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Abstract—We consider the multiple travelling salesman 

Problem (MTSP) that is one of the generalization of the 

travelling salesman problem (TSP). For solving this problem 

genetic algorithms (GAs) based on numerous crossover operators 

have been described in the literature. Choosing effective 

crossover operator can give effective GA. Generally, the 

crossover operators that are developed for the TSP are applied to 

the MTSP. We propose to develop simple and effective GAs using 

sequential constructive crossover (SCX), adaptive SCX, greedy 

SCX, reverse greedy SCX and comprehensive SCX for solving 

the MTSP. The effectiveness of the crossover operators is 

demonstrated by comparing among them and with another 

crossover operator on some instances from TSPLIB of various 

sizes with different number of salesmen. The experimental study 

shows the promising results by the crossover operators, 

especially CSCX, for the MTSP. 
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I. INTRODUCTION 

The travelling salesman problem (TSP) is one well-known 
multidisciplinary problem in operations research and computer 
science, which aims to find a least length (cost) Hamiltonian 
cycle (circuit) in a network of cities. The problem can be 
defined as: Given a set of cities (nodes) and the distances 
among them. Starting from and finishing at single depot city, a 
salesman should visit all remaining cities exactly once such 
that the total travelling distance (cost) by the salesman is 
minimized. The TSP has been extensively studied by several 
researchers, and hence, several useful approaches have been 
suggested to solve it. However, certain problems require 
additional salesman, and thus, the multiple TSP (MTSP) is 
defined to generalize the usual TSP. In MTSP, all salesmen 
begin from and finish their journey at a single depot city. Each 
city, except the depot city, should be visited by only one 
salesman such that the total travelling distance (cost) by all 
salesmen is minimized [1]. 

The MTSP can be formally defined as: Let there are m 
salesmen placed at single depot in a n-city network, dij, (i, j=1, 
2, ..., n) be the distance (cost) between the cities i and j, and 
„city 1‟ be the „depot‟ with the remaining cities, 2, 3, …, n be 
the intermediate cities. Each of the salesmen is to start from 
the depot and after touring his set of cities should return to the 

depot. The tours should have no common cities (except the 
depot). The purpose is to obtain the optimum tour plan, i.e., 
the order of cities for each salesman, so that the total 
distance(cost) of the tour is minimum. Clearly, if m = 1, the 
problem becomes usual TSP. 

The distance matrix may represent cost, time, etc. 
Depending on the nature of the distance matrix, the TSPs are 
divided into two types - asymmetric and symmetric.  If dij = 

dji, i, j, then it is symmetric; otherwise, asymmetric. For n-
city usual asymmetric TSP, there are (n-1)! possible number 
of routes. So, for 5-city problem instance, there are 24 
probable routes, and there are possibly 120 routes for 6-city 
problem. However, for 10-city problem, there are 362,880 
possible routes, which is huge. Thus, the computational work 
is directly proportional to the problem size. It is very hard to 
solve large sized instances, if not impossible. In addition, the 
MTSP needs first to determine the cities allocated to each 
salesman, then to order the optimal sequence of cities in each 
salesman‟s tour, so, it is more complicated than TSP. Since, 
the TSP is NP-hard, hence, MTSP is also NP-hard [2]. 

The MTSP is the most challenging optimization problem 
in operations research and computer science paving the ways 
to various scheduling and routing problems. The MTSP seems 
to be more appropriate than the TSP for practical applications 
and can be used to simulate many real-life applications. The 
problem can be applied on job scheduling where multiple 
parallel production lines are present [3]. Also, the vehicle 
routing problem can be modelled as the MTSP. The MTSP 
can be applied to another kind of TSP variant where a 
salesman visits n cities over a period spanning m weeks but 
returns to the home city during weekends [4]. The school bus 
scheduling problem is an application of the MTSP that obtains 
a bus loading pattern so that the total number of ways is 
minimized, the total distance travelled by all buses is kept at 
minimum, no bus is overloaded and the time required to 
traverse any route does not surpass a maximum allowed policy 
[5]. Crew scheduling is another application of the MTSP as 
reported in [6], where investigated the problem to schedule 
multiple photographers‟ groups to many schools. The 
applications also include print press scheduling [4], interview 
scheduling [7], mission planning [8], and the design of global 
navigation satellite surveying system networks [9]. 
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The MTSP may be extended to many variations [1]. 
Number of depots may be single or multiple. Similarly, paths 
(tours) may be closed or open. A closed path begins and ends 
at a single depot, whereas an open path does not require 
returning to the original depot. This paper considers the MTSP 
that allows all salesmen to start from same depot and end their 
tours at the original depot. 

The MTSP is very difficult, and no any polynomial-time 
algorithm is available for the problem. So, finding its optimal 
solution is very tough, if not impossible. Hence, researchers 
are looking for finding better heuristic solutions within an 
acceptable computational time, rather, finding accurate 
optimal solutions to the MTSP as well as other difficult 
optimization problems. Therefore, one must go for heuristic 
methods for solving the MTSP. Artificial neural network 
(ANN) [10], simulated annealing (SA) [11], genetic algorithm 
(GA) [12], particle swarm optimization (PSO) [13], ant colony 
optimization (ACO) [14], etc. are a few such approaches. 

In the recent years, several GAs have been developed 
successfully for various difficult optimization problems, for 
example the quadratic assignment problem [15], the minimum 
spanning tree problem [16], and the TSP [17]. GAs first 
developed by John Holland in 1970s that are based on 
survival-of-the-fittest theory among different species created 
by arbitrary variations in the chromosomes‟ structure in the 
biology. The GA is very successful because it is simple, 
flexible and easy to encode. A GA always begins with an 
initial chromosome population that goes through mainly three 
basic operations, namely selection, crossover and mutation, in 
successive generations to produce better populations. In 
selection method, chromosomes are probabilistically copied to 
the next (iteration) generation. Crossover selects randomly 
two parent chromosomes and mates them to form new 
offspring chromosome(s). Mutation occasionally alters value 
(gene) at a chromosome position. The crossover along with 
selection is the most influential process in genetic search. 
Mutation diverges the search space and defends genetic 
material losses that may resulted from selection and crossover 
operators. Hence, probability of implementing mutation 
operator is fixed very low, while probability of implementing 
crossover is fixed very high [18]. Out of three genetic 
operators, crossover is the most vital operator, and hence, 
several crossovers have been used in GAs for the MTSP 
which are proposed for the TSP. Still, most crossover 
operators do not lead good GA. Selecting good crossover can 
lead to a successful GA. An experimental study reported on 
six crossover operators in [19] showed that sequential 
constructive crossover (SCX) is the best operator. Recently, 
several modified versions of SCX, namely adaptive SCX 
(ASCX) [17], greedy SCX (GSCX) [20], reverse greedy SCX 
(RGSCX) [21] and comprehensive SCX (CSCX) [21], and 
were suggested for the TSP which showed very good results 
for the TSP. 

In this study, we first reduce the MTSP to the TSP by 
introducing some artificial depots and then develop different 
simple GAs using five crossover operators - SCX, ASCX, 
GSCX, RGSCX and CSCX for the MTSP. These crossover 
operators are first applied manually on a pair of parents to 
create offspring(s). The effectiveness of the crossover 

operators is demonstrated by comparing among them and with 
two-part chromosome crossover (TCX) [12], on some 
instances from TSPLIB of various sizes with different number 
of salesmen. The comparative study shows the effectiveness 
of the crossover operators, especially CSCX, for the MTSP. 

This paper is prearranged as follows. Section II reviews 
the related research. Simple genetic algorithms for the MTSP 
are described in Section III. The comparative study is 
described in Section IV. Finally, conclusions and future 
investigations   are reported in Section V. 

II. LITERATURE REVIEW 

The MTSP is one of the most tough NP-hard problems. 
The MTSP is not well-studied like the usual TSP. For a 
detailed survey of MTSP and its variations, its practical 
applications, solution approaches proposed so far, the reader is 
referred to [1]. As this study proposes genetic algorithms 
(GAs) for solving the problem, we give literature survey on 
GAs, especially crossover operators used in different GAs for 
the MTSP. 

For solving the MTSP, the first GAs were proposed in [6]. 
For solving the MTSP that models hot rolling scheduling in 
Shanghai Baoshan Iron and Steel Complex, GAs are proposed 
in [22]. First, the problem is modeled as an MTSP, which is 
then converted into usual TSP and finally, applied a modified 
GA for finding solution of the problem. 

In [23], grouping GAs have been proposed for the MTSP 
that obtain better solutions. Additionally, another objective 
function that minimizes the maximum (cost) distance travelled 
by any single salesman is considered. 

In addition, several crossover operators that were 
developed for the TSP have been modified and applied to the 
MTSP. The ordered crossover (OX) [24], cycle crossover 
(CX) [25], partially mapped crossover (PMX) [26], edge 
recombination crossover (ERX) [27], alternating edges 
crossover (AEX) [27] and sequential constructive crossover 
(SCX) [28] etc. are the most widely used crossover operators 
for the TSP. However, these crossover operators cannot be 
applied directly in GAs with the two-part chromosome 
representation. 

In [12], the two-part chromosome crossover (TCX) that 
minimizes the size of search space of the MTSP is developed 
to find solution for the problem. A comparative study has been 
reported against three distinct crossover methods, namely 
OX+A, PMX+A and CX+A, for bi-objective MTSP that 
considers total distance and longest tour as objective functions 
to be minimized. As reported, TCX finds better solutions than 
other three crossover operators. 

In [29], a modified two-part chromosome crossover is 
proposed for the problem. As reported, the algorithm assigns 
various number of cities for different salesman and obtained 
good solutions. 

In [4], a combined crossover operator, OX + A (OX 
combined with an asexual crossover [30]) was proposed for 
the two-part chromosome method. The OX and the asexual 
crossover were employed for the 1st and 2nd parts 
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respectively of the chromosome. That is, each part of the 
chromosome is considered and processed separately using two 
different crossover methods. The theoretical properties of the 
method is investigated as well as computational efficiency of 
the method is reported. As reported, the newer technique 
minimizes the search space and obtains better solutions. 

In [19], one chromosome representation is used and 
applied six crossover operators, OX, PMX, CX, ERX, AEX 
and SCX for solving the MTSP. As reported, the SCX is the 
best operator. 

III. SIMPLE GENETIC ALGORITHMS FOR THE MTSP 

A. Reduced Distance Matrix 

The multiple-TSP can be transformed to the single-TSP by 
assuming single salesman. Similarly, the problem with n cities 
and m salesmen can be transformed into the usual TSP with 
n+m-1 cities by adding m-1 artificial depots (namely, n+1, …, 
n+m-1) [31]. Further, the VRP can be transformed to the 
MTSP by deleting capacity constraints [32]. However, we 
transform the MTSP to the TSP by adding m-1 artificial 
depots. An example of a solution of the MTSP with n=8, m=2 
is shown in Fig. 1(a), whereas its transformation to the TSP is 
depicted in Fig. 1(b). 

Further, the original distance matrix and the reduced 
distance matrix with one artificial depot „city 9‟, for the same 
problem are shown in Tables I and II, respectively. 

In general, GAs are very successful heuristic methods in 
obtaining solutions for the usual TSP and its different 
variations. GAs do not assure that the obtained solutions are 
optimal, but they usually obtain better and near optimal 
solutions very quickly. 

 

Fig. 1. Example of a Solution of the MTSP and its Transformation to the 

TSP with Artificial city 9. 

TABLE I. THE DISTANCE MATRIX 

City 1 2 3 4 5 6 7 8 

1  999 75 99 9 35 63 8 11 

2 51 999 86 46 88 29 20 15 

3 100 5 999 16 28 35 28 2 

4 20 45 11 999 59 53 49 8 

5 86 63 33 65 999 76 72 5 

6 36 53 89 31 21 999 52 6 

7 58 31 43 67 52 60 999 9 

8 15 95 66 14  54  8 87  999 

TABLE II. THE REDUCED DISTANCE MATRIX 

City 1 2 3 4 5 6 7 8 9 

1  999 75 99 9 35 63 8 11  999 

2 51 999 86 46 88 29 20 15 51 

3 100 5 999 16 28 35 28 2 100 

4 20 45 11 999 59 53 49 8 20 

5 86 63 33 65 999 76 72 5 86 

6 36 53 89 31 21 999 52 6 36 

7 58 31 43 67 52 60 999 9 58 

8 15 95 66 14  54  8 87  999 15 

9  999 75 99 9 35 63 8 11  999 

B. Chromosome Representation 

To use GA for any optimization problem, one should find 
a method to represent solutions by legal chromosomes so that 
crossover produces legal chromosomes. There are three 
representation methods used for chromosome for the MTSP. 
They are one chromosome method [22], two chromosomes 
method [33], and two-part chromosome method [34-35]. 
Brown et al. [36] proposed another chromosome 
representation method which is inspired from the chromosome 
representation described in [34]. This representation consists 
of two sections - main section and group section. The main 
section of the chromosome consists of n real-valued genes and 
group section consist of m integer-valued genes. The integer 
part of the real-valued gene i in the main section indicates the 
salesman assigned to city i, whereas fractional part determines 
the order in which city i is visited. Group section simply 
shows various groups exist in the solution in the way they 
appear in the main section. This is a deviation from the 
representation described in [34], where groups can appear in 
any order in the group section. Singh and Baghel [23] 
proposed another chromosome representation method which 
represents chromosome as a set of m tours, i.e., there is no 
sequence among the tours. As reported, GA using this 
representation method is found to be superior. 

We are going to choose one-chromosome with artificial 
depots. An example of our chromosome for n = 8 with m = 2 
is shown in Fig. 2. 

1 4 3 2 9 6 7 5 8 

Fig. 2. An Example of our One Chromosome for 8 Cities with 2 Salesmen. 

In this chromosome, (1, 4, 3, 2, 9, 6, 7, 5, 8), there are 
(8+2-1=) 9 genes including artificial depot city 9. This 
chromosome represents the tour {1→4→3→ 2→9→6→ 
7→5→8→1}. That means, the 1

st
 salesman visited cities 1, 4, 

3 and 2 sequentially, and the 2
nd

 salesman visited cities 6, 7, 5, 
and 8 sequentially. The objective function is defined as total 
distances travelled by the salesmen, which is 
(9+11+5+51+63+52+52+5+15=) 263 for this tour. 

A set of random of chromosomes is generated initially 
(initial population) to start the genetic search process, which 
are then evaluated and gone through a selection procedure for 
creating mating pool. In GAs, the crossover operator executes 
very important role. Generally, the crossover operators 
developed for the usual TSP, are considered for its variations 
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also. Numerous crossover operators are developed for the 
usual TSP and among them SCX, adaptive SCX, greedy SCX, 
reverse greedy SCX and comprehensive SCX are considered 
and discussed here. 

C. Sequential Constructive Crossover Operator 

In [28], the sequential constructive crossover (SCX) 
operator is developed for the TSP, and then is updated in [37].  
It creates only one offspring at a time that uses better edges 
available in the parents. Moreover, it uses some better edges 
which are not available in either of the parents. The main 
characteristic of SCX is to sequentially examine the parents to 
consider first legitimate (unvisited) cities seen after the current 
city. If no legitimate city is seen in a parent, it examines from 
the beginning of (wrapping around) the parent. It then 
compares their distances from the present city to choose the 
next city of the child. It is effectively applied to various 
combinatorial optimization problems ([15], [38]-[41]). We 
apply this crossover operator for the MTSP. It is seen that the 
SCX may lead to infeasible chromosomes (tours). So, we 
applied swap algorithm on the infeasible chromosomes to 
make them feasible. The swap algorithm randomly selects two 
cities and exchanges them. We now illustrate the SCX using 
following parent chromosomes with 9-city and 2-salesman, P1: 
(1, 5, 7, 2, 9, 4, 3, 6, 8) and P2: (1, 4, 6, 3, 7, 9, 2, 5, 8) with 
total travel distances 265 and 420 respectively using the 
reduced distance matrix given in Table II. This SCX operator 
results single offspring from two parents. 

City 1 is the 1
st
 gene, and after this, 5 and 4 are the 

legitimate cities in P1 and P2 respectively with d15=35 and 
d14=9. As d14<d15, city 4 is accepted. So, the incomplete 
chromosome (offspring) becomes (1, 4). 

After city 4, 3 and 6 are the legitimate cities in P1 and P2 
respectively with d43=11 and d46=53. Since d43<d46, we accept 
city 3. So, the incomplete chromosome becomes (1, 4, 3). 

After city 3, 6 and 7 are the legitimate cities in P1 and P2 
respectively with d36=35 and d37=28. Since d37<d36, we accept 
city 7. So, the incomplete chromosome becomes (1, 4, 3, 7). 

The legitimate cities after city 7 in P1 & P2 are 2 & 9 
respectively with d72=31 and d79=58. Since d72<d79, we accept 
city 2. So, the incomplete chromosome becomes (1, 4, 3, 7, 2). 

The legitimate cities after city 2 in P1 & P2 are 9 & 5 
respectively with d29=51 and d25=88. Since d29<d25, we accept 
city 9. So, the incomplete chromosome becomes (1, 4, 3, 7, 2, 9). 

The legitimate cities after city 9 in P1 & P2 are 6 & 5, 
respectively with d96=63 and d95=35. Since d95<d96, we accept 
city 5. So, the incomplete chromosome becomes (1, 4, 3, 7, 2, 
9, 5). By following this way, one can create the complete 
offspring as: (1, 4, 3, 7, 2, 9, 5, 8, 6) with distance 214, which 
is better than both parents. 

D. Adaptive Sequential Constructive Crossover Operator 

In [17], a modified version of the SCX, named adaptive 
SCX (ASCX), is developed for the TSP which creates only 
one offspring adaptively, either in forward or backward or 
mixed direction depending on next city‟s distance. Eight 
neighbour (four from each parent) cities of any current city is 

considered, of which best city in either direction is selected for 
the offspring. Since number of genes in a chromosome is n, 
'city 1' is fixed as 1

st
 and (n+1)

th
  (not shown in the 

chromosomes) genes. We apply this crossover operator also. 
For any infeasible chromosomes (tours), swap algorithm is 
applied to make it feasible. This ASCX is explained using the 
same example. 

For our example, 'city 1' is fixed in 1
st
 and 10

th
 (not shown 

in the chromosomes) places. In P1, after „city 1‟ (1
st
 gene), 

legitimate cities in forward and backward (after wrapping 
around) directions are 5 and 8, respectively; and in P2 they are 
4 and 8, respectively, with their distances 35, 11, 9 and 11 
respectively. Among them, the city 4 with distance 9 is the 
cheapest. From the end, in P1, before „city 1‟ (10

th
 gene), 

legitimate cities in backward and forward (after wrapping 
around) directions are 8 and 5, respectively; and in P2 they are 
8 and (after wrapping around) 4, respectively, with their 
distances 15, 86, 15 and 20, respectively. Among them, the 
city 8 with distance 15 is the cheapest. Then city 4 is added as 
the 2

nd
 gene in the offspring, as it is cheaper between the 

cheapest cities. So, the offspring becomes (1, 4, *, *, *, *, *, *, 
*). 

In P1, after „city 4‟ (2
nd

 gene), legitimate cities in forward 
and backward directions are 3 and 9, respectively; and in P2 
they are (after wrapping around) 6 and 8, respectively, with 
their distances 11, 20, 53 and 8, respectively. Among them, 
the city 8 with distance 8 is the cheapest. From the end, in P1, 
before „city 1‟ (10

th
 gene), legitimate cities in backward and 

forward (after wrapping around) directions are 8 and 5 
respectively; and in P2 they are 8 and (after wrapping around) 
6 respectively, with their distances 15, 86, 15 and 36 
respectively. Among them, the city 8 with distance 15 is the 
cheapest. Then city 8 is added as the 3

rd
 gene in the offspring, 

as it is cheaper between the cheapest cities. So, the offspring 
becomes (1, 4, 8, *, *, *, *, *, *). 

In P1, after „city 8‟ (3
rd

 gene), legitimate cities in forward 
(after wrapping around) and backward directions are 5 and 6 
respectively; and in P2 they are (after wrapping around) 6 and 
5, respectively, with their distances 54, 8, 8 and 54, 
respectively. Among them, the city 6 with distance 8 is the 
cheapest. From the end, in P1, before „city 1‟ (10

th
 gene), 

legitimate cities in backward and forward (after wrapping 
around) directions are 6 and 5 respectively; and in P2 they are 
5 and (after wrapping around) 6, respectively, with their 
distances 36, 86, 86 and 36 respectively. Among them, the city 
6 with distance 36 is the cheapest. Then city 6 is added as the 
4

th
 gene in the offspring, as it is cheaper between the cheapest 

cities. So, the offspring becomes (1, 4, 8, 6, *, *, *, *, *). 

In P1, after „city 6‟ (4
th

 gene), legitimate cities in forward 
(after wrapping around) and backward directions are 5 and 3 
respectively; and in P2 they are 3 and (after wrapping around) 
5, respectively, with their distances 21, 89, 89 and 21 
respectively. Among them, the city 5 with distance 21 is the 
cheapest. From the end, in P1, before „city 1‟ (10

th
 gene), 

legitimate cities in backward and forward (after wrapping 
around) directions are 3 and 5, respectively; and in P2 they are 
5 and (after wrapping around) 3, respectively, with their 
distances 100, 86, 86 and 100, respectively. Among them, the 
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city 5 with distance 86 is the cheapest. Then city 5 is added as 
the 5

th
 gene in the offspring, as it is cheaper between the 

cheapest cities. So, the offspring becomes (1, 4, 8, 6, *, *, *, *, 
*). By following this way, one can create the complete 
offspring as: (1, 4, 8, 6, 5, 3, 2, 9, 7) having distance 201, 
which is better than both parents. 

E. Greedy Sequential Constructive Crossover Operator 

In [20], a greedy SCX (GSCX) is proposed for the TSP 
that modified the SCX as follows. While searching the 
„legitimate city' seen after the current city, if „legitimate city‟ 
is not found in a parent, then select the cheapest „legitimate 
city‟ from the set of remaining legitimate cities and add it to 
the current incomplete offspring chromosome. We apply this 
crossover operator also. For any infeasible chromosomes 
(tours), swap algorithm is applied to make it feasible. This 
GSCX is explained using the same example. 

As 'city 1' is the first gene, after this city, the legitimate 
citys in P1 is 5 and in P2 is 4 having d15=35 and d14=9. As 
d14<d15, the city 4 is added as the second gene in the current 
offspring that leads the incomplete offspring to (1, 4). 

City 1 is the 1
st
 gene, and after this, 5 and 4 are the 

legitimate cities in P1 and P2 respectively with d15=35 and 
d14=9. As d14<d15, city 4 is accepted. So, the incomplete 
chromosome (offspring) becomes (1, 4). 

After city 4, 3 and 6 are the legitimate cities in P1 and P2 
respectively with d43=11 and d46=53. Since d43<d46, we accept 
city 3. So, the incomplete chromosome becomes (1, 4, 3). 

After city 3, 6 and 7 are the legitimate cities in P1 and P2 
respectively with d36=35 and d37=28. Since d37<d36, we accept 
city 7. So, the incomplete chromosome becomes (1, 4, 3, 7). 

The legitimate cities after city 7 in P1 & P2 are 2 & 9 
respectively with d72=31 and d79=58. Since d72<d79, we accept 
city 2. So, the incomplete chromosome becomes (1, 4, 3, 7, 2). 

The legitimate cities after city 2 in P1 & P2 are 9 & 5 
respectively with d29=51 and d25=88. Since d29<d25, we accept 
city 9. So, the incomplete chromosome becomes (1, 4, 3, 7, 
2, 9). 

The legitimate cities after city 9 in P1 & P2 are 6 & 5 
respectively with d96=63 and d95=35. Since d95<d96, we accept 
city 5. So, the incomplete chromosome becomes (1, 4, 3, 7, 2, 
9, 5). By following this way, one can create the complete 
offspring as: (1, 4, 3, 7, 2, 9, 5, 8, 6) with distance 214, which 
is better than both parents. 

F. Reverse Greedy Sequential Constructive Crossover 

Operator 

In [21], the GSCX is modified for the TSP by applying it 
in reverse way and termed as reverse GSCX (RGSCX). It 
constructs an offspring in reverse way, which is, from the last 
city (gene) back to the first city (gene). We apply this 
crossover operator also. For any infeasible chromosomes 
(tours), swap algorithm is applied to make it feasible. This 
RGSCX is explained using the same example. 

The 'city 1' is the 10
th

 gene. In both P1 and P2, 9
th

 genes are 
city 8, hence, it is added as the 9

th
 gene to the offspring as (8). 

Before city 8, in P1 and P2, the legitimate cities are 6 and 5 
respectively with d68=6 and d58=5. As d58<d68, the city 5 is 
added at the 8

th
 place in the offspring as (5, 8). 

Before city 5, legitimate city is not present in P1. So, the 
cheapest legitimate city 6, among the remaining cities, is 
added at the 7

th
 place in the offspring as (6, 5, 8). 

Before city 6, in P1 and P2, the legitimate cities are 3 and 4 
respectively with d36=35 and d46=53. As d36<d46, the city 3 is 
added at the 6

th
 place in the offspring as (3, 6, 5, 8). 

Before 'city 3', in both P1 and P2, legitimate cities are city 
4, hence, it is added at the 5

th
 place in the offspring as (4, 3, 6, 

5, 8). 

Before city 4, legitimate city is not present in P2. So, the 
cheapest legitimate city 9, among the remaining cities, is 
added at the 4

th
 place in the offspring as (9, 4, 3, 6, 5, 8). By 

following this way, one can create the complete offspring as: 
(1, 7, 2, 9, 4, 3, 6, 5, 8) having distance 186, which is better 
than both parents. 

G. Comprehesive Sequential Constructive Crossover 

Operator 

The comprehensive SCX (CSCX) is proposed in [21] that 
combines GSCX and RGSCX to create two offspring. We 
apply this crossover operator also. By using same parents‟ 
example, the offspring (1, 4, 3, 7, 2, 9, 5, 8, 6) and (: (1, 7, 2, 
9, 4, 3, 6, 5, 8) are created, with distances 214 and 186 
respectively which are better both parents. 

H. Swap Mutation Operator 

The mutation operator generally selects a gene (position) 
randomly in a chromosome and modifies its corresponding 
allele (city). Since always weaker chromosomes in 
consecutive generations are rejected in previous operators in 
GA search, so, some better alleles could be lost permanently. 
Hence the mutation is used for recovering them. Generally, 
one can assume that mutation may help the other operators to 
overcome local optima and obtain better solution. For our 
simple GAs, the swap mutation operator [18] which randomly 
chooses two cities, except artificial depots, and swaps them. 

I. Structure of our Simple GAs 

Our GA is simple that uses traditional genetic procedures 
and operators without incorporating another heuristic method. 
Starting with randomly created population, stochastic 
remainder for selection, only one selected crossover and swap 
mutation are used in our simple GAs (SGAs) as follows. 

SGA () 

{ Initialize population of size Ps randomly; 

   Evaluate the population; 

   Generation = 0; 

   While stopping criterion is not fulfilled 

   { Generation = Generation + 1; 

      Choose fitter chromosomes by stochastic remainder selection; 

      Choose a crossover and perform crossover with probability Pc; 

      Swap randomly chosen genes with probability Pm; 

      Evaluate the population;   

   } 

} 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 7, 2020 

558 | P a g e  

www.ijacsa.thesai.org 

IV. COMPUTATIONAL EXPERIMENTS 

Our proposed SGAs using five crossover operators - SCX, 
ASCX, GSCX, RGSCX and CSCX, are encoded in Visual 
C++. In order to demonstrate the efficiency of the algorithm, 
computational experience is conducted on three benchmark 
TSPLIB instances [42] with different number of salesmen and 
run on a Laptop with i3-3217U CPU@1.80 GHz and 4 GB 
RAM under MS Windows 7. The instances MTSP-51, MTSP-
100, and MTSP-150 used in [12] are considered for comparing 
our five crossovers with state-of-the-art crossover TCX 
reported in [12]. The success of GAs depends on proper 
selection of the GA parameters-termination criterion, 
crossover probability, population size, and mutation 
probability. But there is no intelligent way to select these 
parameters. One way to select them is by trial and error 
method. We run our SGAs for different setting of parameters, 
and selected parameters are listed in Table III. 

We first compare our crossovers in SGAs with TCX [20] 
for three Euclidean symmetric instances – MTSP-51 with 
m=3, 5, 10; MTSP-100 with m=3, 5, 10, 20; and MTSP-150 
with m=3, 5, 10, 20, 30. There is no restriction on the 
maximum of cities that a salesman can visit, however, each 
salesman should visit at least one city. The Table IV reports 
best solution (BestSol), average solution (AvgSol) and 
standard deviation (S.D) of the solution. For every instance, 
the best result over six crossovers is marked by boldface. 

TABLE III. PARAMETER FOR OUR PROPOSED SGAS 

Parameters Values 

Population size 50 

Crossover probability 100% 

Mutation probability 10% 

Termination criterion 2000 generations 

No. of runs for each instance 30 times 

TABLE IV. RESULTS BY THE CROSSOVER OPERATORS FOR SYMMETRIC TSPLIB INSTANCES 

Instance m Results TCX SCX ASCX GSCX RGSCX CSCX 

MTSP-51 

3 

Best Sol 466 456 454 460 457 458 

Avg. Sol 510 480 464 471 473 470 

S.D. 24 9 5 6 6 4 

5 

Best Sol 499 488 486 481 477 490 

Avg. Sol 536 496 494 490 495 501 

S.D. 26 3 3 4 4 5 

10 

Best Sol 602 621 596 568 568 580 

Avg. Sol 636 631 618 594 587 611 

S.D. 17 6 6 12 9 9 

MTSP-100 

3 

Best Sol 28943 25107 24443 24875 24063 22826 

Avg. Sol 32708 25746 24750 25606 25507 23731 

S.D. 2267 477 181 470 512 405 

5 

Best Sol 30941 26317 25900 25104 26037 24196 

Avg. Sol 34179 27250 26574 26798 27025 25338 

S.D. 2006 545 329 619 579 437 

10 

Best Sol 32802 31149 30425 29721 29181 29181 

Avg. Sol 36921 32422 31246 31230 31227 30256 

S.D. 1964 565 439 702 874 541 

20 

Best Sol 44112 44543 42407 42266 42665 41465 

Avg. Sol 46976 45989 44936 44032 44619 43004 

S.D. 1773 814 1268 898 1196 730 

MTSP-150 

3 

Best Sol 51126 33404 30360 30824 30661 29390 

Avg. Sol 55851 34974 31627 32180 32260 30921 

S.D. 2588 930 676 531 537 553 

5 

Best Sol 51627 34531 31151 32281 32459 30308 

Avg. Sol 61596 35844 32660 33403 33397 31820 

S.D. 4759 680 607 531 458 592 

10 

Best Sol 54473 36514 35510 36576 35733 35802 

Avg. Sol 61360 38344 36933 37702 37150 37173 

S.D. 3888 643 592 638 835 643 

20 

Best Sol 62456 48354 45564 46603 47096 44697 

Avg. Sol 69701 49450 47257 48560 49162 46609 

S.D. 4340 616 711 883 1064 796 

30 

Best Sol 76481 63624 62565 61579 60758 58757 

Avg. Sol 84008 65812 65417 63760 64926 61360 

S.D. 5285 1389 2335 1198 1888 911 
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Fig. 3. Average Solution for the MTSP-51, MTSP-100 and MTSP-150 for different Crossover Operators. 

The operators TCX and SCX could not find either lowest 
best or average solution for any instance. The operator GSCX 
finds lowest best solution for MTSP-51 with m=10 and lowest 
average solution for MTSP-51 with m=5; ASCX obtains 
lowest best and average solutions for MTSP-51 with m=3 and 
MTSP-150 with m=10; RGSCX obtains lowest best solutions 
for MTSP-51 with m=5,10,  and MTSP-100 with m=10, and 
lowest average solution for MTSP-51 with m=10; and CSCX 
finds lowest best and average solutions for MTSP-100 with 
m=3, 5, 10, 20, and MTSP-150 with m=3, 5, 20, 30. From 
Table IV, it can be seen that CSCX gives more efficient 
results for most instances, and hence found to be very 
effective crossover operator. The results are showed in Fig. 3 
that further demonstrates the effectiveness of the CSCX. From 
this study, it is concluded that CSCX is placed in 1

st
 rank, 

ASCX in 2
nd

 rank and TCX in the worst rank. To confirm 
these findings, statistical analysis is also carried out and found 
same results. 

V. CONCLUSION AND FUTURE WORKS 

In this study we considered the multiple travelling 
salesman problem (MTSP) which is a generalization of the 
travelling salesman problem (TSP). To solve this problem 
numerous genetic algorithms (GAs) based on numerous 
crossover operator have been reported in the literature. 
Choosing effective crossover operator can lead to effective 
GA. Generally, crossover operators that are proposed for the 
TSP are used for the MTSP also. We developed five simple 
GAs using sequential constructive crossover (SCX), adaptive 
SCX (ASCX), greedy SCX (GSCX), reverse greedy SCX 
(RGSCX) and comprehensive SCX (CSCX) for solving the 
MTSP. First, these crossover operators are applied manually 
on parent chromosomes to create offspring(s) and then 
encoded in Visual C++. The effectiveness of the crossover 
operators is demonstrated by comparing among them and with 
another crossover operator (TCX) on some instances from 
TSPLIB of various sizes with different number of salesmen. 
The experimental results show promising results by the 
crossover operator CSCX for the MTSP. 

In this present study, we aimed to develop simple GAs 
using five crossovers and then compare among them and with 
a state-of-art crossover operator. We did not aim to develop 
improved and high quality GA. Though CSCX finds very 
good solutions, yet it gets trapped in local minimums in the 
early generations, and for small-sized instances, it does not 

show promising results. Therefore, effective local search and 
immigration methods could be combined to hybridize the 
simple GA for finding better solutions to more instances that 
is under our study. 
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