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Abstract—With the growth in the smartphone market, many 

applications can be downloaded by users. Users struggle with the 

availability of a massive number of mobile applications in the 

market while finding a suitable application to meet their needs. 

Indeed, there is a critical demand for personalized application 

recommendations. To address this problem, we propose a model 

that seamlessly combines content-based filtering with application 

profiles. We analyzed the applications available on the Google 

Play app store to extract the essential features for choosing an 

app and then used these features to build app profiles. Based on 

the number of installations, the number of reviews, app size, and 

category, we developed a content-based recommender system 

that can suggest some apps for users based on what they have 

searched for in the application’s profile. We tested our model 

using a k-nearest neighbor algorithm and demonstrated that our 

system achieved good and reasonable results. 

Keywords—Application profile; content-based filtering; Google 

play; mobile applications; recommender systems 

I. INTRODUCTION 

Recent years have witnessed massive growth in mobile 
devices with an increasing number of users as mobile devices 
have become part of every component of modern life. The 
smartphone market has grown dramatically, and users can 
now take advantage of various features in applications, which 
can easily be obtained from centralized markets, such as 
Google Play. Google Play is Google's official store and portal 
for Android apps that was launched in 2008 and accumulated 
more than 1 million downloadable and ratable applications 
now [1]. In December 2018, the number of available apps in 
the Google Play App Store was nearly 2.6 million [2]. 

Due to the substantial and growing number of available 
mobile applications in application stores, it becomes necessary 
to provide a system that identifies user interest based on what 
the system believes the user likes through his/her profile. 
Using a user profile would support an efficient and 
personalized application filtering system. 

The general idea of filtering is to get a sub-collection of 
applications based on a specified category. There are different 
approaches to performing information filtering, including 
classification and recommendation. Classification is a step 
taken to reduce the sparseness of the input space by 
classifying applications into predefined interest categories. 
The applications in stores are labeled according to a high-level 

and store-specific classification method. This approach is 
limited by the fact that it depends entirely on the textual 
description available from the store [3]. 

Moreover, a recommender system is another way to filter 
information and is widely used in several domains. It is a 
decision-making tool that helps developers predict what a user 
will like or dislike from a list of applications. It provides 
personalized information by learning the user’s interests from 
tracing through his/her interactions. It is also an excellent 
option for search fields as a recommender system that lets 
users discover more applications [3]. 

In this work, we explore a method of constructing 
recommender systems for apps in the Google Play app store 
based on the app profile. Issues related to modeling app 
preferences and choosing a set of recommended apps were 
investigated. Furthermore, a k-nearest neighbor classification 
approach (KNN) to classify apps based on the most influential 
attributes of apps within categories proposed. A prototype 
system is then built as a proof of concept, which tracks 
application profiles and then presents recommended 
applications to the user. Therefore, the research aim to answer 
the following question: 

What are the most significant attributes of an application 
profile that could be used for developing a recommender 
system? 

The remaining sections of this paper are organized as 
follows. Section II presents an overview and background of 
the topic. Section III discusses the related work of analyzing 
apps in app stores and app recommender systems. In 
Section IV, the methodology is introduced, and the results are 
explained and discussed in Section V. Finally, conclusions and 
future work are presented in Section VI. 

II. BACKGROUND 

In this section, we discuss the background information and 
knowledge domains required for developing a recommender 
system. 

A. Pearson’s Correlation Coefficient 

Pearson’s correlation coefficient is also referred to as 
Pearson product-moment correlation coefficient (PPMCC) or 
the bivariate correlation, is a measure of the linear correlation 
between two variables [4]. It evaluates how well the 
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relationship between two variables can be described. The 
statistic defined in the range [–1, +1] which indicates how 
strongly the two variables are associated, where -1 indicates 
total negative linear correlation and 1 indicates total positive 
linear correlation. A value of 0 indicates no correlation. 

B. K-Nearest Neighbor Classification (KNN) 

The k-nearest neighbors' algorithm is a type of instance-
based supervised learning approach. It is one of the simplest 
and most commonly used classification techniques and is easy 
to learn and implement and robust to noise. It is used mostly 
for classification and sometimes for predictive regression 
problems, in which a number of nearest neighbors of each data 
point are used based on the value of k, which represents how 
many nearest neighbors are to be considered to determine the 
class of a test sample data point. In other words, the KNN 
algorithm finds solutions by identifying similar objects. It is 
also called lazy learning because the function is only 
approximated locally and all computation is postponed until 
classification. This rule preserves the complete training set 
throughout the learning process and assigns to each query a 
class represented by the most frequent label of its KNN in the 
training set. One of the significant drawbacks of KNN is that 
becomes slow as the size of the data in use increases [5], [6]. 

C. Recommender Systems 

Recommender systems (RSs) are techniques and software 
tools that provide users with suggestions for information or 
items that may be of interest to the user. Those suggestions 
will improve the user’s decision-making processes, such as 
choosing what music to listen, what things to buy, or what 
apps to install. Thus RSs are the most popular and powerful 
tools in ecommerce [7]. Coincidence is one of the major 
stimuli for RSs to help the user discover things he did not look 
for explicitly. The essential computational task of RSs is 
predicting the subjective evaluation which the user gives to an 
item. These predictions can be computed by using predictive 
models with common characteristics. For example, the ratings 
of the user's previously purchased items can be exploited. 
Recommendation systems can be classified into three major 
categories to generate a list of recommendations based on a 
particular prediction technique [8], [9]. 

1) Content-based recommender systems: Content-based 

recommendation approaches analyze the descriptions of items 

rated by a user previously to build a user profile of his 

interests based on the items’ features. Later, this profile will 

help to suggest additional items with similar properties. 

Content-based recommendation systems use methods that are 

focused on the items’ characteristics or descriptions. These 

methods build a profile for each user, which is called a 

content-based profile that conserves the features of the 

previously viewed items. Then, the RS will get the most 

suitable details for the user by comparing the information in 

the generated profile and the descriptions of items [7]. For 

example, we have our items: A, B, C, and D. Tom likes items 

B, C, and D; John wants A, B, and C; and Sozy likes C. 

Therefore, by comparing John's and Tom's liked items, it is 

apparent that they both like B and C, and then the 

recommender system conclude that B and C are similar. If 

Sozy likes C, then item B should be recommended to him. 

2) Collaborative recommender systems: Collaborative 

recommender approaches collect feedback information from 

all the users who rate the items. These approaches build a 

model based on the user's past behavior and the similar 

decisions of the other users. Thus, this model can be used to 

predict items the user may be interested. For example, Sozy 

again likes C and D. We need a recommender system to 

search for a person with similar preferences to Sozy, so we 

can notice that Tom also likes C and D. Therefore, he is the 

user who is identical to Sozy. Because he also likes B, B is 

recommended to Sozy. 

Content-based approaches mostly perform better than 
collaborative filtering, especially when the data is extremely 
sparse. Merging both methods may improve the results 
{Suggesting Points-of-Interest via Content-Based, 
Collaborative, and Hybrid Fusion Methods in Mobile 
Devices}. 

3) Hybrid recommender systems: Hybrid recommender 

systems have been developed by combining the abilities of 

both collaborative and content-based recommendations. These 

systems were introduced due to the limitations of the two 

techniques described above. Hybrid recommender approaches 

have been implemented using several methods: by applying 

the content-based and collaborative-based predictions 

separately and then combining both of them, by adding 

content-based capabilities to the collaborative-based approach 

(or vice versa), or by unifying the approaches into one model. 

Hybrid methods provide more accurate recommendations than 

simple approaches (collaborative methods and content-based 

methods). 

III. RELATED WORK 

This section discusses the state of the art of within two 
directions: data analysis techniques and recommender 
systems. The related studies divided into three categories: 
analyzing applications in different app stores, applications 
based on similarity measures, and application based on 
recommender systems. 

A. Application Analysis Studies 

The author of the study [10] aimed to analyze app store 
data. They extracted feature information from a set of data 
collected from Blackberry apps using data mining in order to 
analyze the technical, business, and customer issues of apps. 
The results of this work indicate a strong correlation between 
the rank of app downloads and the customer rating and no 
relationship between price and rating, nor between price and 
downloads. These results partially match those observed in 
[11], where the study aimed to analyze the Google app store in 
order to identify correlations among app features, and the 
authors found a strong relationship between the number of 
downloads and price as well as between participation and 
price. In a recent study [12], the authors investigated the 
factors which impact the rating of Google play store apps. 
They analyzed 10,840 apps, and they indicated that app 
ratings help to get more downloads. Furthermore they found 
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that the used keyword in the app title plays an important role 
in determining the higher and lower ratings. 

Studies [13] and [14] aimed to analyze the characteristics 
of apps extracted from app stores. Interestingly the 
experiments of [13] proved that the app size, the number of 
promotional images displayed on the app's web store page, 
and the app SDK version are the most influential factors in 
defining high-rated apps. Studies [1] and [15] used the Causal 
Impact Release Analysis tool to facilitate app store analysis. 

Studies [16] and [17] introduced a novel approach for app 
classification utilizing features extracted from both web 
knowledge and relevant real-world context. Then, they 
integrated these extracted features into a machine learning 
model (Maximum Entropy (MaxEnt)) for training an app 
classifier. 

B. App Similarity Studies 

The study [18] introduced a classification system in order 
to classify mobile apps. They mined 5,993 apps from both the 
Apple and Google app stores and then classified them based 
on support vector machines (SVMs). As a result of this study, 
the automated app classification system achieved a excellent 
accuracy. Another study [19] proposed a novel technique for 
measuring the similarity among apps based on agglomerative 
hierarchical clustering techniques. They mined data for 17,877 
apps from the Google and BlackBerry app stores. The 
empirical results of this study indicate an improvement over 
the existing categorization quality of both stores. In another 
study [11], the authors aimed to build clusters of similar apps 
using a probabilistic topic modeling technique and a k-means 
clustering method. The results showed that the Google Play 
categorization system does not respect application similarity. 

The study [20] addressed the application classification 
issue and introduced a novel method for classifying apps using 
two methods. The first method used a neural language model 
applied to smartphone logs to embed apps into a low-
dimensional space, while the second one used the k-nearest 
neighbors' classification method in the embedding space; the 
experimental results showed that the second proposed 
approach outperformed the current state of the art. 

In a recent study [21], the authors introduced a 
classification method for local mobile app using deep neural 
network. They evaluated a dataset of Google Play to 
demonstrate the effectiveness of their method. Their results 
outperformed the baseline method by 5.5% related to F1 
score. This study focused just on classifying local apps such as 
“Travel & Local” in the store. 

A new framework for app categorization (FRAC+) has 
been proposed in [22], which is based on a data-driven topic 
model to suggest the appropriate categories for an app store, 
as well as to detect miscategorized apps. Experiments with the 
proposed system have shown that it is aligned with the new 
categories of the Google Play store. 

C. Application Recommender System Studies 

There is considerable literature available on both 
recommendation systems and mobile recommendation 
systems with various descriptions of recommendation systems 

in general [1], [23], [24]. The authors in [25] discussed the 
incorporation of recommender systems in the mobile 
application domain. They used a hybrid recommender system 
to deal with the added complexity of context and recommend 
appropriate mobile applications to users. Thus, this approach 
provides positive ratings. Therefore, based on this study, users 
can select from among several content-based or collaborative 
filtering components. 

A new efficient framework called “SimApp” was proposed 
to detect similar applications using an online kernel learning 
algorithm [26]. They crawled real data from the Google app 
store and extracted a multi-modal heterogeneous data set. 
Their outcomes indicate the efficiency of the proposed 
framework. The similarity of items may help the application 
of content-based recommender systems. Another study 
introduced a framework based on the incorporation of version 
description features into app recommendation [27]. Another 
study [28] described the implementation of a hybrid 
recommender system that employed five different filtering 
techniques to help users when choosing a new application to 
download from a market. This system was also able to solve 
many common problems found in collaborative recommender 
systems that reduce the quality of the generated predictions. 
The study was based on using information collected from 
different users to support users with recommendations based 
on their history. The results showed good performance in 
terms of mean absolute error (MAE) and users’ satisfaction. 

The study [8] discussed assisting the users in choosing the 
appropriate application using recommendations. The author 
proposed a recommender system for mobile applications by 
integrating two methods: tracking user behavior to get his 
preferences to find new and similar apps to their used ones 
and utilizing the user's context in order to provide him with 
useful recommendations by using the Google Play Engine. 
While in the study [29], the authors proposed a recommender 
method for apps based on graph techniques. Interestingly, the 
proposed method can recommend apps without the need for 
specifying user preferences. Another paper proposed a 
recommender system for the mobile application market by 
understanding the mobile user’s preferences and usage 
patterns for the types of applications they select and the online 
downloading process. The authors collected data from Google 
Play and then used statistical analysis and a pilot survey to 
find app features that influence user choices [30]. In [31], the 
authors proposed a novel structural user choice model 
(SUCM) to learn fine-grained user preferences by exploiting 
the hierarchical taxonomy of apps (tree hierarchy of apps). 
Also, they designed an efficient learning algorithm to estimate 
the model parameters. They used a diverse dataset of 52,483 
users, 26,426 apps, and 3,286,156 review observations. The 
outcomes of this study show that SUCM consistently 
outperforms state-of-the-art Top-N recommendation methods 
by a significant margin. The study in [32] proposed a novel 
method using a unified model that combines content-based 
filtering with collaborative filtering, harnessing information 
from both ratings and reviews. This study applied topic 
modeling techniques to the review text and aligned the topics 
with rating dimensions to improve prediction accuracy. 
Another study [33] proposed a unified model VAMF for the 
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version-aware mobile app recommendation problem to 
address the data sparsity issue by incorporating review text 
from both the version level and the app level and modeling 
version based correlations of version-level temporal 
correlations and app-level aggregate correlation. They also 
proposed an efficient algorithm to solve the model and 
analyze its optimality and complexity. They used a Google 
Play dataset that contained the reviews for all of its versions 
and the descriptions of its latest version. The experiments 
conducted in this study on a large dataset showed that the 
proposed method outperforms comparable methods in 
prediction accuracy and that the proposed algorithm can be 
linearly scaled. 

The study in [34] introduced a sequential approach for 
modeling the popularity of mobile apps by collecting data 
from 15,045 apps. They produced a popularity-based hidden 
Markov model (PHMM) for a variety of tasks, including app 
recommendation and review spam detection, and 
demonstrated its usefulness in ranking fraud detection. The 
experimental results validated both the effectiveness and 
efficiency of the proposed popularity modeling approach. 
Another study built on a hidden Markov model where the 
authors proposed a mechanism for modeling three main 
factors governing the app installation behavior of smartphone 
users: short-term context, co-installation pattern, and random 
choice. Then, a heterogeneous hidden Markov model 
(heterogeneous HMM) was used to incorporate these main 
factors. They used a combination of app installation data from 
the installation records of 9009 users with a portion of the 
Netflix data set from 54,314 users on 3561 movies. The 
experimental results indicated that the proposed system can 
outperform other methods consistently under different 
experimental settings [35]. 

The study [36] was generally focused on recommending 
independent items to users who were suggested by a hybrid 
cross-platform app recommendation (STAR) system. Another 
study [37] introduced recommender systems on mobile 
platforms based on user profiles generated from the installed 
apps. They improved on existing machine learning models to 
predict user profiles. The results of this study showed an 
increase in these models' predictive accuracy. Furthermore, 
study [38] introduced a recommender system (Vanilla) that 
considers social and contextual information processes. The 
system allows the comparison of different recommendation 
techniques. Besides this, Vanilla includes eleven contextual 
dimensions and a mechanism for analyzing the influence of 
social networks on app consumption. They found that the new 
proposed approach has a strong correlation with previous 
approaches and better efficiency than other techniques. A 
recent study proposed a context-aware approach for mobile 
app recommendation using tensor analysis (CAMAR) [39]. 
They conducted data analysis on Google Play Store and 
Apple's App Store in order to find the mobile apps 
characteristics. They utilized an effective tensor-based 
framework to integrate the features on users and apps and app 
category information to facilitate the app recommendation 
performance. Thus, they demonstrated the effectiveness of 
their proposed method. 

A considerable amount of literature has been published 
recently regarding recommender systems for mobile apps. One 
study proposed a recommender system for mobile apps based 
on user reviews using topic modeling techniques and 
probability distributions to represent apps features [40]. 
Hence, this study aimed to construct a user profile based on 
his installed apps in order to identify his preferences. 
Therefore, they found that user reviews, extracted from 
datasets that were crawled from the Apple App Store, 
represented apps features efficiently. Another study [41] 
introduced a mobile sparse additive generative model (Mobi-
SAGE) to recommend apps. They crawled an extensive 
collection of apps from the 360 App Store in China. The 
results of their study demonstrated that the proposed model 
outperformed other existing state-of-the-art methods. 

According to the literature review, many models were 
developed using variety of features to support users selecting 
applications. Table I show a summary for researches discussed 
in the last section regarding the platform and used features for 
deployed recommender systems. 

TABLE I. SUMMARY OF RECOMMENDER SYSTEM RESEARCHES 

Ref. Platform  Attributes  

[25] 
play.tools 

framework  
Ratings.  

[26] Android  
Name, category, description, developer, update, 
permissions, and app logo/images.  

[27] Apple  Version-categories, genre, and ratings.  

[28] Android, Apple  
User history, Tags used to define the 

applications by the user, and user satisfaction.  

[29] 

Apple, Android,  

Blackberry and  

Windows App  
store  

Apps installed on the user’s phone.  

[30] Android  
Cost, app logo/ image, gender, and types of 
downloaded applications.  

[31] Android  Category tree.  

[32] Amazon Dataset  Ratings and reviews.  

[33] Android  # of users, # of versions, and # of ratings.  

[34] Apple  
Trend based Applications, rating, review spam 

detection, and ranking fraud detection.  

[35] Android  
User installation behavior, user preferences, and 
Modeling random choice.  

[36] Apple  

Application Rating between different platforms 

(iPhone-iPad platform and iPhone-iPad-iMac 
platform).  

[37] Android  
Cost, ratings, and user profile based on the 

installed applications.  

[38] Android  Categories and ratings.  

[39] Android, Apple 
User’s preference, app category, and features of 
multiple views.  

[40] Apple  User preferences and reviews.  

[41] Android  User interests, ratings, and privacy preferences.  
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As shown, most of previous researches used either 
collaborative or hybrid approaches for building recommender 
systems which increase system complexity. 

Our research aims to study the inter-relation between app 
attributes to select the most significant features. Furthermore, 
develop a content-based recommender system using the 
selected attributes. 

IV. METHODOLOGY 

In this section, we illustrate our proposed system, which 
includes five steps, as shown in Fig. 1. In the first step, we 
acquired the dataset. In the second step, we prepared the 
dataset for analysis to complete the other steps. In the third 
step, we analyzed the data to identify the correlations among 
the features. In the fourth step, we designed a suitable 
recommender system model. The final step is to test the 
recommender system model and make some 
recommendations. 

The rest of this section explains the steps of our approach 
in more detail. 

A. Data Acquisition 

The dataset used to achieve this study is consists of 10841 
apps scraped from the Google Play store, which publicly 
available on the Kaggle website [42], where its most recent 
update provided two months ago. This dataset provides 
detailed information from Google about the apps on the 
Google Play store. Thus, it includes 13 attributes with three 
datatypes: String, Categorical and Numeric. Only the 
“reviews” belongs to the numeric data type with values range 
from 0 to approximate 78Million reviews. Table II shows the 
attributes based on data types. 

The dataset includes 33 different categories (shown in 
Fig. 2) and 118 genres, which define the sub-category for each 
application. 

An initial statistical summary about the numerical data 
shown in Table III to provide a deep understanding about each 
attribute for further processing. 

 

Fig. 1. Proposed System Methodology. 

TABLE II. THE GOOGLE PLAY STORE ATTRIBUTES CLASSIFIED BY DATA 

TYPE 

 Categorical attributes   

Installs  Type  Genres  

Category  Content Rating  Android Ver.  

 Rating   

 String attributes   

App name  Size  Price  

Last Update  App Ver.    

 Numeric   

 Reviews   

 

Fig. 2. A Cloud Showing the Categories. 

TABLE III. STATISTICAL SUMMARY FOR THE NUMERICAL ATTRIBUTES 

 Count Mean STD Min Max 

Rating 8196 4.17E+00 5.37E-01 1.00E+00 5.00E+00 

Reviews 9660 2.17E+05 1.83E+06 0.00E+00 7.82E+07 

Size 9660 3.18E+07 3.48E+07 8.70E+03 1.05E+08 

Installs 9660 7.78E+06 5.38E+07 0.00E+00 1.00E+09 

Type 9660 7.82E-02 2.68E-01 0.00E+00 1.00E+00 

Price 9660 1.10E+00 1.69E+01 0.00E+00 4.00E+02 

B. Data Preparation 

Data preparation is a necessary step to analyze the data 
correctly, and to facilitate understanding of the relationships 
among the data and to gain useful insights. As shown from 
Table III; the Kaggle dataset contains some missing values for 
"rating" attribute. In addition, inconsistencies in the attributes 
"size", "installs", "price" and "reviews" by remove unwanted 
information. 

The data preparation process of the dataset using Python 
are applied in three consecutive steps as follows: 

1) Removed duplicated rows which reduce the dataset by 

1181 records. 

2) Convert string and categorical datatypes into numeric 

to allow further data analysis. 

3) Insure consistency of numeric attributes through the 

following: 

a) Convert the characters 'K' and 'M' within the “Size” 

attribute to a numeric values. 
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b) Propagate last valid observation forward using 

forward fill method to replace the “Varies with device” value 

to get a numeric value within the “Size” attribute. 

c) Convert the characters '+', '$', and 'M' from “Installs,” 

“Price,” and “Reviews,” into numeric values. 

d) The last attribute that needed to be converted was 

“Type,” where we mapped the string values to numeric ones. 

Regarding the missing values for the "rate" attributes, a 
null value kept for the associate records as they represent 
15.15% of the total dataset. There are different reasons for the 
missing values within the "rate" attributes such as: new 
released application or not common for users. Therefore, we 
decided to include the records with the null value. 

C. Statistical Analysis 

Pearson’s correlation coefficient is used to measure the 
linear correlation between the numerical features of the apps 
in the Google Play store. Pearson’s correlation coefficient is a 
statistical measure used to determine the strength of the 
relationship between paired data [4]. Fig. 3 shows the 
Pearson’s correlation coefficient heatmap between the 
numeric features for the dataset. The correlation coefficients 
between attributes is the ground truth that help in choosing the 
most prominent features for further use in building the 
recommender system. 

According to the heatmap; the attributes "reviews", "size", 
and "installs" are the most correlated attributes while other 
attributes are not. 

D. Recommender System Construction 

When looking for app a common attribute to be specified 
is the category. Then, a list of all apps under the specified 
category are shown. Sorting the apps to guide you to the best 
is restricted by choose one attribute. Based on the correlation 
coefficient and the importance of category attribute for the 
user; we decided to include all the four attributes ("reviews", 
"size", "installs", and "category" ) in defining the app profile 
for a content-based recommender system. The app profile 
consists of 37 columns; the first column is the app id within 
the dataset, and the next 33 columns represent the 33 
categories of apps and three columns for "reviews", 
"installations", and "size". Furthermore, each column/feature 
scaled by its maximum absolute value for efficient 
calculations. 

 

Fig. 3. Pearson's Correlation Coefficient Heat Map. 

E. Classification using K-NN 

A K-nearest neighbors (K-NN) algorithm; as an 
unsupervised machine learning; is used to measure the 
similarity between apps using their profiles. The nearest 
neighbor algorithm uses a “brute” algorithm and “cosine” 
metric. 

V. RESULTS AND DISCUSSION 

Our proposed recommender system developed based on 
building a profile for each app using the most significant 
attributes. However, Pearson's correlation coefficient (as in 
Fig. 3) showed that "reviews", "size" and "installs" are the 
most significant correlated positively attributes. The highest 
correlated pair is “Installs” and “Reviews” with value 0.63. 
Thus, obviously highlight that users prefer to download apps 
that intensively reviewed. Fig. 4 shows a log scale for the 
relationship between the "installs" and the "reviews". 

The second significant correlation between “Size” and 
“Installs” with value 0.19 shows a considered level of 
importance of the application size for users. The log scale 
relationship (Fig. 5) shows increase number of installs for 
small size applications while still large applications attract 
users. 

However, most popular mobile apps, especially game 
apps, tend to be feature-rich, which implies that additional 
code and assets can pump up file sizes. Generally, the statistic 
indicates an increase in the number of mobile game app 
downloads from Google Play worldwide. In 2018, a total of 
29.4 billion mobile games were downloaded globally across 
Google’s app store [43]. For example, the famous PUBG 
Game, which is sized at 1.6 GB for Android, is considered to 
be the most downloaded mobile game in the last quarter, 
which is a free, high-resolution game with excellent graphics 
and details [44]. 

Furthermore, a less significant correlation between “Size” 
and “Reviews” with a value 0.16 showed the importance of 
the "Size" attribute along with the "reviews" which highlight 
the user's need to optimize their storage use. Fig. 6 shows that 
apps with small sizes are with more reviews, which therefore 
more installs. 

 

Fig. 4. Correlation between Installs and Reviews. 

https://en.wikipedia.org/wiki/Correlation
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Fig. 5. Correlation between Size and Installs. 

 

Fig. 6. Correlation between Size and Reviews. 

To evaluate the developed recommender system; three 
case studies are used for different categories. 

Case study 1: From the Social category; the “Facebook” 
application with id “8823”. By applying the “K-NN” to the 
matrix of profiles of all applications, four apps are 
recommended and sorted based on their K-NN metrics. 
Table IV shows the recommended apps and their distances 
from the Facebook app. 

Case study 2: From the Game category, the “Candy Crush 
Saga” application with id “7484” is used for testing. By 
applying the “K-NN”, four recommended games are shown on 
Table V along with their K-NN distances. 

Case study 3: From the education category, the 
"Wikipedia" application with id “8452” is used for testing. 
Table VI shows the recommended apps and their 
corresponding distance from the "Wikipedia" app. 

TABLE IV. RECOMMENDED APPS FOR FACEBOOK CASE STUDY (ID=8823) 

ID  App  Reviews  Size  Installs  distance  

8824  Instagram  6.66E+07  1.04E+08  1.00E+09  
4.86E-

04  

8827  SnapChat  1.70E+07  1.04E+08  5.00E+08  
3.68E-

03  

3325  
Facebook  
Lit  

8.61E+06  1.04E+08  5.00E+08  
4.81E-
03  

8830  Google+  4.83E+06  1.04E+08  1.00E+09  
5.86E-

02  

TABLE V. RECOMMENDED APPS FOR CANDY CRUSH SAGA CASE STUDY 

(ID=7484) 

ID  App  Reviews  Size  Installs  Distance  

7485 
Dream 
League 

Soccer2018 

9.88E+06 7.76E+07 1.00E+08 
1.21E-

02 

6947 
Temple 
Run 2 

8.12E+06 6.50E+07 5.00E+08 
2.55E-
02 

8762 
My Talking 

Tom 
1.49E+07 1.04E+08 5.00E+08 

2.76E-

02 

7508 
Subway 

Surfers 
2.77E+07 7.97E+07 1.00E+09 

5.93E-

02 

TABLE VI. RECOMMENDED APPS FOR WIKIPEDIA CASE STUDY (ID=8452) 

ID  App  Reviews  Size  Installs  distance  

9587  
English  

Hindi  
Dictionary  

3.84E+05  1.04E+08  1.00E+07  1.65E-02  

8455  
Dictionary- 

Merriam- 
Webster  

4.54E+05  1.04E+08  1.00E+07  1.26E-01  

9496  Dictionary  2.64E+05  1.04E+08  1.00E+07  1.76E-01  

8463  
Moon+ 

Reader  
2.34E+05  1.04E+08  1.00E+07  1.87E-01  

VI. CONCLUSIONS 

Mobile app recommendation based on only application 
installation records is a challenging task. In this paper, we 
proposed a model that seamlessly combines content-based 
filtering with application profiles. Thus, we used a real-world 
app dataset from Google Play to analyze app information and 
then utilized the most effective content to build a content-
based recommender system. Based on our results, the most 
influential factors in choosing an app are the number of 
installs, number of reviews, app size, and category. Finally, 
we introduced some examples to prove that our system 
achieved good and reasonable results. 

VII. FUTURE WORK 

Although our proposed recommender system was 
originally designed for app recommendation from the Google 
Play store, we believe it can also be applied to other stores as 
well as other domains, such as book recommendation, music 
recommendation, movie recommendation, and food 
recommendation. Therefore, we believe that some possible 
future studies using the same experimental set up are possible. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 9, 2020 

49 | P a g e  

www.ijacsa.thesai.org 

Also, we aim to build a benchmark dataset from various 
application stores which could be used by researchers for 
building AI systems and recommender systems. 
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