
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 8, 2020 

An Intermediate Representation-based Approach for 
Query Translation using a Syntax-Directed Method 

Hassana NASSIRI1, Mustapha MACHKOUR2, Mohamed HACHIMI3 

Laboratory of the Computing Systems and Vision, Laboratory of Engineering Sciences 
University Ibn Zohr, Agadir, Morocco 

 
 

Abstract—We aspire to make one query reasonably sufficient 
to extract data regardless of the data model used in our research. 
In such a way, users can freely use any query language they 
master to interrogate the heterogeneous database, not necessarily 
the query language associated with the model. Thus, overcoming 
the needing to deal with multiple query languages, which is, 
usually, an unwelcome matter for non-expert users and even for 
the expert ones. To do so, we proposed a new translation 
approach, relying on an intermediate query language to convert 
the user query into a suitable query language, according to the 
nature of data interrogated. Which is more beneficial rather than 
repeat the whole process for each new query submission. On the 
other hand, this empowers the system to be modular and divided 
into multiple, more flexible, and less complicated components. 
Therefore, it increases possibilities to make independent 
transformations and to switch between several query languages 
efficiently. By using our system, querying each data model with 
the corresponding query language is no longer bothersome. As a 
start, we are covering the eXtensible Markup Language (XML) 
and relational data models, whether native or hybrid. Users can 
retrieve data sources over these models using just one query, 
expressed with either the XML Path Language (XPath) or the 
Structured Query Language (SQL). 

Keywords—Data Model; Relational Database; eXtensible 
Markup Language (XML); translation; model integration; 
intermediate representation; ANTLR (ANother Tool for Language 
Recognition) 

I. INTRODUCTION 
The relational database has been the most data model used 

in most organizations to store and manage data. Likewise, the 
XML (eXtensible Markup Language) is progressively utilized 
as a universal solution to exchange data over the internet. At 
which point, many projects, and studies have been interested in 
integrating them and find means to interrogate both data. Some 
researchers focused on storing and querying XML data using a 
relational database system [1] [2]. Some others attempt to 
create general systems to manage XML, among other data 
formats [3]. However, approaches mentioned above have 
considerable advantages indeed but, along with limitations too, 
to some degree [4]. 

Nevertheless, by exploring some other orientations to query 
heterogeneous databases, especially those based on query 
translation, we perceived some related aspects to our 
intentions. Accordingly, adopting a translation tool can 
efficiently meet our aim, and using a syntax-directed approach 
would be a correct solution. To empower the process, we 
generate an intermediate query language that reflects the 

logical interpretation of the query. We called it the universal 
query language (UQL); a transitional phase that provides an 
intermediate representation to switch between steps accurately, 
instead of converting the source query language directly to the 
target query language. The system is capable of performing 
queries against XML and relational databases and against 
hybrid ones too. 

Henceforth, there is no need to be familiar with the many 
query languages to access data from variant data models, nor to 
express queries with precisely the suitable query language that 
corresponds to the data model used to structure that data. One 
query represented with either the Structured Query Language 
(SQL) or The XML Path Language (XPath) is moderately 
enough [5]. 

We are relying on the syntax-directed translation method, 
in which the parser drives the source query language 
translation. Therefore, semantic analysis and interpretation are 
performed based on the syntax structure. For the hands-on part 
in building language processing tools, handwriting the parser 
may work, but it is obviously not the best approach in complex 
cases. Alternately, using a powerful parser generator can save 
us time, effort, and resources as it is capable of automating 
momentous phases along the process. For that, to implement 
the parser, we are using ANTLR (ANother Tool for Language 
Recognition). It takes as input a grammar that specifies a 
language and generates as output source code for a recognizer 
for that language. A language is specified using a Context-Free 
Grammar (CFG), expressed using Extended Backus–Naur 
Form (EBNF). 

The paper is organized as follows: This introduction 
introduces the general context of the project. Section 2 brings 
in some preliminaries and terminologies. Section 3 presents our 
objects and summarizes the mechanisms of the overall system 
and the translation process. Section 4 explores the language 
recognition and processing phase. Section 5 presents the 
intermediate representation phase. Section 6 discusses the data 
extraction phase and the nature of the database understudy that 
can be handled by the system. Finally, Section 7 concludes. 

II. PRELIMINARIES 

A. Describing a Language using a Grammar 
A regular expression is quite useful but also leave little to 

no room for extension. Not all patterns can be described using 
regular expressions. The most obvious limitation is the lack of 
recursion. Statements can quickly turn out messy and hard to 
maintain [6] [7]. Thus, regular expressions are not quite 

563 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 8, 2020 

enough. Instead, CFGs, the type-2 grammar in Formal 
Grammar Hierarchy classification as known as Chomsky 
Hierarchy [8], would be a great deal to define the syntax of a 
language. 

Formally, A CFG [9] is a 4-tuple (N; ∑; S; P) where: 

• N is a finite set of variables called nonterminals; 

• ∑ is a finite set of terminals; 

• S: An axiom is it the start nonterminal 

• P is a finite set of productions (rewrite rules). 

Each production has the form N→ (N ∪ ∑) ∗ 

The head consists of a single nonterminal, and the body is a 
sequence of terminals and nonterminals. 

We use the CFG to replace nonterminals by a string of 
nonterminals and terminals. The language of grammar is the 
set of strings it generates. A grammar could tell us the valid 
options to put together a piece of code for a given language and 
help us recognizing and identifying typical portions structures 
quickly. 

B. Grammar Notation 
There are many ways to describe a grammar, but we are 

using EBNF [10]. It is an extended version of the BNF 
(Backus-Naur form), an unambiguous, formal and 
mathematical way to specify CFGs. It is more concise and 
widely used as a formalism to describe a formal language 
grammar with a precise structure. It can be considered a 
metalanguage as it is a powerful way to define other languages. 
An EBNF grammar of a language consists of a set of terminal 
symbols and a set of productions for nonterminals, which 
shows the way terminal symbols are combined into a proper 
sequence. 

C. Another Tool for Language Recognition (ANTLR) 
It is possible to handwrite a parser from scratch, but this 

process can be complex, error-prone, and hard to change. 
Instead, there are many parser generators like Bison and Yacc 
[11] that take a grammar expressed in a domain-specific way, 
and generate code to parse that language. We are using 
ANTLR [12] [13] [14], It is a parser generator that uses LL(*) 
parsing [15] [16]. It takes a grammar as input and generates 
parsers that can build and walk parse trees and generate 
abstract syntax trees that can be further processed with tree 
parsers. From antlr.org, ANTLR is a powerful parser generator 
for reading, processing, executing, or translating structured text 
or binary files. Also, ANTLRWorks [17] is a great ANTLR 
grammar development environment. 

ANTLR is used by several popular frameworks, products, 
and projects, like: 

• Apple, Oracle, NetBeans IDE, Eclipse projects (e.g., 
XText). 

• Hive and Pig Languages use it to parse Hadoop queries, 

• Twitter uses it to parse queries. 

• Hibernate, Drools, JBoss, Groovy, Jython. 

III. AIMS AND MECHANISMS 
A database is a set of information stored by a tool 

according to a data model, a defined structure. To extract and 
manipulate this information, we need a query language. 
Sources can be stored according to any model; this means that 
it can be heterogeneous. Now, let us assume that we have faced 
one of these scenarios: (1) A user who has some data sources 
in XML, and knows only SQL. (2) A user who masters XPath 
and wants to access relational data. The common point 
between these two use cases is that the user query language 
does not match the interrogated data model. It is not easy to 
retrieve data because the appropriate query language is needed, 
which is XPath, for example, for the first case, and SQL for the 
second one. Besides, most of the time, users cannot master all 
of these query languages all at once. Each query language has a 
particular specification and probably challenging to learn. It is 
where our proposed system comes in. To overcome the 
dependencies between the data model and the query language, 
we develop a system to extract data regardless of the nature of 
the model used (XML or relational). Using only one single 
query posed freely with any query languages (SQL or XPath), 
as explained in Fig. 1. 

Fig. 2 depicts the principle of the translation proposed in 
our approach based on an intermediate representation in place 
of a direct translation, which is beneficial for other 
interpretations and independent transformations. It strengthens 
the system to be more independent and modular. 

As shown in Fig. 3, it all begins from the user, who is free 
to choose between two different query languages, SQL, or 
XPath, to express the query and submit it to the reader. The 
latter provides a uniform interface between users and the 
system, and read their queries. At the outset, we are dealing 
with characters, but we aspire to get an abstract syntax tree that 
enables us to perform other actions for analysis. That is where 
the language recognizer phase (Section 4) takes action. It 
consists of two parsers, one to parse SQL queries and the other 
to parse XPath queries. For that, we developed a lexer 
grammar and a parser grammar for each query language. At the 
end of this stage, the output is a parse tree that will be fed to 
the Analyzer, where the abstract syntax tree is built and 
processed. Then, selecting only the relevant information to 
develop our universal query language in the UQL Builder 
phase using the mapping rules module to map each part of the 
query with a suitable part in the UQL. After that comes the role 
of the translator in translating it into the target language. Then, 
the converted query is executed in the data extraction phase. 

 
Fig. 1. One Query to Retrieve Data from XML and/or Relational Data 

Models [18]. 

 

564 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 8, 2020 

 
Fig. 2. The Principal of the Translation [19]. 

 
Fig. 3. The Query Translation Process. 

IV. LANGUAGE RECOGNITION AND PROCESSING 
The previous section presents the overview of the 

translation principle briefly, and the phases pursued to convert 
the source query into the target query. This section describes 
the several steps in the language recognition and processing 
phase. 

ANTLR admit three variants of grammar specifications: 
lexers, parsers, and tree walkers or tree-parsers, as shown in 
Fig. 4. All of them are alike, and the generated files behave the 
same way because ANTLR uses LL(k) analysis for all of them. 

The lexer reads the input character by character and 
translates it into a sequence of syntactical units called Tokens. 
Then, fed to the parser, which takes a stream of tokens and 
produces a parse tree according to the grammar rules. 
Afterward, the tree walker process the Parse Tree produced. 

A. Query Language Specifications 
The first step is the grammar. Because we are covering 

XML and relational database models, we need to define the 
grammar of their query languages, namely XPath and SQL. 

SQL is a powerful query language for managing and 
manipulating data and can fit almost every interaction aspect. 

However, as the objective herein is interrogating data, we are 
focusing specifically on the select command, whose syntax is 
as follows in Fig. 5. Similarly, we are focusing on the most 
critical construct of XPath, the location path. Fig. 6 illustrates 
its EBNF notation. 

B. Diagrammatic Form 
ANTLR uses a simple EBNF-like syntax to define the 

grammar. For example, a column's syntax in a select clause can 
be written, as shown in Fig. 7, and presented in Fig. 8 using the 
railroad diagram. 

Lexer rules start with an uppercase letter, and parser rules 
start with a lowercase letter. 

Each rule has one or more patterns that it matches. 

The K_AS? Means matches zero or one occurrence of 
K_AS.  

‘|’ mean alternative patterns for the rule. 

C. Parsing Queries 
Parsing has the following phases: lexical analysis, syntactic 

analysis, semantic analysis. In the lexical Analysis 
(Tokenization), the lexer split up the user query into tokens and 
defines precisely how these tokens can be recognized. It reads 
a character stream as an input and generates a token stream as 
an output. Some tokens can be discarded like whitespaces; they 
are ignored during parsing. In the syntactic analysis, the parser 
figures out the relationship between the tokens that the lexer 
has produced to generate a parse tree, a data structure that 
reflects the input query's syntactic structure. In the Semantic 
analysis, the parse tree is checked for invalid semantic. 

 
Fig. 4. Parsing Workflow. 

 
Fig. 5. EBNF for SQL Select Grammar [20]. 

 

select_clause ::= 
SELECT ( ALL | DISTINCT )? ( <star> | ( <select sublist> ( 

<comma> <select sublist> )* ) ) 
from_clause ::=  

FROM ( <table reference> ( <comma> <table reference> )* ) 
where_clause ::= 

WHERE <condition> 
group by clause ::= 

GROUP BY ( ROLLUP <lparen> <expression list> <rparen> | 
<expression list> ) 
having clause ::=  

HAVING <condition> 
order by clause ::= 

ORDER BY <sort specification> ( <comma> <sort 
specification> )* 

565 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 8, 2020 

 
Fig. 6. EBNF for XPath Location Path [21]. 

The next section explores the process of generating the 
intermediate query language after parsing the source query, 
which is an in-between phase that helps generates the target 
query quickly. Section 6 provides further details regarding how 
the extraction works. 

 
Fig. 7. ANTLR EBNF Syntax for a column 

 
Fig. 8. Syntax Diagram for Column. 

V. INTERMEDIATE REPRESENTATION 
The process of building the UQL starts from the output of 

the previous phase: the language recognizer. Then more steps 
have to be proceeded to get brief details that are needed, short, 
and to the point to efficiently generate the UQL. Besides, the 
parser generator builds a Concrete Syntax Tree (CST), not an 
Abstract Syntax Tree (AST). The CST reflects exactly the form 
of the grammar, every detail described in the syntax. It is like 
another representation of the grammar. That may seem easy to 
create but difficult to analyze and performed further 
interpretation with it. Whereas the AST contains only the 
mandatory elements needed and discard irrelevant details and 
extra information. It is more clear, compact, and easy to 
process than a parse tree. It is almost a direct translation of the 
grammar. We can get the abstract syntax from concrete syntax 
[22] [23]. After extracting the AST, all we need is to unify the 
ASTs and finally use the mapping rules to map every part of 
the unified AST and easily generates the UQL. 

A. Parse Tree 
A parse tree or derivation tree is a data structure that 

matches the syntactic structure of the input.  For example, the 
SQL select query: “select first_name, last_name from 
Employee where id = 1;” has the following parse tree (Fig.9), 
presented in tree form in Fig. 10. 

B. Abstract Syntax Tree 
An AST is a variant of parse tree where we eliminate extra 

information and discard irrelevant details. Fig. 11 shows the 
AST for the query. 

This example illustrates the output from a console, but we 
developed an interface ([5]) to present the analysis better. 

 

LocationPath ::=  
RelativeLocationPath  
| AbsoluteLocationPath 

AbsoluteLocationPath ::=  
'/' RelativeLocationPath?  
| AbbreviatedAbsoluteLocationPath 

RelativeLocationPath::=  
Step  
| RelativeLocationPath '/' Step  
| AbbreviatedRelativeLocationPath 

Step ::=  
AxisSpecifier NodeTest Predicate*  
| AbbreviatedStep 

AxisSpecifier ::= AxisName '::'  
| AbbreviatedAxisSpecifier 

AxisName ::=  
‘ancestor’  
| ‘ancestor-or-self'  
| ‘attribute’  
| ‘child’  
| ‘descendant’  
| ‘descendant-or-self'  
| ‘following’  
| ‘following-sibling’  
| ‘namespace’  
| ‘parent’  
| ‘preceding’  
| "preceding-sibling’  
| ‘self’ 

NodeTest ::=  
NameTest  
| NodeType ‘(' ‘)'  
| "processing-instruction' ‘(' Literal ')' 

Predicate ::=  
‘[' PredicateExpr ‘]' 

PredicateExpr ::=  
Expr 

AbbreviatedAbsoluteLocationPath ::=  
'//' RelativeLocationPath 

AbbreviatedRelativeLocationPath ::=  
RelativeLocationPath '//' Step 

AbbreviatedStep ::=  
‘.’  
| ‘..’ 

AbbreviatedAxisSpecifier ::=  
'@’? 

column  
 : '*' 
  | table_name '.' '*' 
  | expression ( K_AS? column_alias )? 

; 

 

select first_name, last_name from Employee where id = 1; 
-- Reading data... 
Your Query Language is: SQL 
Columns: first_name last_name  
Tables: Employee  
Conditions : id=1 

566 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 8, 2020 

 
Fig. 9. Parse Tree for “Select First_Name, Last_Name from Employee 

where id = 1;”. 

 
Fig. 10. Parse Tree in Tree Form. 

 
Fig. 11. Abstract Syntax Tree. 

We get the following query after applying the unification 
principle illustrated in Fig. 12, along with the mapping rules to 
generate the UQL. We will take the same example from [5]. 

 

 
Fig. 12. The unified Abstract Syntax Tree. 

 
Fig. 13. XML Schema. 

(select_statement (select_core (selectClause select (list_columns (column 
(expression (column_name (any_name first_name)))) , (column (expression 
(column_name (any_name last_name)))))) (fromClause from (list_tables 
(table_or_subquery (table_name (any_name Employee))))) (whereClause 
where (list_conditions (expression (expression (column_name (any_name 
id))) (comp_operator =) (expression (literal_value 1))))) ;)) 

'- select_statement 
   |- selectClause 
   |  |- TOKEN[type: 63, text: select] 
   |  '- columns 
   |     |- anColumn 
   |     |  '- TOKEN[type: 67, text: first_name] 
   |     |- TOKEN[type: 2, text: ,] 
   |     '- anColumn 
   |        '- TOKEN[type: 67, text: last_name] 
   |- fromClause 
   |  |- TOKEN[type: 41, text: from] 
   |  '- tables 
   |     '- TOKEN[type: 67, text: Employee] 
   |- whereClause 
   |  |- TOKEN[type: 66, text: where] 
   |  '- conditions 
   |     |- condition 
   |     |  '- TOKEN[type: 67, text: id] 
   |     |- comp_operator 
   |     |  '- TOKEN[type: 6, text: =] 
   |     '- lit_value 
   |        '- TOKEN[type: 68, text: 1] 
   '- TOKEN[type: 1, text: ;] 

<?xml version="1.0" encoding="UTF-8"?> 
<UQLroot> 
  <Object> 
    <ObjectName>emps</ObjectName> 
    <Properties> 
      <Property>nom</Property> 
    </Properties> 
  </Object> 
</UQLroot> 

 

<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
elementFormDefault="qualified"> 
  <xs:element name="UQLroot"> 
    <xs:complexType> 
      <xs:sequence> 
        <xs:element ref="Object"/> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="Object"> 
    <xs:complexType> 
      <xs:sequence> 
        <xs:element ref="ObjectName"/> 
        <xs:element ref="Properties"/> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="ObjectName" type=" xs:string "/> 
  <xs:element name="Properties"> 
    <xs:complexType> 
      <xs:sequence> 
        <xs:element ref="Property"/> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="Property" type=" xs:string "/> 
</xs:schema> 

567 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 8, 2020 

Now just one more step to complete this phase is the XML 
document validation. A well-formed XML document is one 
that conforms to the syntactic rules of the XML language. 
When an XML document has an associated DTD (Document 
Type Definition) or XSD (XML Schema Definition) and 
respects it, it is said to be valid. Validation is a way to verify 
that the document conforms to a grammar. We use the XML 
Schema depicted in Fig. 13 to describe the structure of our 
XML document. 

VI. DATA EXTRACTION 
The system can access data from heterogeneous data 

models, namely relational and XML, since the relational 
database has been the popular option to store and manage data 
since 1970 [24]. It is still the most data model used in most 
organizations and powerful database systems [25]. Likewise, 
XML is widely used as a standard to exchange data over the 
internet, and the Native XML Database tends to be a practical 
solution for variable data [26] and provides full support for 
XML query languages such as XPath or XQuery [27]. The 
system can also access data from a hybrid database, as major 
relational database management systems (DBMS) are 
appealing for hybrid engines so that they fit XML into a 
relational database environment [3], for instance, Oracle [28] 
[29] [30], IBM [31] and Microsoft. Furthermore, the extension 
to SQL for XML, SQL/XML, is making good advancements 
[32] [33]. 

AS shown in Fig. 14, after executing the query against the 
suitable database, we perform other transformations to 
determine what is to be done with the data, and how to go 
about doing it. Lastly, format the answer according to the user 
preference, if the choice is indicated. If it is not the case, we 
apply the obvious choice, a tree form for XML sources, and 
tabular form for relational and hybrid databases. The tabular 
layout is the selected format by default. 

 
Fig. 14. Data Extraction Phase. 

VII. CONCLUSION AND OUTLOOK 
This paper presents our intermediate representation-based 

approach for translating queries, relying on the syntax-directed 
translation technique, to access data from heterogeneous 
sources and get the most out of each technology. The 
intermediate transition aids in empowering the system feature, 
especially in terms of independence. So that matching the data 
model with the query language corresponding remains no 
longer bothersome or a burden. Herein, we covered XML and 
relational data models, whether native or hybrid and hoping to 
incorporate others in future contributions. 

REFERENCES 
[1] Florescu and D. Kossmann, “Storing and Querying XML Data using an 

RDMBS,” IEEE Data Eng. Bull., vol. 3, pp. 27–34, 1999, [Online]. 
Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q= 
intitle:Storing+and+Querying+XML+Data+using+an+RDMBS#0. 

[2] I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, 
and C. Zhang, “Storing and querying ordered XML using a relational 
database system,” 2002 ACM SIGMOD Int. Conf. Manag. Data, 
SIGMOD’02, no. October, pp. 204–215, 2002, doi: 
10.1145/564691.564715. 

[3] M. Rys, D. Chamberlin, and D. Florescu, “XML and Relational 
Database Management Systems : the Inside Story,” SIGMOD ’05 Proc. 
2005 ACM SIGMOD Int. Conf. Manag. data, pp. 945–947, 2005. 

[4] J. Shanmugasundaram et al., “Relational databases for querying XML 
documents: Limitations and opportunities.,” Proc. 25th VLDB Conf., pp. 
302-314. Morgan Kaufmann Publishers Inc., 1999, doi: 
10.1016/j.acalib.2005.12.008. 

[5] H. Nassiri, M. Machkour, and M. Hachimi, “One query to retrieve XML 
and Relational Data,” in Procedia Computer Science, 2018, vol. 134, pp. 
340–345, doi: 10.1016/j.procs.2018.07.201. 

[6] L. G. Michael, J. Donohue, J. C. Davis, D. Lee, and F. Servant, 
“Regexes are Hard: Decision-Making, Difficulties, and Risks in 
Programming Regular Expressions,” pp. 415–426, 2020, doi: 
10.1109/ase.2019.00047. 

[7] J. C. Davis, L. G. Michael, C. A. Coghlan, F. Servant, and D. Lee, “Why 
arent regular expressions a lingua franca? An empirical study on the re-
use and portability of regular expressions,” ESEC/FSE 2019 - Proc. 
2019 27th ACM Jt. Meet. Eur. Softw. Eng. Conf. Symp. Found. Softw. 
Eng., pp. 443–454, 2019, doi: 10.1145/3338906.3338909. 

[8] N. Chomsky, “Three models for the description of language,” IRE 
Trans. Inf. Theory, vol. 2, no. 3, pp. 113–124, 1956, doi: 
10.1109/TIT.1956.1056813. 

[9] A. Cremers and S. Ginsburg, “Context-free grammar forms,” J. Comput. 
Syst. Sci., vol. 11, no. 1, pp. 86–117, 1975, doi: 10.1016/S0022-
0000(75)80051-1. 

[10] ISO/IEC 14977, “Information technology - Syntactic metalanguage - 
Extended BNF,” Int. Stand. 149771996(E), vol. 1996, pp. 1–24, 1996, 
doi: 10.1002/(SICI)1099-1670(199603)2:1<35::AID-SPIP29>3.0.CO;2-
3. 

[11] S. C. Johnson, “Yacc : Yet Another Compiler-Compiler,” Comput. Sci. 
Tech. Rep. No. 32, p. 33, 1975. 

[12] T. Parr, “The Definitive ANTLR 4 Reference,” Anim. Behav., vol. 67, 
no. 4, pp. 627–636, Apr. 2004, doi: 10.1016/j.anbehav.2003.06.004. 

[13] T. Parr, The Definitive ANTLR Reference - Building Domain Specific 
Languages. 2007. 

[14] T. Parr and K. Fisher, “LL(*): The foundation of the ANTLR parser 
generator,” Proc. ACM SIGPLAN Conf. Program. Lang. Des. 
Implement., pp. 425–436, 2011, doi: 10.1145/1993498.1993548. 

[15] T. J. Parr and R. W. Quong, “ANTLR : A Predicated- LL ( k ) Parser 
Generator,” pp. 1–21, 1994. 

[16] T. Parr, S. Harwell, and K. Fisher, “Adaptive LL(*) parsing,” ACM 
SIGPLAN Not., vol. 49, no. 10, pp. 579–598, 2014, doi: 
10.1145/2714064.2660202.  

568 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 8, 2020 

[17] Y. H. Wang and I. C. Wu, “ANTLRWorks: an ANTLR grammar 
development environment,” Softw. - Pract. Exp., vol. 39, no. 7, pp. 701–
736, 2009, doi: 10.1002/spe. 

[18] H. Nassiri, M. Machkour, and M. Hachimi, “Integrating XML and 
Relational Data,” in Procedia Computer Science, 2017, vol. 110, pp. 
422–427, doi: 10.1016/j.procs.2017.06.107. 

[19] H. Nassiri, M. Machkour, and M. Hachimi, “Querying XML and 
Relational Data,” Int. J. New Comput. Archit. their Appl., vol. 7, no. 2, 
pp. 50–55, 2017, doi: http://dx.doi.org/10.17781/P002328. 

[20] “BNF for SQL Grammar.” https://docs.jboss.org (accessed Aug. 27, 
2020). 

[21] “xpath.” https://www.w3.org/TR/xpath/ (accessed Aug. 27, 2020). 
[22] D. S. Wile, “Abstract syntax from concrete syntax,” pp. 472–480, 1997, 

doi: 10.1145/253228.253388. 
[23] I. Ráth, A. Ökrös, and D. Varró, “Synchronization of abstract and 

concrete syntax in domain-specific modeling languages: By mapping 
models and live transformations,” Softw. Syst. Model., vol. 9, no. 4, pp. 
453–471, 2010, doi: 10.1007/s10270-009-0122-7. 

[24] E. F. Codd and S. Jose, “A Relational Model of Data for Large Shared 
Data Banks,” vol. 13, no. 6, 1970. 

[25] Y. Bassil, “A Comparative Study on the Performance of the Top DBMS 
Systems,” arXiv Prepr. arXiv1205.2889, pp. 20–31, 2012, [Online]. 
Available: http://arxiv.org/abs/1205.2889. 

[26] G. Pavlovic-Lazetic, “Native XML databases vs. relational databases in 
dealing with XML documents,” Kragujev. J. Math., vol. 30, pp. 181–
199, 2007, [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/ 
download?doi=10.1.1.111.7634&amp;rep=rep1&amp;type=pdf. 

[27] W. C. W. D. March, XQuery 1 . 0 Formal Semantics, no. March. 2002. 
[28] R. Murthy and S. Banerjee, “Xml schemas in Oracle XML DB,” Proc. 

29th Int. Conf. Very large databases, vol. 29, pp. 1009–1018, 2003, doi: 
10.1016/B978-012722442-8/50094-X. 

[29] S. Banerjee, V. Krishnamurthy, M. Krishnaprasad, R. Murthy, and O. 
Corporation, “Oracle8 i - The XML Enabled Data Management System 
Oracle Corporation for XML,” vol. 2, no. 100, 2000. 

[30] M. Krishnaprasad, Z. H. Liu, A. Manikutty, J. W. Warner, V. Arora, and 
S. Kotsovolos, “Query Rewrite for XML in Oracle XML DB,” Data 
Base, 2004. 

[31] F. Ozcan, D. Chamberlin, K. Kulkarni, and J. E. Michels, “Integration of 
SQL and XQuery in IBM DB2,” Ibm Syst. J., vol. 45, no. 2, pp. 245–
270, 2006, doi: 10.1147/sj.452.0245. 

[32] A. Eisenberg, J. Melton, and O. Corp, “Advancements in SQL/XML,” 
SIGMOD Rec., vol. 33, no. 3, pp. 79–86, 2004, doi: 
10.1145/1031570.1031588. 

[33] A. Eisenberg and J. Melton, “SQL/XML is making good progress,” 
ACM SIGMOD Rec., vol. 31, no. 2, p. 101, 2002, doi: 
10.1145/565117.565141. 

 

569 | P a g e  
www.ijacsa.thesai.org 


	I. Introduction
	II. Preliminaries
	A. Describing a Language using a Grammar
	B. Grammar Notation
	C. Another Tool for Language Recognition (ANTLR)

	III. Aims and Mechanisms
	IV. Language Recognition and Processing
	A. Query Language Specifications
	B. Diagrammatic Form
	C. Parsing Queries

	V. Intermediate Representation
	A. Parse Tree
	B. Abstract Syntax Tree

	VI. Data Extraction
	VII. Conclusion and Outlook

