
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

725 | P a g e

www.ijacsa.thesai.org

Performance Analysis of Qualitative Evaluation

Model for Software Reuse with AspectJ using AHP

Ravi Kumar
1

Research Scholar, MMICT& BM

Maharishi Markandeshwar Deemed to be University

Mullana (Ambala)-133207, Haryana, India

Dalip
2

Assistant Professor, MMICT& BM

Maharishi Markandeshwar Deemed to be University

Mullana (Ambala)-133207, Haryana, India

Abstract—Reusability is necessary for developing advance

software. Aspect Oriented programming is an emerging

approach which understand the problem of arrangement of

scattered software modules and tangled code. The aim of this

paper is to explore the AOP approach with implementation of

real life projects in AspectJ language and its impact on software

quality in form of reusability. In this paper, experimental results

are evaluated of 11 projects (Java and AspectJ) using proposed

Quality Evaluation Model for Software Reuse (QEMSR) and

existing Aspect Oriented Software Quality Model (AOSQ). To

evaluate AOP quality model QEMSR based on developers AOP

projects by using Analytic Hierarchy Process (AHP) tools. Paper

provides the evaluation of software reusability and positive

impact on software quality. QEMSR model is used to assess

Aspect Oriented reusability quality issues, which helps

developers to adapt for software development. The overall

quality of three models QEMSR, existing AOSQ and PAOSQMO

are 0.62552223, 0.5283693, and 0.505815 calculated. According to

this, QEMSR model is best in form of quality in same

characteristics and sub-characteristics.

Keyword—Reusability; AspectJ; software quality metrics;

analytic hierarchy process

I. INTRODUCTION

Various software quality models described the assessment
of software quality in software engineering. Quality assessment
of software is an interesting research area in software
engineering. Several AOSD seminars, workshops and research
conferences had considered evaluation of quality of software
model is emerging sector in traditional software engineering
journals and conferences. According to IEEE/ACM “Software
Engineering Curriculum Guidelines list software engineering
education” in 2004 as one of the ten specific areas of software
engineering education[5][20]. Various international network
groups and research communities are working on software
evolution. Software evolution concerned issues are very
complex because it engages with various dimensions.

This paper focuses performance evaluation of proposed
Qualitative Evaluation Model for Software Reuse (QEMSR)
by experimentation method using characteristics and its sub-
characteristics. We describe some metrics such as WMC, DIT,
NOC, LCOM, and CBO for statistical value [10]. We also
analyze the existing model such as Aspect Oriented Software
Quality Model (AOSQ) and Proposed AO Software Quality
Model (PAOSQMO) to examined performance evaluation. The
negative impact on software quality is duplication of code.

Crosscutting concerns reduced to have negative effect on
understandability, maintainability, operability, modularity
because understanding and changing crosscutting concerns
requires touched various place in source code.

In existing system, firstly crosscutting concerns are derived
after that distinguishes into aspects. Main traditional software
reveals crosscutting concern that is called “tyranny of the
dominant decomposition.” In existing system, exploration
helps to find out aspect. Aspects will help the software
developers to examine where and how these tangling and
scattering codes are implemented and its effect on quality of
software [9]. This process is called aspect mining which is used
to examine crosscutting concerns in existing model codes.

Contribution of the paper:

 To examine area of evolution of traditional
programming (OOPs) different form evolution of
Aspect Oriented Programming (AOP).

 To promote evolution of Object-oriented Programming
(OOPs) be implemented to Aspect-oriented
Programming (AOP).

 To improve performance evaluation of software quality
models in software engineering.

This paper divides into eight sections. First section describe
introduction about Aspect-oriented Programming. Related
work has been done by the researcher explain in section two.
Third section defines the framework or method to achieve
research goal and motivation to do that work. Section four and
five describe the platform used for practical work and design
and result of experiment. Section six describes the analysis of
experimental result and qualitative evaluation of 11 research
case studies and its impact on quality. Examine performance
evaluation of QEMSR model and existing model is described
in section seven. In section eight, we discussed major finding
of proposed quality model as conclusion and area for future
research work for researcher point of view.

II. LITERATURE REVIEW

In late 1990s, Aspect–oriented Programming (AOP) is an
emerging area in evolution of software and it declares the
positive impact on software quality; simultaneously, various
risks, challenges and paradoxes for AOP adoption for
development of software. In 2006, Steimann stated the
question:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

726 | P a g e

www.ijacsa.thesai.org

“Does aspect orientation really have the substance
necessary to found a new software development paradigm or is
it just another term to feed the old buzzword permutation based
research proposal and PhD thesis generator?”

In 1997, Kiczales explore the idea of AOP pattern to
modularize the crosscutting concerns in existing system.
Table I shows last ten years quality models which is described
time to time by researchers. Kumar et. al. extends the ISO/IEC
9126[11] quality model by adding some extra characteristics
and sub-characteristics in 2009, called Aspect Oriented
Software Quality Model (AOSQUAMO). AOSQUAMO
model is first purely based on Aspect Oriented Software
Development (AOSD). In 2010 another quality model REASQ
is derived by Castillo et.al. REASQ quality model is the
combination of ISO/IEC 9126 and ISO/IEC 25030 define by
UML.

Simultaneously, Kumar et. al. adds evolvability as an
attribute in software quality model for AOP application in 2012
named Aspect-oriented Software Quality (AOSQ) model [1]
[18]. This model described four sub-characteristics such as
sustainability, design stability, extensibility and configurability
[4] [16]. AOSQ model is based on AOSQUAMO and
ISO/IEC9126 quality model [23].

G. Suryanarayana et.al. described MIDAS [13] model to
analyze design quality assessment method for industrial
software in 2013. T. Alrawashdeh and M.I. Muhairat were
exploring the quantative evaluation of enterprise resource
planning systems proposing ERPSQM model in 2014[3] [12]
[17]. In 2016, Pardeep Kumar Singh and Yugal Kumar assess
the empirical evaluation of Aspect-oriented software quality
model using multi-criteria decision making approach using
PAOSQMO model.

Pankaj Kumar and S.k. Singh also measure a
comprehensive evaluation of Aspect-oriented software quality
model (AOSQ) using Analytic Hierarchical Process (AHP)
[26] [28]. In 2018, Petrus Mursanto and Dameria Christina
Pasaribu define software quality rank using AHP and Object-
oriented metrics which is used to perform evaluation of quality
of QEMSR model[14][24][30].

Sufia Nadeem Chishti explores the quality improvement in
small scale projects using Aspect Oriented design in 2019[2]
[19]. S. Dixit explores the performance of quality modeling
using artificial neural network technique in Aspect Oriented
Programming [7]. P. Kumar analyzes the metrics of Aspect
Oriented and Object oriented using AspectJ and Java
programming languages [8].

Hamed Fawareh proposed the software quality model for
maintenance software purposes [6]. Bharti Bisht describes the
metric approach to anticipate reusability of object oriented
software systems [21].

K. Chitra measures the performance merits of software
component using CK metrics [27]. We evaluate quality of
QEMSR model using Analytic Hierarchical Process (AHP)
that is based on AOS Quality Model (AOSQ) and PAOSQMO
[25].

TABLE I. SOFTWARE QUALITY MODEL

Sr. No. Quality Model Year

1
Aspect-oriented Software Quality

Model(AOSQUAMO)
2009

2 Quality Open Source Software (QualOSS) Model 2009

3
A software Component Quality Framework (Alvaro

Model)
2010

4
REquairements, Aspects and Software Quality
(REASQ) Model

2010

5 SCQM (Upadhyay Model) 2011

6
Software Quality Evaluation User’s View (Al-

Badareen Model)
2012

7 Quamoco Quality Meta–Model 2012

8 Aspect Oriented Software Quality Model (AOSQ) 2012

9
Method for Intensive Design Assessments (MIDAS)
Model

2013

10
Aspect Oriented Software Reusability Measurement

(AOSRM)
2014

11 ERPSQM 2014

12
Proposed Aspect Oriented Software Quality Model

(PAOSQMO)
2016

13
Software Quality using AOP based Small Scale
Projects

2019

14 AOSQ using Fuzzy Logic Model 2020

15 SQM for Maintenance Software Purposes 2020

III. MOTIVATION AND METHODOLOGY

Last few years, various researcher working on different
software quality model in software engineering. All researcher
derived own quality model using some characteristics and
metrics. These researchers also evaluate only derived model
and not compared other researcher model in respect of quality.
Every researcher use different technique to evaluate own
quality model like Analytic Hierarchy Process, fuzzy logic,
Gang of Four design pattern, etc. No anyone researcher can
perform quality evaluation with same parameter with different
quality model which is identify best model. So, we decide or
motivate that we perform or derive a quality model in respect
of reusability and its characteristics and metrics and compare
with other model with same parameter. We also extend the
qualitative evaluation of a model in more informative form,
which helps for software developers to take decision to
implement software or applications.

We can assume research methodology for this paper is
software reengineering which is comparison analysis
technique. Firstly, we can divide our objective into two parts
like goals and sub-goals as shown in Fig. 1. In goals part, we
define performance evaluation as purpose and concept use
reusability. In sub-goals, internal characteristics and metrics
are defined which measure the statistical data to evaluate
quality. We can re-engineer concept that involve forward and
reverse engineering principles. For experimentation purpose,
we use quasi-controlled experimentation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

727 | P a g e

www.ijacsa.thesai.org

According to QEMSR model, research manipulates one or
more independent variables to examine their impact on one or
more dependent variables, set of metrics and validation of
metrics [15]. We also describe the experimental part using 11
real world projects. We implement these projects in AspectJ
and Java language and assign weight of methods and calculate
average mean value for qualitative evaluation. All the 11
projects implement to assess contemporary phenomena within
its real world situation.

Goals

Purpose Performance Evaluation

Subject Quality of Software (Reusability)

Entity Concept of Re-engineering

Outlook Software Developers/Researchers

Fig. 1. Framework of QEMSR Model.

Fig. 2. Methodology for Performance Evaluation of QEMSR.

To achieve goals and sub-goals, we also use R. Marti,
Henry and Li, Garcia et. al. and C & K metrics definition and
these metrics associated for quality measurement in AOP [29].
QEMSR model proposed to validate metrics and analysis of
qualitative evaluation and its impact on quality for AOP. To
validate metrics we use experimental results of 11 projects
implementations (Java & AspectJ). Experimental result gives
intuitive information for the analysis of evolutionary aspects
during Aspect-oriented software evolution. Fig. 2 describes the
methodology for performance evaluation of QEMSR.

IV. EXPERIMENTAL SET-UP

Set-up for experimentation is for 11 projects (AspectJ and
Java) to collect descriptive value (metrics) for the analysis of
quality of software using AOP metric tools; a common AOP
metric tool for both Aspect-oriented and Object-oriented
metrics, such as R. Martin, Henry and Li and C & K. For doing
experiment operating system required MS Windows XP/7/8,
AspectJ 1.6, Java JDK 1.6v and AOP metrics 0.3 binary

20
. Ms-

excel sheet generated for manipulation of descriptive data after
successful execution of set of list files in a command line for a
given source running compile.bat,(.1

st
)(projects) and

metrics.bat files. All these descriptive data used for analysis for
several AOP characteristics by impact tests and statistical tests.

V. EXPERIMENTAL DESIGN AND RESULTS

We can design procedure for 11 projects (AspectJ and
Java) implementation for analysis of quality of AOP software
consist five steps:

 Description of 11 projects which is used for
experimentation or implementation (Java and AspectJ)
as shows in Table II.

 Collection of data for experimental results and
descriptive data used for AOP metric tools shown in
Table IV.

 QEMSR framework which shown in Fig. 1.

 Methodology for performance evaluation of QEMSR
shows in Fig. 2.

Ms-excel sheet generated for manipulation of descriptive
data after successful execution of set of list files in a command
line for a given source running compile.bat, (.1

st
)(projects) and

metrics.bat files. All these descriptive data used for analysis for
several AOP characteristics by impact tests and statistical tests.

The main goal to provide qualitative evaluation using 11
real world projects implementation (AspectJ and Java) using
metric and statistical data with regard to reusability
characteristics and sub-characteristics from the software
developers view point. Only interesting metrics for this
evaluation is DIT, NOC, CBO, LCOM, WMC of reusability
characteristics and sub-characteristics. In this paper 11 projects
real world system from different size and domain is shown in
Table II. Table III shows the description of metrics adapted for
QEMSR. Table IV shows the absolute mean values of 11
projects (AspectJ and Java).Using measurement of metrics we
evaluate the experimental results on 11 projects and correlation
among reusability characteristics and sub-characteristics.
Table V shows the difference of average mean value of all 11

Language

Understand

ability

Modularity Adaptability Operability

Sub- Goals

CBO DIT LCOM NOC WMC

Language

Concept

Design

Pattern

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

728 | P a g e

www.ijacsa.thesai.org

projects metrics and also calculate the impact of every metrics
as graphically shown in Fig. 3. Table V contains the average
mean value of metrics calculated as sum of different module
divide by number of module taken for analysis. AHP is applied
on these mean values to get corresponding weights of
characteristics and sub-characteristics in which total quality
weight has been taken as 1.000. These weights used for

comparing for Aspect –oriented projects. Aspect-oriented
version of 11 projects shows an improvement in all structured
complexity metrics. So for performance evaluation we
compare existing AOSQ model and PAOSQMO model to
select best suitable model for implementation in Aspect-
oriented technology based projects.

TABLE II. DESCRIPTION OF 11 PROJECTS (ASPECTJ & JAVA)

Name of projects Description

AJHotDraw Framework for structured and technical 2D graphics. http://ajhotdraw.sourceforge.net

AspectTetris Implementation of Tetris game in AspectJ. http://www.guzzt.com/coding/aspecttetris.shtml

PetStore Demo for the J2EE platform which represent existing applications of E-commerce. http://java.sun.com/developer/releases/petstore/

Eimp Eclipse plug-in which support collaborative software developments for distributed teams. http://eimp.sourceforge.net

HSQLDB Used for a relational database management system implementation. http://vrwxv.hsqldb.org

Hypercast Software for developing application programs and protocols for overlay network, application layer.

CVS Core
Eclipse plug-in which implements the basic functionalities of a CVS client such as check out and check in system stored in a

remote repository. http://www.eclipse.org/eclipse/plateform-cvs/

AJFTPd-Server
Crosscutting concern implementation for security. Application level Server for BLP access control.

http://homepages.wmich.edu/plbijjam/cs555 Projects/

Telecom AspectJ Examples of AspectJ http://www.eclipse.org/aspectJ/

Spacewar Game AspectJ Examples of AspectJ http://www.eclipse.org/aspectJ/

Observer Pattern AspectJ Examples of AspectJ http://www.eclipse.org/aspectJ/

TABLE III. DESCRIPTION OF METRICS ADAPTED FOR QEMSR

Name of Metrics Description

WMC Total number of weighted operation in a class

CBO Total number of interfaces declaring class or number of class or fields which can be called by a given class

LCOM Total pairs of operation working on common fields minus total number of pairs of operation working on different

DIT Longest path length From aspect/ class to the given class hierarchy root

NOC It measures the total number of class, immediate descendants.

Fig. 3. Qualitative Evaluation based on Impact Analysis for QEMSR.

AJHotDra

w

Aspect

Tetris
Petstore EImp HSQLDB CVS Core

Ajftpd-

Server
Hypercast

Telecom

Simulation

Spacewar

Game

Observer

Pattern

DIT 0.13 0.5 0.15 0.13 0.44 0.44 0.09 0.15 0.84 1.47 0.11

NOC 0.09 0 0.31 0.69 1.8 0.2 0.59 0.4 0.09 0.09 0.21

CBO 0.11 0.5 0.3 1.24 0.47 0.72 0.39 0.28 0.21 0.64 0.77

LCOM 0.3 0 0.13 0.71 0.26 0.79 0.56 0.19 0.47 0.79 0.32

WMC 0.87 0 0.41 0.73 0.1 0.3 0.63 0.43 0.33 0.16 1.04

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Im
p

a
ct

 V
a

lu
es

Qualitative Evaluation Based on Impact Analysis for QEMSR

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

729 | P a g e

www.ijacsa.thesai.org

TABLE IV. ARITHMETIC MEAN VALUES OF QEMSR METRICS OF 11 PROJECTS

Projects /Metrices

Reusability and its Sub-characteristics

Modularity Operability Adaptability Understandability

DIT NOC CBO LCOM WMC

AO OO AO OO AO OO AO OO AO OO

AJHotDraw 1.233 1.418 0.4794 0.5288 0.3390 0.3064 0.4567 0.6569 0.4976 0.2663

Aspect Tetris 0.333 0.667 0.667 0 1.00 0.667 0 0 0 0

Petstore 1.021 1.208 0.2784 0.4038 l.3904 1.068 1.367 1.5696 0.976 1.663

EImp 1.233 1.418 0.4794 1.5288 2.3904 1.068 0.4567 1.5696 0.4976 1.863

HSQLDB 0.233 0.418 1.4794 0.5288 0.967 0.6569 0.1976 0.2663 0.3390 0.3068

CVS Core 0.233 0.418 0.4294 0.538 0.1567 0.5696 0.2976 0.1663 1.3904 1.068

Ajftpd-Server 2.1233 1.9418 1.4794 0.9288 1.567 2.5696 0.276 0.63 0.3904 1.068

Hypercast 2.1233 1.8418 0.8794 0.6288 0.2567 0.3569 0.1976 0.1663 0.3904 0.680

Telecom-simulation 0.233 1.418 0.4794 0.5288 0.567 0.4696 0.976 0.663 1.3904 2.068

Spacewar Game 1.033 0.418 0.4794 0.5288 2.567 1.5696 0.2976 0.1663 2.3904 2.068

Observer Pattern 1.133 1.018 0.4094 0.5188 0.1567 0.6696 0.2976 0.2263 1.3904 0.680

TABLE V. QUALITATIVE EVALUATION BASED ON IMPACT ANALYSIS FOR QEMSR

Project /

Metrics

Reusability and its Sub-characteristics

Modularity Operability Adaptability Understandability

DIT NOC CBO LCOM WMC

Diff
Impac

t

Qualitativ
e

Evaluatio

n

Dif

f

Impac

t

Qualitativ
e

Evaluatio

n

Dif

f

Impac

t

Qualitativ
e

Evaluatio

n

Dif

f

Impac

t

Qualitativ
e

Evaluatio

n

Dif

f

Impac

t

Qualitativ
e

Evaluatio

n

AJHotDra

w

0.1

9
0.13

Extremel

y Helpful

0.0

5
0.09

Extremel

y Helpful

0.0

3
0.11

Extremel

y Helpful

0.2

0
0.30

Very

Helpful

0.2

3
0.87

Not so

Helpful

Aspect

Tetris

0.3

3
0.50 Helpful

0.6

7
0.00

Extremel

y Helpful

0.3

3
0.50 Helpful

0.0

0
0.00

Extremel

y Helpful

0.0

0
0.00

Extremel

y Helpful

Petstore
0.1

9
0.15

Extremel

y Helpful

0.1

3
0.31

Very

Helpful

0.3

2
0.30

Very

Helpful

0.2

0
0.13

Extremel

y Helpful

0.6

9
0.41 Helpful

EImp
0.1

9
0.13

Extremel

y Helpful

1.0

5
0.69

somewha

t Helpful

1.3

2
1.24

Not at all

Helpful

1.1

1
0.71

somewha

t Helpful

1.3

7
0.73

somewha

t Helpful

HSQLDB
0.1
9

0.44 Helpful
0.9
5

1.80
Not at all
Helpful

0.3
1

0.47 Helpful
0.0
7

0.26
Very
Helpful

0.0
3

0.10
Extremel
y Helpful

CVS Core
0.1

9
0.44 Helpful

0.1

1
0.20

Extremel

y Helpful

0.4

1
0.72

somewha

t Helpful

0.1

3
0.79

somewha

t Helpful

0.3

2
0.30

Very

Helpful

Ajftpd-

Server
0.18 0.09

Extremel

y Helpful

0.5

5
0.59 Helpful

1.0

0
0.39 Helpful

0.3

5
0.56 Helpful

0.6

8
0.63

somewha

t Helpful

Hypercast
0.2
8

0.15
Extremel
y Helpful

0.2
5

0.40
Very
Helpful

0.1
0

0.28
Very
Helpful

0.0
3

0.19
Extremel
y Helpful

0.2
9

0.43 Helpful

Telecom

simulation

1.1

9
0.84

Not so

Helpful

0.0

5
0.09

Extremel

y Helpful

0.1

0
0.21

Very

Helpful

0.3

1
0.47 Helpful

0.6

8
0.33

Very

Helpful

Spacewar

Game

0.6

2
1.47

Not at all

Helpful

0.0

5
0.09

Extremel

y Helpful

1.0

0
0.64

somewha

t Helpful

0.1

3
0.79

somewha

t Helpful

0.3

2
0.16

Extremel

y Helpful

Observer
Pattern

0.1
2

0.11
Extremel
y Helpful

0.1
1

0.21
Very
Helpful

0.5
1

0.77
somewha
t Helpful

0.0
7

0.32
Very
Helpful

0.7
1

1.04

Not at all
Helpful

 Less than 0.20 = “Extremely Helpful” 0.20-0.40 = “Very Helpful” 0.40-0.60 = “Helpful”

 0. 60-0.80 =”somewhat Helpful” 0.80-1.00=”Not so Helpful” Greater than 1.00 =” Not at all Helpful”

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

730 | P a g e

www.ijacsa.thesai.org

VI. EVALUATION OF RESULTS

The collection of data for every module (interface, class,
aspect) of every system use the extended version of Aspect-
oriented metric tools. For every real life project experimental
result are represented independent. Crosscutting concerns
investigated intensively for all 11 projects which show in
Table II. For all project system represent common software
problems and solution of those problems. Table IV define the
average mean value of Aspect-oriented and Object-oriented
implementations of 11 projects. The measurements of metrics
have been computed but experimental results of 11 projects.
The evaluation of quality of QEMSR model using
characteristics and sub-characteristics and metrics adopted
from C & K metric suite such as NOC, DIT, LCOM, WMC,
and CBO. A smaller average value of lack of cohesion and
coupling is between object taken for AOP AspectJ projects.
Remaining metrics take same trends variation between values.

We can compare calculated percentage of all 11 project
using matrices and determine difference of both AspectJ and
Java implementation. 07 (64%) DIT metrics have higher value
through Java implementation. 04 (36%) DIT metrics have
higher value through AspectJ implementation. 04 (36%) LCO
metrics have higher value through Java implementation. 06
(54%) LCO metrics have higher value through AspectJ
implementation. 01 (10%) LCO have the same value. 07 (64%)
NOC metrics have higher value through Java implementation.
04 (36%) NOC metrics have higher value through AspectJ
implementation. 03 (27%) CBO metrics have higher value
through Java implementation. 08 (73%) CBO metrics have
higher value through AspectJ implementation. 03 (27%) WMC
metrics have higher value through Java implementation. 07
(63%) WMC metrics have higher value through AspectJ
implementation. 01 (10%) WMC have the same value. CBO
and WMC have higher value as compared to NOC and DIT
using AspectJ implementation. According to this, coupling is
high in AspectJ implementation due to high value of WMC and
CBO than the Java implementation. Limited numbers of
projects are implemented in this paper, so we can’t generalize
the experimental results. Experimental results improve the
validation of metrics for Aspect Oriented Programming and
impact on quality of metrics. QEMSR model supports to take
decision or choose the best quality for the applications
software.

VII. PERFORMANCE ANALYSIS OF QEMSR MODEL USING

AHP

In this paper, we used two approaches to appraise the AOP
and its impact on quality.

1) Qualitative evaluation of Aspect-oriented programming

using QEMSR model and Analytic Hierarchy Process

technique, similar approach used by Kumar A adapted in this

paper [18]. Developer’s projects used to determine impact of

quality using Aspect-oriented programming (AspectJ) and

Object-oriented programming (Java).

2) Describe performance evaluation of QEMSR model

using Analytic Hierarchy Process (AHP) with existing model

Aspect-oriented Software Quality (AOSQ) model and

Proposed Aspect-oriented Software Quality Model.

Saaty proposed Analytic Hierarchy Process technique uses
the pair wise matrix to analyze ambiguity in multi-criterion
decision-making problems. In this paper, n elements have main
characteristics such as mC1, mC2,mC3………mCn considered,
which have compared related weight of mCi with respect to
mCi denoted as aij. A square matrix A= [aij] of order n as given
in equation (1).

 mC1 mC2 mCn

 mC1 1 a an

 .. 1/a12 1 … a2n

A= [aij] =

 mCn 1/a1n 1/a2n n

 (1)

Where aij = 1/aij, for i is not equal to j and aij = 1 for all i.

Matrix is said to be reciprocal metric.

A.ω = λmax.ω , λmax ≥ n (2)

Matrix involving human decision making, decision are
inconsistent to a lesser or greater degree, in such a case find
vector ω satisfy the equation (2).

Here ω is Eigen Vector and λmax define Eigen value. The
dissimilarity between λmax and n if any is an indicator of
inconsistency of decision. Saaty (1980) describe a consistency
Index (CI) and Consistency Ratio (CR) to validate the
consistency of the comparison matrix. Following equation is
defined for validation:-

Consistency Index (CI) = (λmax –l) / (n- 1) (5)

Consistency Ratio (CR) = CI / RI (4)

Here RI is the average consistency Index over several
random entries of same order reciprocal matrix. Saaty (1980)
suggested that if the Consistency Ratio exceeds 0.1, set of
decision or judgment may be too inconsistent to be reliable. In
that condition, a new comparison matrix is required to prepare
until Consistency Ratio (CR) is less than equal to 0.1.

In this sequence to determine the sub-characteristics and
characteristic for software in Aspect-oriented, we manage a
survey from programmer’s expert or software developers
working in industry and academic experts who have completed
their projects and worked in AOP domain. We can identify the
weight value of characteristics and sub-characteristics. A table
is used to fill the pair wise relative weight value of eight
characteristics from mC1 to mC6. The mean of all gathered
samples of pair wise relative weight are given in square matrix
A = [aij] of order eight in equation, which is derived using
equation(1) to apply Analytic Hierarchy Process. We have
calculated Eigen vector and Eigen value to find the
corresponding weight of mC1, mC2, mC3, mC4, mC5, mC6 and
CR. We also create a reciprocal matrix after that to calculate
Eigen value and Eigen vector for CR and CI.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

731 | P a g e

www.ijacsa.thesai.org

We assign value it to a square matrix taken from survey.
We also assign pair wise relative weight value to all six
characteristics using equation (1). Further step to calculate
Eigen value and Eigen vector of get corresponding weights and
CR. We calculate Eigen vector to multiply all the entries in
every row of matrix A and take n

th
 root (i.e. 6

th
 root) of the

product helps in getting Eigen vector. Sum of the n
th
 root and

used to normalize the Eigen vector element.

A=[aij]=

[

]

 (5)

Table VI shows all calculations and clearly show that An.
We calculate A. ω and multiply the matrix (A1 to A6) from
Eigen vector. Calculation of first row in Table V shown below:

(1* 0.3499) + (2 * 0.1069) + (4 * 0.2189) + (2 * 0.0695) + (3

* 0.144) + (7 * 0.0342) = 2.2497.

The values for remaining five rows are calculated similarly.
As per equation (2), λmax ≥ 6, to determine product of A.ω
Eigen value also determined by using λmax= (A. ω/ ω). All
values are greater than six which satisfy the condition λmax ≥ n
we calculate Consistency Index using equation (3):

CI = (6.46792- 6) / (6-1) = 0.093584

After that we calculated CR for set of judgment using CI
for considered samples. RI value can be taken from Saaty a
scale that is 1.24[22].

CR = (0.093584 / 1.24) = 0.07547

The calculated value of Consistency Ratio (CR) is 0.1
which indicates estimate is acceptable. The assessment of
overall quality of any AOP projects evaluated using below
mentioned formula:-

AO Project Quality =

∑

()

Where n is the number of sub-characteristics, SCi is sub-
characteristic i. We are determining quality of our QEMSR
model and existing Aspect-oriented Software Quality (AOSQ)
model and existing Proposed Aspect-oriented Software Quality
Model (PAOSQMO) as shown in Table VII. The overall
quality of three models QEMSR, AOSQ and PAOSQMO are
0.62552223, 0.5283693, 0.505815. According to this, QEMSR
model is best in form of quality in same characteristics and
sub-characteristics. This calculation shows that overall quality
of QEMSR is defined positive impact on software quality. This
paper also extends the methodology adapted by Kumar A and
based on random choice and decision of experts on AOP
technology. Fig. 4 shows the analysis of quality values of all
internal characteristics of QEMSR, AOSQ and PAOSQMO
model graphically.

TABLE VI. EIGEN VALUES AND EIGEN VECTORS FOR MAIN CHARACTERISTICS

 mC1 mC2 mC3 mC4 mC5 mC6 Eigen Vector (ω) A. ω λmax= A. ω/ ω

mC1 1 2 4 2 3 7 0.3499 2.2497 6.4295513

mC2 0.5 1 0.25 1 1 4 0.1069 0.686875 6.425397568

mC3 0.25 0.33 3 2 2 4 0.2189 1.343252 6.136372773

mC4 0.5 0.33 0.5 0.33 0.5 1 0.0695 0.448812 6.457726619

mC5 0.33 2 1 2 1 3 0.144 0.933767 6.484493056

mC6 0.14 0.25 0.25 0.33 0.3 1 0.0342 0.235091 6.874005848

 1.00 Mean = 6.467924527

TABLE VII. PERFORMANCE EVALUATION OF QUALITY OF QEMSR, AOSQ, PAOSQMO

Eigen vector for

Main-

characteristics

Eigen vector for

Sub-

characteristics

Weight for Sub-

characteristics of

QEMSR

Weight for Sub-

characteristics of

AOSQ

Weight for Sub-

characteristics of

PAOSQMO

Quality value
of QEMSR

Quality value
of AOSQ

Quality value of
PAOSQMO

0.3499

0.2185 0.321 0.179 0.0137 0.0701385 0.0391115 0.001375

0.2444 0.112 0.088 0.0053 0.0273728 0.009856 0.0048

0.3464 0.05 0.05 0.0021 0.01732 0.0025 0.00016

0.1442 0.132 0.148 0.0304 0.0190344 0.019536 0.00274

0.0465 0.131 0.169 0.0046 0.0060915 0.022139 0.00046

0.1069

0.2071 0.164 0.236 0.0084 0.0339644 0.038704 0.00075

0.2929 0.15 0.15 0.0147 0.043935 0.0225 0.00147

0.2929 0.132 0.168 0.1279 0.0386628 0.022176 0.01023

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

732 | P a g e

www.ijacsa.thesai.org

0.2071 0.164 0.136 0.0254 0.0339644 0.022304 0.0254

0.2189

0.0849 0.166 0.134 0.0818 0.0140934 0.022244 0.00736

0.1399 0.154 0.146 0.0703 0.0215446 0.022484 0.0703

0.1607 0.05 0.05 0.0009 0.008035 0.0025 0.007

0.1742 0.145 0.155 0.0135 0.025259 0.022475 0.0135

0.1607 0.054 0.16 0.017 0.0086778 0.00864 0.0017

0.1399 0.118 0.182 0.0028 0.0165082 0.021476 0.0003

0.1399 0.151 0.149 0.0131 0.0211249 0.022499 0.0092

0.0695

0.3333 0.154 0.146 0.01 0.0513282 0.022484 0.0008

0.3333 0.165 0.135 0.01475 0.0549945 0.022275 0.01475

0.3333 0.034 0.16 0.0249 0.0113322 0.00544 0.0224

0.144

0.0633 0.0567 0.033 0.0253 0.00358911 0.0018711 0.0228

0.1371 0.0762 0.138 0.1197 0.01044702 0.0105156 0.0083

0.1514 0.0345 0.155 0.0846 0.0052233 0.0053475 0.0084

0.1604 0.0651 0.149 0.0356 0.01044204 0.0096999 0.0032

0.1604 0.0234 0.166 0.0089 0.00375336 0.038844 0.081

0.1671 0.0765 0.135 0.0039 0.01278315 0.0103275 0.0028

0.1604 0.0321 0.1679 0.0545 0.00514884 0.0538959 0.0491

0.0342

0.1778 0.0612 0.1388 0.0094 0.01088136 0.00849456 0.0113

0.2346 0.05 0.05 0.0095 0.01173 0.0025 0.086

0.2789 0.0532 0.1648 0.0477 0.01483748 0.00876736 0.0334

0.3087 0.0431 0.1569 0.0546 0.01330497 0.00676239 0.00482

 Total 0.62552223 0.5283693 0.505815

Fig. 4. Performance Evaluation of Quality of QEMSR, AOSQ, PAOSQMO.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

733 | P a g e

www.ijacsa.thesai.org

VIII. CONCLUSION AND FUTURE RESEARCH

In AOP, AspectJ is a popular language which provides a
support to the software developers to achieve improved quality.
AOP is a standard that is trusted for quality improvement. AOP
quality measurement has been trusted by evaluation of
experimental results using a new QEMSR method and set of
metrics for reusability and its sub characteristics. The set of
AOP metrics (Coupling, Cohesion, size metrics such as DIT,
NOC, CBO, LCOM, WMC, RFC) have authorized to support
AspectJ and Java and an authentication of these existing
metrics for quality assessment instead of new metrics proposed
for AOP. Comparisons of projects are not industrial projects.
Nevertheless, this paper provides the evaluation of quality and
methodology of comparison as a single unit.

For future research perspective, to validate the quality
metrics for large and more complex (commercial) system
empirical study require in AOP research. Experimentation on
large industrial projects for this domain is very difficult. This
paper assessment provides some intuition about AOP and its
quality which can’t be generalized and it needs supplementary
study. The focus of future research is on native programming
languages, which is extension of AOP.

REFERENCES

[1] Pankaj Kumar, “Aspect oriented software quality model: The AOSQ
model”, Advanced Computing in International Journal, Vol. 3, No.2,
2012.

[2] S. N. Chishti and S. K. Singh, “Exploring the quality improvement in
small scale project using aspect oriented design”, International Journal
of Recent Technology and Engineering, Vol.8, issue 2, 2019.

[3] Vinobha A. and Senthil Valan S, “Evaluation of reusability in aspect
oriented software using inheritance metrics”, IEEE International
Conference on Advanced Communication Control and Computing
Technologies (ICACCCT), 2014.

[4] Djamel Meslati and Soumeya Debboub, “Quantitative and qualitative
evaluation of aspectJ, Jboss AOP and CaesarJ using Gang-of-Four
design patterns”, International Journal of Software Engineering and its
Applications,Vol.7,No. 6, 2013.

[5] Ghareb M.I. and Gary Allen,” Identifying similar pattern of potential
aspect oriented functionalities in software development life cycle”,
Journal of Theoretical and Applied Information Technology, Vol. 80,
No.3, 2015.

[6] Hamed Fawareh, “ Software quality model for maintainance software
purposes”, International Journal of Engineering Research and
Technology, Vol. 13, No.1, 158-162, 2020.

[7] S. Dixit, S. K. Singh,”Performance of aspect oriented software quality
modeling using artificial neural network technique”, International
Journal of Computer Applications, Vol. 182, Issue 36, 6-10, 2019.

[8] S. K. Singh and P. Kumar, “An innovative approach to analyze object-
oriented and aspect oriented applications metrics using the Java and
AspectJ programming language”, International Journal of Advance
Research Engineering and Technology, Vol. 11, Issue 11, 149-158,
2020.

[9] K. Sirbi and P.J. Kulkarni ” Design pattern Vs aspect oriented
programming- A qualitative and a quantitative assessment”,
International Journal of Computer Science & Communication, Vol.1,
No. 2, pp: 233-237, 2010.

[10] G. Kiczales, J. Irwin, J. Lamping, “Aspect oriented programming”,
European Conference on Object Oriented Programming, pp: 220-242,
ECOOP’1997.

[11] AL-Badareen, “Software quality evaluation: user’s view”, International
Journal of Applied Mathematics and Informatics, Issue 3, Volume 5,
2011.

[12] Al-Rawashdeh and Feras M. Al’azzeh, ”Evaluation of ERP systems
quality model using AHP technique”, Journal of Software Engineering
and Applications, 7, 225-232, 2014.

[13] Samarthyam G Ganesh and T. Sharma, “MIDAS: A design quality
assessment method for industrial software”, IEEE International
Conference on Software Engineering, San Francisco, USA, 2013.

[14] A. Przybylek, “An empirical study on the impact of AspectJ on software
evolvability”, Empir Software Eng, 23, 2018-2050, 2018.

[15] R. Kumar and Dalip, “Implementation of qualitative evaluation model
with real life problem using AspectJ”, International Conference on
Globel EnterpreneurshipTrends and Empowerment through Innovation,
Accepted Springer Proceeding, 2021, in press.

[16] Ram Chatterjee and Ritika Choudhary, “Predilection of reusability over
maintainablity in aspect oriented system”, International Journal of
Computers and Technology, Vol. 6(3), 2013.

[17] O. P. Sangwan, P. K. Singh, A. Singh and A. Pratap,”A quantative
evaluation of reusability for aspect oriented software using multi-criteria
decision making approach”, World Applied Sciences
Jouranal30(12):1966-1976, 2014.

[18] D. Gotseva and M. Pavlov,”Aspect oriented programming with
AspectJ”, International Journal of Computer Science Issue, Vol.9, Issue
5, No 1, 2012.

[19] R. Kumar, Dalip and M. Rai,” A comparative study of AOP approaches:
AspectJ, Spring AOP, Jboss AOP”, Proceeding of the World Congress
on Engineering and Computer Science, San Francisco, USA, 2019.

[20] Heba A. Kurdi “Review on aspect oriented programming”, International
Journal of Advanced Computer Science and Applications, Vol. 4, No. 9,
2013.

[21] Bharti Bisht and Parul Gandhi, ”Metric approach to anticipate
reusability of object oriented software systems”, Turkish Journal of
Computer and Mathematic Education, Vol.12, No. 6, 2021.

[22] Saaty, T.L., “The analytic hierarchy process”, McGraw-Hill, New York,
1980.

[23] S. K. Singh and P. Kumar, ”An extensive analysis of the characteristics
of an AOSQ model using fuzzy logic model”, International Journal of
Advance Research and Technology”, Vol.11, Issue 12, 1351-1360,
2020.

[24] Farhan M. Al Obisat, Zaid T. Alhalhouli, “Review of literature on
software quality”, World of Computer Science and Information
Technology Journal, Vol. 8, No. 5, 32-42, 2018.

[25] Shashank Joshi and GeetaBagade, “Exploring AspectJ refactoring”,
International Journal of Computer Applications, 2016.

[26] H. Bindu, Sk. RiazurRaheman and Amiya Kumar Rath, “Dynamic slice
of aspect- oriented program: A comparative study”IJRITCC, Vol.2,
Issue 2, pp: 249-259, 2014.

[27] K. Chitra and G. Maheswari, “Enhancing reusability and measuring
performance merits of software component using CK metrics”,
International Journal of Innovative Technology and Exploring
Engineering, Vol.8, 2019.

[28] Pankaj Kumar and S.K. Singh, ”A comprehensive evaluation of aspect-
oriented software quality (AOSQ) model using AHP technique”, IEEE,
2nd International Conference on Advances in Computing,
Communication & Automation (ICACCA), 2016.

[29] Petrus Mursanto, Dameria Christina Pasaribu, “Defining software
quality rank using analytic hierarchy process and object-oriented
metrics”, IEEE, International Conference on Advanced Computer
Science and Information System (ICACSIS), 2018.

[30] Pankaj Kumar and S.K. Singh, ”A comprehensive investigation of
quality of AOP based small scale projects using aspect-oriented software
quality (AOSQ) model”, IEEE, International Conference on Advances in
Computing, Communication Control and Networking (ICACCCN),
2018.

