
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

A Hybrid Deep Learning Model for Arabic Text
Recognition

Mohammad Fasha1
Amman, Jordan

Bassam Hammo2, Nadim Obeid3
King Abdullah II School for Information Technology

The University of Jordan
Amman, Jordan

Jabir AlWidian4
Princess Sumayah School for Technology

Amman, Jordan

Abstract—Arabic text recognition is a challenging task
because of the cursive nature of Arabic writing system, its joint
writing scheme, the large number of ligatures and many other
challenges. Deep Learning (DL) models achieved significant
progress in numerous domains including computer vision and
sequence modelling. This paper presents a model that can
recognize Arabic text that was printed using multiple font types
including fonts that mimic Arabic handwritten scripts. The
proposed model employs a hybrid DL network that can recognize
Arabic printed text without the need for character segmentation.
The model was tested on a custom dataset comprised of over two
million word samples that were generated using (18) different
Arabic font types. The objective of the testing process was to
assess the model’s capability in recognizing a diverse set of
Arabic fonts representing a varied cursive styles. The model
achieved good results in recognizing characters and words and it
also achieved promising results in recognizing characters when it
was tested on unseen data. The prepared model, the custom
datasets and the toolkit for generating similar datasets are made
publically available, these tools can be used to prepare models for
recognizing other font types as well as to further extend and
enhance the performance of the proposed model.

Keywords—Arabic optical character recognition; deep
learning; convolutional neural networks; recurrent neural
networks

I. INTRODUCTION
Optical Character Recognition (OCR) is the process of

recognizing text in images and transforming it into a machine
encoded text. OCR is an important research area and generally,
it can be classified into two main groups, online OCR and
offline OCR. Online OCR involves recognizing text while
typing in real time such as recognizing digital stylus writing on
mobile phones, while offline OCR involves the recognition of
text in document images such as scanned documents archives,
printed application forms, bank cheques, postal mail and many
others. In addition, OCR addresses two main categories of text;
machine printed text and handwritten text and each of these
two areas has its own challenges. Printed text is faced with the
challenge of the diverse font types and the various formatting
styles as well as the quality of the printed and the scanned

images, while handwritten text is considered more challenging
because of the diverse writing styles of individuals.

Recognizing Arabic text in images has additional
challenges that are mainly caused by the cursive nature of
Arabic script. In addition, Arabic characters are connected in
words, and the writing system has a large number of ligatures,
which increase the challenge of recognizing text based on
characters’ boundaries. Further, the scarcity of labelled datasets
for Arabic language increases the challenges of developing
new solutions that depend on supervised learning models.

This work presents a model that employs a hybrid DL
network to recognize multiple Arabic fonts types including
fonts that mimic Arabic handwritten scripts. The hybrid DL
model uses a Convolution Neural Network (CNN) and a Bi-
Directional Short Long Term Memory network (BDLSTM)
and it operates in an end-to-end fashion without the need for
character segmentation.

To test the performance of the model, a number of datasets
made of (18) different fonts types were compiled. The fonts of
the datasets were collected from online sources and they were
selected because they exhibit high cursive nature that mimics
Arabic handwriting styles. The sample words for generating
the custom datasets were extracted from Arabic Wikipedia
Dump and they comprise over two million words samples.

Several experiments were performed to examine the
model’s performance and to assess its generalization
capabilities. Despite being a moderate model in terms of its
complexity (i.e. can be trained on a single CPU), the same
single model was able to achieved (98.76%) in Character
Recognition Rate (CRR) and (90.22%) in Words Recognition
Rate (WRR) for all the tested font types. However, the model
demonstrated degradation in its performance when it was
tested on an unseen dataset or noisy images. In the case of
unseen dataset, it achieved a CRR success rate of (85.15%),
while in the case of noisy images it achieved a CRR success
rate of (77.29%). However, resolving these issues require
additional investigations, which are out of the scope of this
work.

122 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

The remaining of the paper is organized as follows: In
Section II the challenges related to Arabic text recognition are
discussed. In Section III an overview of the related work is
presented. Section IV presents the compiled dataset. The
proposed model and its process flow is presented in Section V.
Section VI presents the experiments and the obtained results
and finally, Section VII concludes the paper and identify some
future research avenues.

II. CHALLENGES RELATED TO ARABIC TEXT RECOGNITION
Arabic writing system is used by different nations around

the world, this includes the (21) Arab countries as well as other
nations such as Kurdish, Pashto, Persian, Sindhi, Uighur and
Urdu. The base writing system is made of the base alphabets of
Arabic language, which consist of (28) alphabets and (10)
Hindi format numerals. The alphabets are written from right-
to-left while the numbers are written from left-to-right. On the
other hand, the shape of Arabic alphabets can change
according to their position in the word. Fig. 1 below shows the
based alphabets of Arabic language as well as their variations
according to their position in the word.

A main challenge of Arabic writing system is related to its
cursive nature knowing that alphabets are written in a joint
flowing style. In this respect, characters in Arabic script,
whether handwritten, typed or printed are connected within
words and they might overlap within the same word or across
words (i.e. inter and intra overlapping). In addition, spaces can
occur within words and across them while various Arabic
characters share the same main shape (e.g. ba, ta, tha as shown
in Fig. 1). However, these characters are distinguished by the
number of dots added under or above the base alphabet, which
increase the challenge of identifying the correct alphabet.

Further, the shapes of Arabic characters are represented
using different glyphs according to the characters’ position in
the word. Accordingly, different shapes are used when the
character appears at the beginning, middle or at the end of a
word.

Fig 1. Arabic base Alphabet.

Similarly, the shape of Arabic characters in printed text
varies depending on the used font, as well as its formatting and
printing style. Additionally, natural languages that use the
Arabic writing system extends the base alphabets by adding
special diacritics over some characters to better adapt the
writing system to the phonemes of the designated language. A
thorough discussing about these challenges can be found in [1].
All these characteristics make the recognition of Arabic text a
challenging task, especially for the models that depend on
segmenting characters prior to the recognition process [2].

The next section presents some of the related work that was
introduced to address some of these challenges and the
approaches that were followed.

III. RELATED WORK
The recognition of Arabic text is still a challenging task

because of many intricate features related to the nature of
Arabic writing system [3]. Work in this domain is an active
research area where many models are continuously proposed
for the problem of automatically recognizing printed or
handwritten text. Each of these domains has its own challenges
and requirements. The challenges of recognizing printed
Arabic text are driven by the need for a ubiquitous model that
can efficiently recognize Arabic text that is printed using
multiple font types and using different formatting styles. On
the other hand, the challenges facing the Arabic handwritten
text are driven by its high variety due to the diversity of
individuals writing styles. In this section, we present an
overview about the related work in both domains and the
methods that were employed to recognize text.

A recent model for recognizing printed Arabic characters in
isolation mode was presented in [4] which applied K-Nearest
Neighbor (KNN) and Random Forest Tree (RFT) algorithms to
recognize Arabic text. That model used statistical methods to
extract features from text images. These features included the
dimensions of the text shape, the transition of pixels, the
number of black vs white pixels and regional ratios of pixel
values. The KNN classifier achieved a successful rate of
(98%), while the RFT classifier achieved (87%). Similarly, the
authors in [3] introduced a model for recognizing Arabic
printed text using linear and nonlinear regression. In that work,
text in images were initially thinned and segmented into sub
words. Next, the relations between word segments were
represented using a numerical coding scheme that represented
characters as a sequence of points, lines, ellipses and curves.
Using that scheme, a unique code was established for each
character form and a unique list of codes were used to
recognize each font type. Finally, linear regression technique
was used to validate the representations against a ground truth
table using distance measures. The model was evaluated using
(14000) words samples and it has achieved an accuracy rate of
(86%).

In [5], the authors proposed a model for segmenting Arabic
printed text that can serve as a preliminary step in the text
recognition process. The model that was presented in that work
applied contours analysis and template matching techniques to
recognize text. The contour segmentation was determined by
the local minima values of the contour and the template-based
technique involved scanning the positions of black pixels after

123 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

segmenting the text into lines and sub words using horizontal
and vertical projections. The model was evaluated using a
custom multi-font corpus and was also benchmarked against
five other methods. The model achieved an enhanced accuracy
over the other models with a score of (94.74%).

Arabic text recognition research was also influenced by the
progress that was achieved in deep learning technology.
Earliest work in implementing DL approaches to Arabic text
recognition can be traced back to [6]. In that work, a Multi-
Dimensional Long Short Memory (MDLSTM) network and
Connectionist Temporal Loss (CTC) were used to recognize
Arabic text in images. The model was tested on the IFN/ENIT
dataset of Tunisian handwritten Town names [7] and an
accuracy levels of (91.4%) were reported.

A more recent work in the field of Arabic text recognition
using DL models was carried out by [8]. The domain of that
work was the recognition of Arabic script in historical Islamic
manuscripts. The presented model used various preprocessing
techniques to enhance the quality of the scanned images and to
segment the text prior to the recognition process. CNNs were
used to recognize the preprocessed text and accuracy levels
ranging from (74.29%) to (88.20%) were reported.

In [9], a model for recognizing Arabic handwritten text
using neural networks was presented. Initially, the noise in
images was reduced using multiple image preprocessing
techniques. The characters in words were segmented into
regions using a threshold-based method and these regions were
used to construct feature vectors. The model was examined on
a custom dataset collected from volunteered writers and a CRR
of (83%) was reported. Similarly, the work of [10] presented a
three-layers CNN model for recognizing Arabic handwritten
characters in isolation mode. The model was examined on
AIA9k [11] and AHCD [12] datasets and CRR of (97.6%) was
reported. In [2], the authors presented a DL based model for
recognizing Arabic handwritten text using a MDLSTM
network and CTC loss function. The objective of that work was
to assess the effects of extending the dataset using data
augmentation techniques and to compare performance of the
extended model against other similar models. The KHAT
handwritten dataset [13] was used to train and evaluate the
model and a CRR level of (80.02%) was reported. Finally, in
[14] a hybrid DL model for detecting printed Urdu text in
scanned documents was discussed. The model employed a
hybrid combination of CNN and BDLSTM along with CTC
loss and it was tested on URDU and APTI datasets [15]. The
model was able to achieve CRR rates of (89.84%) and
(98.80%), respectively.

Reviewing the related work revealed that there is a shortage
in work that addresses Arabic printed text using DL models.
Our work should present some footsteps in this research area
and provide toolkits that can be utilized to further extend and
enhance the achieved outcomes.

IV. THE COMPILED DATASET
During the last period, several Arabic printed datasets were

introduced by the community including: DARPA, APTI ,
PATDB, APTID/MF, and RCATSS [5], [15]–[18].
Nevertheless, there is no consensus on a standard dataset that

can adopted by the community that can be used for
benchmarking printed text recognition. Consequently, the
available datasets vary in their content types, sizes, formatting
styles and fonts types [19]. A more thorough listing of similar
datasets can be found in [20].

As stated earlier, the main objective of this work was to
examine the performance of DL based models in recognizing
Arabic text that was printed using fonts that mimic Arabic
hand writing styles. For that purpose, no suitable dataset was
found and consequently a number of custom datasets were
compiled to serve the purpose i.e. Arabic Multi-Fonts Dataset
(AMFDS). These dataset were prepared using the (18) fonts
depicted in Fig. 2 below.

In this respect, a custom toolkit for generating the datasets
was prepared. This toolkit can be used to generate any number
of text image samples using any required font type. It can also
be configured to generate samples as separate image files or as
a single binary repository for all the samples.

Table I next shows the main characteristics of each
generated dataset. As presented in the table, the (ae-Nice) font
was selected to generate the single-font datasets. This font type
was selected because its printing style clearly exhibits cursive
structures that mimic Arabic hand writing script. Similarly, the
(ae-Nice) and the (K-Karman) font’s types were selected to
generate the two-font’s datasets. Finally, datasets (4) and (5) in
Table I were generated using the font types that are presented
in Fig. 2.

Datasets (1, 2, 3) in Table I include duplicate samples
because the same set of words was used to generate samples
for each font type. In addition, these datasets have minor
redundancies within the samples of each font because words
were randomly sampled from Arabic Wikipedia Dump and no
filtering was applied. Datasets (4 and 5) in Table I are unique
(disjoint) datasets where no single word is replicated across the
entire dataset. The current version of the datasets contains
words samples that have a length of (7 to 10) characters and all
the words were generated using font size (26) and bold
formatting style.

Fig 2. The Set of the Selected Fonts.

124 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

TABLE I. THE PREPARED DATASETS

Dataset # Number of fonts Number of samples Duplicates in samples Dataset size Fonts

1 1 60,000 Exist 148MB ae-Nice

2 1 120,000 Exist 295MB ae-Nice

3 2 240,000 Exist 490MB ae-Nice, K-Karman

4 18 2,160,000 Exist 6200 MB The fonts shown in Fig. 2

5 18 450,000 Unique words 1300MB The fonts shown in Fig. 2

Further, each dataset is comprised of two main data files: a
labels file and binary file. The labels file is a normal text file
that contains details about the word samples, this includes the
Arabic word represented by the image, the font type, the font
style, the font size and a value that represent the starting index
of that image in the binary file. Hence, the byte stream of the
designated image begins at the starting index and spans to a
length equals to the image’s size (in bytes). This binary file
represents a single repository for all the images in the dataset.
Unlike the common adopted approaches of using single image
file for each word sample, the format presented in this work is
more appropriate for addressing large data files with large
number of samples and it is more scalable as it facilitates
moving datasets around different execution environments i.e.
cloud based environments, it also facilitates the processing of
image data in terms of loading, preprocessing and training.

The datasets that were used in the experiments are made
publically available at 1, similarly, the toolkit that can be used
to generate different samples is made publically available at 2.

V. PROPOSED MODEL
In general, text recognition systems implement a series of

tasks before recognizing text in images. These tasks can be
classified into five main categories which includes: the
normalizing of document images to enhance their quality, the
detection of text regions within a document and segmenting
text accordingly, the extraction of useful features from text,
implementing the recognition process and employing post
processing techniques to enhance the accuracy of the achieved
results. The focus of this work is on the recognition process;
while the other tasks are out of the current scope and might be
addressed in future research.

The design and the implementation of the proposed model
was based on the work presented in [21]. In that work, a hybrid
NN for recognizing handwritten text in scanned historical
documents was presented. The model presented in this work
employs the same intuition and adapts the model to recognize
different styles of Arabic printed text.

The proposed model is comprised of two main components;
a Convolutional NN and a Recurrent NN. These networks are
stacked together in an end-to-end fashion that can perform
word-level recognition without the need for character level
segmentation.

1https://drive.google.com/drive/folders/1mRefmN4Yzy60Uh7z3B6cllyy
OXaxQrgg?usp=sharing

2 https://github.com/JTCodeStore/TextIimagesToolkit

TABLE II. MODEL DESIGN

CNN

Layer Filter
size

of
filters

Pooling
window

Output
size

1 (5, 5) 32 (2, 2) (64,16,32)

2 (5, 5) 64 (2, 2) (32,8,64)

3 (3, 3) 128 (1, 2) (32,4,128)

4 (3, 3) 128 (1, 2) (32,2,128)

5 (3, 3) 256 (1, 2) (32,1,256)

BDLSTM

Layer # of hidden units

1 256 x 2 (forward and backward)

2 256 x 2 (forward and backward)

Table II presents the specifications of the proposed model.

As shown in the previous figure, the filter sizes in the initial
two layers of the CNN employs filters of size (5, 5) units. This
filter size is suitable for extending the receptive field of the
early layers of the network. The three remaining convolution
layers in the network employed filters sizes of (3, 3).

Further, the convolution process in the model employed
zero padding so that it can preserve the size of the input image
throughout the convolution process. The pooling process in the
initial two layers used a sliding window of size (2x2) while the
remaining three layers used a window of size (1, 2).

The CNN is stacked on top of a BDLSTM in an end-to-end
manner. The BDLSTM had (2) LSTM layers, each layer had
two LSTM cells that implements the forward and backward
passes of inputs in the network, and each LSTM cell had (256)
hidden units. Fig. 3 next shows the general architecture of the
model.

The processing of the model starts with the CNN accepting
input images of size (128×32). Therefore, prior to injecting the
images into the model, these images were resized to a size of
(128×32) units. The resizing process changes the shape of the
input images by compressing it and shifting the location of the
text. However, CNNs are shift invariant and they are tolerable
to such variances. Fig. 4 below shows the effects of applying
the resizing process on a sample word.

125 | P a g e
www.ijacsa.thesai.org

https://github.com/JTCodeStore/TextIimagesToolkit

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Fig 3. General Architecture of the Proposed Model, which is Comprised of (5) Layers CNN, (2) Layers BDLSTM and CTC Loss Function.

Original size: 35 x 84 New size: 128 x 32

Original size: 41 x 88 New size: 128 x 32

Original size: 27 x 67 New size: 128 x 32

Fig 4. Input Images before and after Resizing.

Once an input image is received by the model, the CNN
implements four main operations: Convolution, Batch
Normalization, Activation and Max Pooling.

The convolution process extracts the relevant features from
the input image through the filters and passes the values to a
batch normalization process to mitigate the effects of
covariance shift [22]. Next, ReLU activation function is
implemented to eliminate negative values and to minimize the
effects of vanishing gradients. The results of the activation
function are passed to a max-pooling layer which performs sub
sampling by selecting the most relevant features and gradually
downsizes the input size into an array of (32 time-steps×256
features). Fig. 8(a-f) in Appendix (A) show the output of the
convolution layers for the sample Arabic word (al rasmeya
 These figures demonstrate how the earlier layers in .(”الرسمیة“
the CNN captures detailed features while the later layers
capture more generalized features. In addition, Fig. 8(f) in the
appendix shows the output of the final layer of the CNN which
demonstrate how the features are concentrated in the lower

indexes (0-10 of 32) of the output array as the words length in
the experiments ranged between (7-10) characters.

The final output of the CNN is passed to the BDLSTM
network, which learns the sequence or the temporal dimension
in the input image. The output of the BDLSTM network is an
array of size (32-observations×vocabulary size) knowing that a
single character in the input text might be represented by one
or more observation sequence.

Sample outputs of the BDLSTM network for Arabic word
(al rasmeya “الرسمیة”) are presented in Fig. 8(h-j) in
Appendix (A). The figures demonstrate how the values for a
specific output sequence increased at locations that
corresponds to its index in the vocabulary that shown in Fig. 5.
This vocabulary represents the unique characters that are
represented in the custom dataset.

Next, the BDLSTM observations are passed to a CTC loss
function, which performs a probabilistic based mapping
between the observations and ground-truth labels. According
the model’s specifications, the CTC function is able to
recognize words of size (32) characters while each time step
sequence can represent one of the (38) different characters that
are shown in Fig. 5.

Finally, the CTC function computes the loss value and back
propagates it to the network to initiate the end-to-end learning
process. RMSOptimizer [23] was used to implement the
optimization process in the proposed model.

Fig 5. List of Unique Characters in the Compiled Dataset.

126 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

VI. EXPERIMENTS AND RESULTS
To train and examine the proposed model, a TensorFlow

based implementation was prepared using Python, this
implementation is made publicly available at 3.

The model was trained and tested using Google Colab
platform. That platform provides computing environments that
includes hardware acceleration that can be used to train
different DL models. The environment that were used for
implementing the model in this work had the following
specifications:

• Python version: 3.6.

• Tensor flow version: 2.0.

• Hardware Accelerator: 12GB NVIDIA Tesla K80 GPU.

• RAM: 12.72 GB.

• HDD: 64.4 GB.

To evaluate the model, CRR and Words Recognition Rate
(WRR) measures were employed, the formulas of these
measures are shown below:

𝐂𝐑𝐑 =
∑𝐋𝐞𝐯𝐞𝐧𝐬𝐡𝐭𝐞𝐢𝐧 𝐄𝐝𝐢𝐭𝐃𝐢𝐬𝐭𝐚𝐧𝐜𝐞(𝐑𝐞𝐜𝐨𝐠𝐧𝐢𝐳𝐞𝐝 𝐓𝐞𝐱𝐭,𝐆𝐫𝐨𝐮𝐧𝐝 𝐓𝐫𝐮𝐭𝐡)

𝐓𝐨𝐭𝐚𝐥 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐏𝐫𝐨𝐜𝐞𝐬𝐬𝐞𝐝 𝐂𝐡𝐚𝐫𝐚𝐜𝐭𝐞𝐫𝐬

𝐖𝐑𝐑 =
𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐜𝐨𝐫𝐫𝐞𝐜𝐭𝐥𝐲 𝐢𝐝𝐞𝐧𝐭𝐢𝐟𝐢𝐞𝐝 𝐰𝐨𝐫𝐝𝐬

𝐓𝐨𝐭𝐚𝐥 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐰𝐨𝐫𝐝𝐬

The model was examined through a number of testing
scenarios using the five datasets that were presented in Table I.
For this purpose, the datasets were split into a (train, validate,
and test) segments using a ratio of (80%, 10%, and 10%)
respectively. Several testing scenarios were implemented to
examine the model’s performance and the results of these
testing scenarios are shown in Table III below.

Initially, the model was tested using a relatively small
single-font dataset (i.e. dataset #1 in Table I). The results of
this test were (97.5%) for CRR and (85.18%) for WRR. Next,
the model was tested on a larger dataset with the same font
setting (dataset #2 in Table I) and the CRR success rate
enhanced to (99.04%) while the WRR achieved (94.29%). In
general, the model achieved good results when it was
examined on a single-font type dataset regardless of the type or
the formatting style of the tested font.

To examine the model’s performance on a more diverse
dataset, it was tested using a two-fonts dataset (dataset #3 in
Table I). Using this dataset set, the model achieved a CRR rate
of (99.88%) and a WRR rate of (99.2%).

The high success rates that were achieved in the previous
testes were further challenged by testing the model using an
extended dataset that is comprised of two million word samples
(i.e. dataset #4 in Table I). In this testing scenario, the model
achieved good results in CRR (99.27%) but it demonstrated a
minor degradation in WRR (94.32%). This behavior can be

3 https://github.com/JTCodeStore/ArabicDLOCR

justified by emphasizing that the WRR is highly dependent on
the accuracy of the CRR, and a minor flaw in the recognition
of a single character shall affect the recognition of all the
related words, especially that the dataset samples included
relatively long words (a length of 7–10 characters).

To evaluate the model more accurately in terms of
overfitting, it was trained on a new dataset that has no
duplication (dataset #5 in Table I). Using this disjoint dataset,
the performance of the model demonstrated a minor
degradation in the reported accuracy, but it still achieved good
results which were (98.76%) for CRR and (90.22%) for WRR.

To test the model’s generalization capabilities, an
experiment was performed using a new dataset with words
length of (5-6) characters. Although the model was not trained
on this length of words, it was able to achieve a CRR success
rate of (98.71%) and a WRR success rate of (92.4%).
Obviously, this was an indication that the model can be
generalized beyond the samples that were used in the training
process.

In the same aspect, a pilot testing for the model was
implemented on the external APTI database [15]. In this
experiment, an Arabic typesetting font of size (10) was
selected. Although the model was not trained or fine-tuned on
this database, it was able to achieve a CRR success rate of
(85.15%), while the WRR success rate was degraded to
(23.7%). Again, this performance degradation can be justified
by the high correlation between the WRR and the accuracy
levels of CRR.

Finally, the behavior of the model was tested on some
noisy datasets. For this purpose, a selected set of test samples
were induced with salt and pepper (S&P) noise and Speckle
noise. Fig. 6 below shows a sample word before and after noise
transformations.

For this last experiment, the model achieved an acceptable
CRR success rate of (82.01%) for the induced S&P noise,
while it achieved (77.29%) for both S&P and Speckle noises.
However, for the WRR success rates, the model reported
(21.48%) for S&P alone and (14.18%) for both noises; S&P
and Speckle. Fig. 7 below summarizes the model’s
performance in all conducted experiments.

The conducted experiments show that the model was able
to achieve high accuracy results when it was trained on a
specific set of fonts. This might be an indication that the
number of the supported fonts could be extended using the
same intuitions in a more complex model i.e. larger number of
parameters. In addition, several techniques can be incorporated
to enhance the WRR accuracy level that has degraded under
some testing scenarios. This might include employing post-
processing techniques such as language models in order to
enhance the overall accuracy of the WRR. In addition, various
image-preprocessing techniques can be examined to mitigate
the effects of noisy environments.

127 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

TABLE III. PERFORMANCE RESULTS OF THE MODE

Experiment Name Dataset
Validation Accuracy % Test Accuracy %

CRR WRR CRR WRR

1 Single font model 1 98.37 90.28 97.5 85.18

2 Single font model – larger dataset 2 99.148 94.66 99.044 94.29

3 Two fonts model 3 99.93 99.5 99.88 99.2

4 (18) fonts, duplicate words across fonts types 4 99.38 94.84 99.27 94.32

5 (18) fonts, unique words across the dataset 5 98.81 90.53 98.76 90.22

6 Testing model generated in expriment 5 above on five character words - - - 98.71 92.4

7 Testing model generated in expriment 5 above on APTI dataset – new font - - - 85.15 23.7

8 Testing model generated in expriment 5 above with salt & pepper noise. - - - 82.01 21.48

9 Testing model generated in expriment 5 above with salt & pepper and speckle
noise. - - - 77.29 14.18

Original image Salt and Pepper noise Salt and Pepper + Speckle
noises

Fig 6. Sample Images with Noise Adjustments.

Fig 7. Model Performance for All Conducted Experiments.

VII. CONCLUSION
In this work, a hybrid DL model for recognizing Arabic

text in images was presented. The objective of this work was to
examine the models competency in recognizing Arabic text
that was printed using multiple font types, including fonts that
exhibit high cursive nature that mimic Arabic handwriting
script. The proposed model demonstrated good CRR in most
testing scenarios including the testing on a disjoint dataset, the
testing on a pilot external database and the testing under noisy
environments. The overall performance of the model is open
for more enhancements through incorporating language models
to enhance the overall WRR accuracy as well as using image
processing techniques to mitigate the effects of noise in
images. The same model can also be examined in recognizing
Arabic handwritten text. Such measures might be investigated
in a future work.

REFERENCES
[1] M. Alghamdi and W. Teahan, “Printed Arabic script recognition: A

survey,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 9, pp. 415–428,
2018, doi: 10.14569/ijacsa.2018.090953.

[2] A. D. Riaz Ahmad, Saeeda Naz, Muhammad Afzal, Sheikh Rashid,
Marcus Liwicki, “A Deep Learning based Arabic Script Recognition
System,” Int. Arab J. Inf. Technol., no. October, 2017.

[3] A. A. Shahin, “Printed Arabic Text Recognition using Linear and
Nonlinear Regression,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 1, pp.
227–235, 2017, doi: 10.14569/ijacsa.2017.080129.

[4] A. E. Hassanien, M. F. Tolba, and A. T. Azar, “Isolated Printed Arabic
Character Recognition Using KNN and Random Forest Tree Classifier,”
Commun. Comput. Inf. Sci., vol. 488, no. November, pp. 10–17, 2014,
doi: 10.1007/978-3-319-13461-1.

[5] A. Zoizou, A. Zarghili, and I. Chaker, “A new hybrid method for Arabic
multi-font text segmentation, and a reference corpus construction,” J.
King Saud Univ. - Comput. Inf. Sci., 2018, doi:
10.1016/j.jksuci.2018.07.003.

[6] A. Graves, “Offline Arabic Handwriting Recognition with
Multidimensional Recurrent Neural with Multidimensional Recurrent
Neural Networks,” Adv. Neural Inf. Process. Syst., no. January 2008,
2008, doi: 10.1007/978-1-4471-4072-6.

[7] M. Pechwitz, S. Snoussi, and N. Ellouze, “IFN / ENIT-database of
handwritten Arabic words,” no. May 2014, 2002.

[8] H. A. Bodour Alreha,Najla Alsaedi, “Historical Arabic Manuscripts
Text Recognition Using Convolutional Neural Network,” Conf. Data
Sci. Mach. Learn. Appl. Hist., 2020.

[9] A. Mohsin and M. Sadoon, “Developing an Arabic Handwritten
Recognition System by Means of Artificial Neural Network,” J. Eng.
Appl. Sci., vol. 15, no. 1, pp. 1–3, 2019, doi: 10.36478/jeasci.2020.1.3.

[10] K. Younis and A. Khateeb, “Arabic Hand-Written Character
Recognition Based on Deep Convolutional Neural Networks,” Jordanian
J. Comput. Inf. Technol., vol. 3, no. 3, p. 186, 2017, doi:
10.5455/jjcit.71-1498142206.

[11] M. Torki, M. E. Hussein, A. Elsallamy, M. Fayyaz, and S. Yaser,
Window-Based Descriptors for Arabic Handwritten Alphabet
Recognition: A Comparative Study on a Novel Dataset. 2014.

[12] H. E.-B. Ahmed El-Sawy, Mohamed Loey, “Arabic Handwritten
Characters Recognition using Convolutional Neural Network,” WSEAS
Trans. Comput. Res., no. 5, pp. 11–19, 2017, doi:
10.1109/IACS.2019.8809122.

[13] S. A. Mahmoud et al., “KHATT: Arabic offline Handwritten Text
Database,” Proc. - Int. Work. Front. Handwrit. Recognition, IWFHR, pp.
449–454, 2012, doi: 10.1109/ICFHR.2012.224.

[14] M. Jain, M. Mathew, and C. V. Jawahar, “Unconstrained OCR for Urdu
using deep CNN-RNN hybrid networks,” Proc. - 4th Asian Conf. Pattern

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9

A
cc

ur
ac

y

Test Scenario

CRR WRR

128 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Recognition, ACPR 2017, pp. 753–758, 2018, doi:
10.1109/ACPR.2017.5.

[15] F. Slimane, S. Kanoun, H. El Abed, A. M. Alimi, R. Ingold, and J.
Hennebert, “ICDAR2013 competition on multi-font and multi-size
digitally represented arabic text,” Proc. Int. Conf. Doc. Anal.
Recognition, ICDAR, no. August, pp. 1433–1437, 2013, doi:
10.1109/ICDAR.2013.289.

[16] F. K. Jaiem, S. Kanoun, M. Khemakhem, H. El Abed, and J. Kardoun,
“Database for Arabic printed text recognition research,” Lect. Notes
Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 8156 LNCS, no. PART 1, pp. 251–259, 2013, doi:
10.1007/978-3-642-41181-6_26.

[17] A. G. Al-Hashim and S. A. Mahmoud, “Benchmark database and GUI
environment for printed arabic text recognition research,” WSEAS
Trans. Inf. Sci. Appl., vol. 7, no. 4, pp. 587–597, 2010.

[18] R. Davidson, R., Hopely, “Arabic and Persian Training and Test Data
Sets,” 1997.

[19] L. Alhomed and K. Jambi , “A Survey on the Existing Arabic Optical
Character Recognition and Future Trends ,” Int. J. Adv. Res. Comput.
Commun. Eng., vol. 7, no. 3, pp. 78–88, 2018, doi:
10.17148/IJARCCE.2018.7213.

[20] I. Ahmed, S. A. Mahmoud, and M. T. Parvez, “Guide to OCR for Arabic
Scripts,” Guid. to OCR Arab. Scripts, no. November 2017, 2012, doi:
10.1007/978-1-4471-4072-6.

[21] H. Scheidl, “Handwritten Text Recognition in Historical Documents,”
2011.

[22] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” 32nd Int. Conf.
Mach. Learn. ICML 2015, vol. 1, pp. 448–456, 2015.

[23] G. Hinton, “Neural Networks for Machine Learning - Lecture 6a -
Overview of mini-batch gradient descent.,” 2012, doi:
10.1017/9781139051699.031.

APPENDIX A

A. CNN and RNN Layers Sample Outputs

(a) CNN Layer [1,32]. (b) CNN Layer [2,32]. (c) CNN Layer [3,32]. (d) CCN Layer
[4,32].

(e) CCN
Layer [5,32].

129 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

f: Final Output of the CNN (32 Time Steps × 256 Features).

g: Time step [1 of 32] – Highest Observation at Vocabulary Position [7] = Character Alef.

h: Time step [2 of 32] – Highest Observation at Vocabulary Position [31] = Character Laam.

i: Time Step [3 of 32] – Highest Observation at Vocabulary Position [31] = Also Character Laam.

j: Time Step [4 of 32] – Highest Observation at Vocabulary Position [17] = Alphabet Raa, also High Value at Position [31] Character Laam.

Fig 8. (a-j) CNN and RNN Layers Sample Outputs.

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

 ي ى و ه ن م ل ك ق ف ـ غ ع ظ ط ض ص ش س ز ر ذ د خ ح ج ث ت ة ب ا ئ إ ؤ أ آ ء

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

 ي ى و ه ن م ل ك ق ف ـ غ ع ظ ط ض ص ش س ز ر ذ د خ ح ج ث ت ة ب ا ئ إ ؤ أ آ ء

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

 ي ى و ه ن م ل ك ق ف ـ غ ع ظ ط ض ص ش س ز ر ذ د خ ح ج ث ت ة ب ا ئ إ ؤ أ آ ء

0

5

10

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

 ي ى و ه ن م ل ك ق ف ـ غ ع ظ ط ض ص ش س ز ر ذ د خ ح ج ث ت ة ب ا ئ إ ؤ أ آ ء

130 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Challenges related to arabic text recognition
	III. Related Work
	IV. The Compiled dataset
	V. Proposed model
	VI. experiments and results
	VII. Conclusion
	References

	APPENDIX A
	A. CNN and RNN Layers Sample Outputs

