduced distance matrix given in Table II. This SCX operator
results single offspring from two parents.

City 1 is the 1
st
 gene, and after this, 5 and 4 are the

legitimate cities in P1 and P2 respectively with d15=35 and
d14=9. As d14<d15, city 4 is accepted. So, the incomplete
chromosome (offspring) becomes (1, 4).

After city 4, 3 and 6 are the legitimate cities in P1 and P2
respectively with d43=11 and d46=53. Since d43<d46, we accept
city 3. So, the incomplete chromosome becomes (1, 4, 3).

After city 3, 6 and 7 are the legitimate cities in P1 and P2
respectively with d36=35 and d37=28. Since d37<d36, we accept
city 7. So, the incomplete chromosome becomes (1, 4, 3, 7).

The legitimate cities after city 7 in P1 & P2 are 2 & 9
respectively with d72=31 and d79=58. Since d72<d79, we accept
city 2. So, the incomplete chromosome becomes (1, 4, 3, 7, 2).

The legitimate cities after city 2 in P1 & P2 are 9 & 5
respectively with d29=51 and d25=88. Since d29<d25, we accept
city 9. So, the incomplete chromosome becomes (1, 4, 3, 7, 2, 9).

The legitimate cities after city 9 in P1 & P2 are 6 & 5,
respectively with d96=63 and d95=35. Since d95<d96, we accept
city 5. So, the incomplete chromosome becomes (1, 4, 3, 7, 2,
9, 5). By following this way, one can create the complete
offspring as: (1, 4, 3, 7, 2, 9, 5, 8, 6) with distance 214, which
is better than both parents.

D. Adaptive Sequential Constructive Crossover Operator

In [17], a modified version of the SCX, named adaptive
SCX (ASCX), is developed for the TSP which creates only
one offspring adaptively, either in forward or backward or
mixed direction depending on next city‟s distance. Eight
neighbour (four from each parent) cities of any current city is

considered, of which best city in either direction is selected for
the offspring. Since number of genes in a chromosome is n,
'city 1' is fixed as 1

st
 and (n+1)

th
 (not shown in the

chromosomes) genes. We apply this crossover operator also.
For any infeasible chromosomes (tours), swap algorithm is
applied to make it feasible. This ASCX is explained using the
same example.

For our example, 'city 1' is fixed in 1
st
 and 10

th
 (not shown

in the chromosomes) places. In P1, after „city 1‟ (1
st
 gene),

legitimate cities in forward and backward (after wrapping
around) directions are 5 and 8, respectively; and in P2 they are
4 and 8, respectively, with their distances 35, 11, 9 and 11
respectively. Among them, the city 4 with distance 9 is the
cheapest. From the end, in P1, before „city 1‟ (10

th
 gene),

legitimate cities in backward and forward (after wrapping
around) directions are 8 and 5, respectively; and in P2 they are
8 and (after wrapping around) 4, respectively, with their
distances 15, 86, 15 and 20, respectively. Among them, the
city 8 with distance 15 is the cheapest. Then city 4 is added as
the 2

nd
 gene in the offspring, as it is cheaper between the

cheapest cities. So, the offspring becomes (1, 4, *, *, *, *, *, *,
*).

In P1, after „city 4‟ (2
nd

 gene), legitimate cities in forward
and backward directions are 3 and 9, respectively; and in P2
they are (after wrapping around) 6 and 8, respectively, with
their distances 11, 20, 53 and 8, respectively. Among them,
the city 8 with distance 8 is the cheapest. From the end, in P1,
before „city 1‟ (10

th
 gene), legitimate cities in backward and

forward (after wrapping around) directions are 8 and 5
respectively; and in P2 they are 8 and (after wrapping around)
6 respectively, with their distances 15, 86, 15 and 36
respectively. Among them, the city 8 with distance 15 is the
cheapest. Then city 8 is added as the 3

rd
 gene in the offspring,

as it is cheaper between the cheapest cities. So, the offspring
becomes (1, 4, 8, *, *, *, *, *, *).

In P1, after „city 8‟ (3
rd

 gene), legitimate cities in forward
(after wrapping around) and backward directions are 5 and 6
respectively; and in P2 they are (after wrapping around) 6 and
5, respectively, with their distances 54, 8, 8 and 54,
respectively. Among them, the city 6 with distance 8 is the
cheapest. From the end, in P1, before „city 1‟ (10

th
 gene),

legitimate cities in backward and forward (after wrapping
around) directions are 6 and 5 respectively; and in P2 they are
5 and (after wrapping around) 6, respectively, with their
distances 36, 86, 86 and 36 respectively. Among them, the city
6 with distance 36 is the cheapest. Then city 6 is added as the
4

th
 gene in the offspring, as it is cheaper between the cheapest

cities. So, the offspring becomes (1, 4, 8, 6, *, *, *, *, *).

In P1, after „city 6‟ (4
th

 gene), legitimate cities in forward
(after wrapping around) and backward directions are 5 and 3
respectively; and in P2 they are 3 and (after wrapping around)
5, respectively, with their distances 21, 89, 89 and 21
respectively. Among them, the city 5 with distance 21 is the
cheapest. From the end, in P1, before „city 1‟ (10

th
 gene),

legitimate cities in backward and forward (after wrapping
around) directions are 3 and 5, respectively; and in P2 they are
5 and (after wrapping around) 3, respectively, with their
distances 100, 86, 86 and 100, respectively. Among them, the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 7, 2020

557 | P a g e

www.ijacsa.thesai.org

city 5 with distance 86 is the cheapest. Then city 5 is added as
the 5

th
 gene in the offspring, as it is cheaper between the

cheapest cities. So, the offspring becomes (1, 4, 8, 6, *, *, *, *,
*). By following this way, one can create the complete
offspring as: (1, 4, 8, 6, 5, 3, 2, 9, 7) having distance 201,
which is better than both parents.

E. Greedy Sequential Constructive Crossover Operator

In [20], a greedy SCX (GSCX) is proposed for the TSP
that modified the SCX as follows. While searching the
„legitimate city' seen after the current city, if „legitimate city‟
is not found in a parent, then select the cheapest „legitimate
city‟ from the set of remaining legitimate cities and add it to
the current incomplete offspring chromosome. We apply this
crossover operator also. For any infeasible chromosomes
(tours), swap algorithm is applied to make it feasible. This
GSCX is explained using the same example.

As 'city 1' is the first gene, after this city, the legitimate
citys in P1 is 5 and in P2 is 4 having d15=35 and d14=9. As
d14<d15, the city 4 is added as the second gene in the current
offspring that leads the incomplete offspring to (1, 4).

City 1 is the 1
st
 gene, and after this, 5 and 4 are the

legitimate cities in P1 and P2 respectively with d15=35 and
d14=9. As d14<d15, city 4 is accepted. So, the incomplete
chromosome (offspring) becomes (1, 4).

After city 4, 3 and 6 are the legitimate cities in P1 and P2
respectively with d43=11 and d46=53. Since d43<d46, we accept
city 3. So, the incomplete chromosome becomes (1, 4, 3).

After city 3, 6 and 7 are the legitimate cities in P1 and P2
respectively with d36=35 and d37=28. Since d37<d36, we accept
city 7. So, the incomplete chromosome becomes (1, 4, 3, 7).

The legitimate cities after city 7 in P1 & P2 are 2 & 9
respectively with d72=31 and d79=58. Since d72<d79, we accept
city 2. So, the incomplete chromosome becomes (1, 4, 3, 7, 2).

The legitimate cities after city 2 in P1 & P2 are 9 & 5
respectively with d29=51 and d25=88. Since d29<d25, we accept
city 9. So, the incomplete chromosome becomes (1, 4, 3, 7,
2, 9).

The legitimate cities after city 9 in P1 & P2 are 6 & 5
respectively with d96=63 and d95=35. Since d95<d96, we accept
city 5. So, the incomplete chromosome becomes (1, 4, 3, 7, 2,
9, 5). By following this way, one can create the complete
offspring as: (1, 4, 3, 7, 2, 9, 5, 8, 6) with distance 214, which
is better than both parents.

F. Reverse Greedy Sequential Constructive Crossover

Operator

In [21], the GSCX is modified for the TSP by applying it
in reverse way and termed as reverse GSCX (RGSCX). It
constructs an offspring in reverse way, which is, from the last
city (gene) back to the first city (gene). We apply this
crossover operator also. For any infeasible chromosomes
(tours), swap algorithm is applied to make it feasible. This
RGSCX is explained using the same example.

The 'city 1' is the 10
th

 gene. In both P1 and P2, 9
th

 genes are
city 8, hence, it is added as the 9

th
 gene to the offspring as (8).

Before city 8, in P1 and P2, the legitimate cities are 6 and 5
respectively with d68=6 and d58=5. As d58<d68, the city 5 is
added at the 8

th
 place in the offspring as (5, 8).

Before city 5, legitimate city is not present in P1. So, the
cheapest legitimate city 6, among the remaining cities, is
added at the 7

th
 place in the offspring as (6, 5, 8).

Before city 6, in P1 and P2, the legitimate cities are 3 and 4
respectively with d36=35 and d46=53. As d36<d46, the city 3 is
added at the 6

th
 place in the offspring as (3, 6, 5, 8).

Before 'city 3', in both P1 and P2, legitimate cities are city
4, hence, it is added at the 5

th
 place in the offspring as (4, 3, 6,

5, 8).

Before city 4, legitimate city is not present in P2. So, the
cheapest legitimate city 9, among the remaining cities, is
added at the 4

th
 place in the offspring as (9, 4, 3, 6, 5, 8). By

following this way, one can create the complete offspring as:
(1, 7, 2, 9, 4, 3, 6, 5, 8) having distance 186, which is better
than both parents.

G. Comprehesive Sequential Constructive Crossover

Operator

The comprehensive SCX (CSCX) is proposed in [21] that
combines GSCX and RGSCX to create two offspring. We
apply this crossover operator also. By using same parents‟
example, the offspring (1, 4, 3, 7, 2, 9, 5, 8, 6) and (: (1, 7, 2,
9, 4, 3, 6, 5, 8) are created, with distances 214 and 186
respectively which are better both parents.

H. Swap Mutation Operator

The mutation operator generally selects a gene (position)
randomly in a chromosome and modifies its corresponding
allele (city). Since always weaker chromosomes in
consecutive generations are rejected in previous operators in
GA search, so, some better alleles could be lost permanently.
Hence the mutation is used for recovering them. Generally,
one can assume that mutation may help the other operators to
overcome local optima and obtain better solution. For our
simple GAs, the swap mutation operator [18] which randomly
chooses two cities, except artificial depots, and swaps them.

I. Structure of our Simple GAs

Our GA is simple that uses traditional genetic procedures
and operators without incorporating another heuristic method.
Starting with randomly created population, stochastic
remainder for selection, only one selected crossover and swap
mutation are used in our simple GAs (SGAs) as follows.

SGA ()

{ Initialize population of size Ps randomly;

 Evaluate the population;

 Generation = 0;

 While stopping criterion is not fulfilled

 { Generation = Generation + 1;

 Choose fitter chromosomes by stochastic remainder selection;

 Choose a crossover and perform crossover with probability Pc;

 Swap randomly chosen genes with probability Pm;

 Evaluate the population;

 }

}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 7, 2020

558 | P a g e

www.ijacsa.thesai.org

IV. COMPUTATIONAL EXPERIMENTS

Our proposed SGAs using five crossover operators - SCX,
ASCX, GSCX, RGSCX and CSCX, are encoded in Visual
C++. In order to demonstrate the efficiency of the algorithm,
computational experience is conducted on three benchmark
TSPLIB instances [42] with different number of salesmen and
run on a Laptop with i3-3217U CPU@1.80 GHz and 4 GB
RAM under MS Windows 7. The instances MTSP-51, MTSP-
100, and MTSP-150 used in [12] are considered for comparing
our five crossovers with state-of-the-art crossover TCX
reported in [12]. The success of GAs depends on proper
selection of the GA parameters-termination criterion,
crossover probability, population size, and mutation
probability. But there is no intelligent way to select these
parameters. One way to select them is by trial and error
method. We run our SGAs for different setting of parameters,
and selected parameters are listed in Table III.

We first compare our crossovers in SGAs with TCX [20]
for three Euclidean symmetric instances – MTSP-51 with
m=3, 5, 10; MTSP-100 with m=3, 5, 10, 20; and MTSP-150
with m=3, 5, 10, 20, 30. There is no restriction on the
maximum of cities that a salesman can visit, however, each
salesman should visit at least one city. The Table IV reports
best solution (BestSol), average solution (AvgSol) and
standard deviation (S.D) of the solution. For every instance,
the best result over six crossovers is marked by boldface.

TABLE III. PARAMETER FOR OUR PROPOSED SGAS

Parameters Values

Population size 50

Crossover probability 100%

Mutation probability 10%

Termination criterion 2000 generations

No. of runs for each instance 30 times

TABLE IV. RESULTS BY THE CROSSOVER OPERATORS FOR SYMMETRIC TSPLIB INSTANCES

Instance m Results TCX SCX ASCX GSCX RGSCX CSCX

MTSP-51

3

Best Sol 466 456 454 460 457 458

Avg. Sol 510 480 464 471 473 470

S.D. 24 9 5 6 6 4

5

Best Sol 499 488 486 481 477 490

Avg. Sol 536 496 494 490 495 501

S.D. 26 3 3 4 4 5

10

Best Sol 602 621 596 568 568 580

Avg. Sol 636 631 618 594 587 611

S.D. 17 6 6 12 9 9

MTSP-100

3

Best Sol 28943 25107 24443 24875 24063 22826

Avg. Sol 32708 25746 24750 25606 25507 23731

S.D. 2267 477 181 470 512 405

5

Best Sol 30941 26317 25900 25104 26037 24196

Avg. Sol 34179 27250 26574 26798 27025 25338

S.D. 2006 545 329 619 579 437

10

Best Sol 32802 31149 30425 29721 29181 29181

Avg. Sol 36921 32422 31246 31230 31227 30256

S.D. 1964 565 439 702 874 541

20

Best Sol 44112 44543 42407 42266 42665 41465

Avg. Sol 46976 45989 44936 44032 44619 43004

S.D. 1773 814 1268 898 1196 730

MTSP-150

3

Best Sol 51126 33404 30360 30824 30661 29390

Avg. Sol 55851 34974 31627 32180 32260 30921

S.D. 2588 930 676 531 537 553

5

Best Sol 51627 34531 31151 32281 32459 30308

Avg. Sol 61596 35844 32660 33403 33397 31820

S.D. 4759 680 607 531 458 592

10

Best Sol 54473 36514 35510 36576 35733 35802

Avg. Sol 61360 38344 36933 37702 37150 37173

S.D. 3888 643 592 638 835 643

20

Best Sol 62456 48354 45564 46603 47096 44697

Avg. Sol 69701 49450 47257 48560 49162 46609

S.D. 4340 616 711 883 1064 796

30

Best Sol 76481 63624 62565 61579 60758 58757

Avg. Sol 84008 65812 65417 63760 64926 61360

S.D. 5285 1389 2335 1198 1888 911

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 7, 2020

559 | P a g e

www.ijacsa.thesai.org

Fig. 3. Average Solution for the MTSP-51, MTSP-100 and MTSP-150 for different Crossover Operators.

The operators TCX and SCX could not find either lowest
best or average solution for any instance. The operator GSCX
finds lowest best solution for MTSP-51 with m=10 and lowest
average solution for MTSP-51 with m=5; ASCX obtains
lowest best and average solutions for MTSP-51 with m=3 and
MTSP-150 with m=10; RGSCX obtains lowest best solutions
for MTSP-51 with m=5,10, and MTSP-100 with m=10, and
lowest average solution for MTSP-51 with m=10; and CSCX
finds lowest best and average solutions for MTSP-100 with
m=3, 5, 10, 20, and MTSP-150 with m=3, 5, 20, 30. From
Table IV, it can be seen that CSCX gives more efficient
results for most instances, and hence found to be very
effective crossover operator. The results are showed in Fig. 3
that further demonstrates the effectiveness of the CSCX. From
this study, it is concluded that CSCX is placed in 1

st
 rank,

ASCX in 2
nd

 rank and TCX in the worst rank. To confirm
these findings, statistical analysis is also carried out and found
same results.

V. CONCLUSION AND FUTURE WORKS

In this study we considered the multiple travelling
salesman problem (MTSP) which is a generalization of the
travelling salesman problem (TSP). To solve this problem
numerous genetic algorithms (GAs) based on numerous
crossover operator have been reported in the literature.
Choosing effective crossover operator can lead to effective
GA. Generally, crossover operators that are proposed for the
TSP are used for the MTSP also. We developed five simple
GAs using sequential constructive crossover (SCX), adaptive
SCX (ASCX), greedy SCX (GSCX), reverse greedy SCX
(RGSCX) and comprehensive SCX (CSCX) for solving the
MTSP. First, these crossover operators are applied manually
on parent chromosomes to create offspring(s) and then
encoded in Visual C++. The effectiveness of the crossover
operators is demonstrated by comparing among them and with
another crossover operator (TCX) on some instances from
TSPLIB of various sizes with different number of salesmen.
The experimental results show promising results by the
crossover operator CSCX for the MTSP.

In this present study, we aimed to develop simple GAs
using five crossovers and then compare among them and with
a state-of-art crossover operator. We did not aim to develop
improved and high quality GA. Though CSCX finds very
good solutions, yet it gets trapped in local minimums in the
early generations, and for small-sized instances, it does not

show promising results. Therefore, effective local search and
immigration methods could be combined to hybridize the
simple GA for finding better solutions to more instances that
is under our study.

ACKNOWLEDGMENT

The authors are very much thankful to the honourable
anonymous reviewers for their constructive comments and
suggestions which helped the authors to improve this paper.
This research was funded by King Abdulaziz City for Science
and Technology (KACST), Saudi Arabia, vide grant no. 1-17-
00-008-0002. The authors are very much thankful to the
KACST for its financial support.

REFERENCES

[1] T. Bektas, “The multiple traveling salesman problem: An overview of
formulations and solution procedures,” Omega, vol. 34, pp. 209–219,
2006.

[2] M.R. Garey, and D.S. Johnson, “A guide to the theory of np-
completeness, Computers and intractability,” W. H. Freeman & Co.,
New York, NY, USA, 1990.

[3] A.E. Carter, and C.T. Ragsdale, “Scheduling pre-printed newspaper
advertising inserts using genetic algorithms,” Omega, vol. 30, pp. 415–
421, 2002.

[4] A.E. Carter, and C.T. Ragsdale, “A new approach to solving the
multiple traveling salesperson problem using genetic algorithms,”
European Journal of Operational Research, vol. 175, pp. 245–257, 2006.

[5] R.D. Angel, W.L. Caudle, R. Noonan, and A. Whinston, “Computer
assisted school bus scheduling,” Management Science, vol. 18, pp. 279–
288, 1972.

[6] T. Zhang, W.A. Gruver, and M.H. Smith, “Team scheduling by genetic
search,” In Proceedings of the second international conference on
intelligent processing and manufacturing of materials, 1999, vol. 2, pp.
839–844.

[7] K.C. Gilbert, and R.B. Hofstra, “A new multiperiod multiple traveling
salesman problem with heuristic and application to a scheduling
problem,” Decision Sciences, vol. 23, pp. 250–259, 1992.

[8] B. Brummit, and A. Stentz, “Dynamic mission planning for multiple
mobile robots,” In Proceedings of the IEEE international conference on
robotics and automation, April 1996.

[9] H.A. Saleh, and R. Chelouah, “The design of the global navigation
satellite system surveying networks using genetic algorithms,”
Engineering Applications of Artificial Intelligence, vol. 17, pp. 111–
122, 2004.

[10] E. Wacholder, J. Han, and R.C. Mann, “A neural network algorithm for
the multiple traveling salesmen problem,” Biology in Cybernetics, vol.
61, pp. 11–19, 1989.

[11] C. Song, K. Lee, and W.D. Lee, “Extended simulated annealing for
augmented TSP and multi-salesmen TSP,” In Proceedings of the

0

2

4

6

8

3 5 10

A
v
e
r
a

g
e
 T

o
ta

l
D

is
ta

n
c
e
s

x
 1

0
0

No. of Salesmen

MTSP-51

TCX SCX ASCX
GSCX RGSCX CSCX

0

20

40

60

3 5 10 20A
v
e
r
a

g
e
 T

o
ta

l
D

is
ta

n
c
e
s

x
 1

0
0

0

No. of Salesmen

MTSP-100

TCX SCX ASCX
GSCX RGSCX CSCX

0

5

10

3 5 10 20 30

A
v
e
r
a

g
e
 T

o
ta

l
D

is
ta

n
c
e
s

x
 1

0
0

0
0

No. of Salesmen

MTSP-150

TCX SCX ASCX
GSCX RGSCX CSCX

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 7, 2020

560 | P a g e

www.ijacsa.thesai.org

international joint conference on neural networks, 2003, vol. 3, pp.
2340–2343.

[12] S. Yuan, B. Skinner, S. Huang, and D. Liu, “A new crossover approach
for solving the multiple travelling salesmen problem using genetic
algorithms,” European Journal of Operational Research, vol. 228, pp.
72–82, 2013.

[13] X.S. Yan, C. Zhang, and W. Luo, “Solve traveling salesman problem
using particle swarm optimization algorithm,” International Journal of
Computer Science, vol. 9(6), pp. 264–271, 2012.

[14] G. Singh, and R. Mehta, “Implementation of travelling salesman
problem using ant colony optimization,” Journal of Engineering
Research and Application, vol. 6(3), pp. 385–389, 2014.

[15] Z.H. Ahmed, “A simple genetic algorithm using sequential constructive
crossover for the quadratic assignment problem,” Journal of Scientific &
Industrial Research, vol. 73(12), pp. 763-766, 2014.

[16] K. Singh, and S. Sundar, “A hybrid genetic algorithm for the degree-
constrained minimum spanning tree problem,” Soft Computing, vol. 24,
pp. 2169–2186, 2020.

[17] Z.H. Ahmed, “Adaptive sequential constructive crossover operator in a
genetic algorithm for solving the traveling salesman problem,”
International Journal of Advanced Computer Science and Applications
(IJACSA), vol. 11(2), pp. 593-605, 2020.

[18] D.E. Goldberg, “Genetic algorithms in search, optimization and machine
learning,” Addison-Wesley, Reading, MA, 1989.

[19] M.A. Al-Omeer, and Z.H. Ahmed, “Comparative study of crossover
operators for the MTSP,” In proceedings of 2019 International
Conference on Computer and Information Sciences (ICCIS), Sakaka,
Saudi Arabia, 2019, pp. 1-6.

[20] Z.H. Ahmed, “Solving the Traveling Salesman Problem using Greedy
Sequential Constructive Crossover in a Genetic Algorithm,” IJCSNS
International Journal of Computer Science and Network Security, vol.
20(2), pp. 99-112, 2020.

[21] Z.H. Ahmed, “Genetic algorithm with comprehensive sequential
constructive crossover for the travelling salesman problem,”
International Journal of Advanced Computer Science and Applications
(IJACSA), vol. 11(5), pp. 245-254, 2020.

[22] L. Tang, J. Liu, A. Rong, and Z. Yang, “A multiple traveling salesman
problem model for hot rolling scheduling in Shangai Baoshan Iron &
Steel Complex,” European Journal of Operational Research, vol. 124,
pp. 267–282, 2000.

[23] A. Singh, and A.S. Baghel, “A new grouping genetic algorithm
approach to the multiple traveling salesperson problem,” Soft
Computing, vol. 13, pp. 95-101, 2009.

[24] L. Davis, “Job-shop scheduling with genetic algorithms,” In Proceedings
of an International Conference on Genetic Algorithms and their
Applications, pp. 136-140, 1985.

[25] I.M. Oliver, D.J. Smith, and J.R.C. Holland, “A study of permutation
crossover operators on the travelling salesman problem,” In Genetic
Algorithms and Their Applications: Proceedings of the 2nd International
Conference on Genetic Algorithms, J.J. Grefenstette, Ed. Lawrence
Erlbaum Associates, Hilladale, NJ, 1987.

[26] D.E. Goldberg, and R. Lingle, “Alleles, loci and the travelling salesman
problem,” In Genetic Algorithms and their Applications: Proceedings of
the 1st International Conference on Genetic Algorithms, J.J.
Grefenstette, Ed. Lawrence Erlbaum Associates, Hilladale, NJ, 1985.

[27] J. Grefenstette, R. Gopal, B. Rosmaita, and D. Gucht, “Genetic
algorithms for the traveling salesman problem,” In Genetic Algorithms
and Their Applications: Proceedings of the 1st International Conference
on Genetic Algorithms, J.J. Grefenstette, Ed. Lawrence Erlbaum
Associates, Hilladale, NJ, pp. 160–168, 1985.

[28] Z.H. Ahmed, “Genetic algorithm for the traveling salesman problem
using sequential constructive crossover operator,” International Journal
of Biometrics & Bioinformatics, vol. 3(6), pp. 96-105, 2010.

[29] R. Kaliaperumal, A. Ramalingam, and J. Sripriya, “A modified two part
chromosome crossover for solving MTSP using genetic algorithms.” In
Proceedings of ICARCSET, New York, 2015, pp. 1–4.

[30] S. Chatterjee, C. Carrera, and L. Lynch, “Genetic algorithms and
traveling salesperson problem,” European Journal of Operational
Research, vol. 93, pp. 490–510, 1996.

[31] J.A. Sveska, and V.E. Huckfeldt, “Computational experience with an m-
salesman traveling salesman algorithm,” Management Science, vol. 19,
pp. 790-799, 1973.

[32] H.C. Lau, T.M. Chan, and W.T. Tsui, “Application of genetic
algorithms to solve the multi-depot vehicle routing problem,” IEEE
Transaction Automatic Science and Engineering, vol. 7, pp. 383–392,
2010.

[33] C. Malmborg, “A genetic algorithm for service level based vehicle
scheduling,” European Journal of Operational Research, vol. 93(1), pp.
121–134, 1996.

[34] E. Falkenauer, “Genetic algorithms and grouping problems,” John Wiley
& Sons, New York, 1998.

[35] S. Ross, “Introduction to Probability Models,” Macmillian, New York,
NY, 1984.

[36] E.C. Brown, C.T. Ragsdale, and A.E. Carter, “A grouping genetic
algorithm for the multiple traveling salesperson problem,” International
Journal of Information Technology, vol. 6, pp. 333–347, 2007.

[37] Z.H. Ahmed, “Improved genetic algorithms for the traveling salesman
problem,” International Journal of Process Management and
Benchmarking, vol. 4(1), pp. 109-124, 2014.

[38] Z.H. Ahmed, “A hybrid genetic algorithm for the bottleneck traveling
salesman problem,” ACM Transactions on Embedded Computing
Systems, vol. 12(1), Article No. 9, 2013.

[39] Z.H. Ahmed, “An experimental study of a hybrid genetic algorithm for
the maximum travelling salesman problem,” Mathematical Sciences,
vol. 7(1), pp. 1-7, 2013.

[40] Z.H. Ahmed, “The ordered clustered travelling salesman problem: A
hybrid genetic algorithm,” The Scientific World Journal, vol. 2014,
2014.

[41] Z.H. Ahmed, “A comparative study of eight crossover operators for the
maximum scatter travelling salesman,” International Journal of
Advanced Computer Science and Applications (IJACSA), vol. 11(6), pp.
317-329, 2020.

[42] Reinelt, G. 1991, TSPLIB, http://comopt.ifi.uni-heidelberg.de/software/
TSPLIB9.

AUTHOR PROFILE

Maha Ata Al-Furhud is a Lecturer in the Department of Computer
Science at Al-Jouf university. He obtained MSc in Computer Science from Al
Imam Mohammad Ibn Saud Islamic University, Riyadh, Kingdom of Saudi
Arabia.

Zakir Hussain Ahmed is a Full Professor in the
Department of Mathematics and Statistics at Al Imam
Mohammad Ibn Saud Islamic University, Riyadh,
Kingdom of Saudi Arabia. Till the end of 2019, he was in
the Department of Computer Science at the same
University. He obtained MSc in Mathematics (Gold
Medalist), Diploma in Computer Application, MTech in

Information Technology and PhD in Mathematical Sciences (Artificial
Intelligence/Combinatorial Optimization) from Tezpur University (Central),
Assam, India. Before joining at Al Imam University in 2004, he served in
Tezpur University, Sikkim Manipal Institute of Technology, Asansol
Engineering College and Jaypee Institute of Engineering and Technology,
India. His research interests include artificial intelligence, combinatorial
optimization, digital image processing and pattern recognition. He has several
publications in these field.

