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Abstract—Clustering is a fundamental problem in machine 

learning. To address this, a large number of algorithms have 

been developed. Some of these algorithms, such as K-means, 

handle the original data directly, while others, such as spectral 

clustering, apply linear transformation to the data. Still others, 

such as kernel-based algorithms, use nonlinear transformation. 

Since the performance of the clustering depends strongly on the 

quality of the data representation, representation learning 

approaches have been extensively researched. With the recent 

advances in deep learning, deep neural networks are being 

increasingly utilized to learn clustering-friendly representation. 

We provide here a review of existing algorithms that are being 

used to jointly optimize deep neural networks and clustering 

methods. 
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I. INTRODUCTION 

Clustering is a challenging problem in machine learning, as 
its purpose is to categorize objects into groups according to 
similarity measures. To achieve this, many clustering 
algorithms have been published in the literature [1]. These 
algorithms can be classified into two groups: hierarchical and 
partitional approaches. In hierarchical clustering, the data are 
organized into nested clusters that are merged into larger ones 
or divided into smaller ones. This yields a hierarchy of clusters 
called a dendrogram. Conversely, partitional clustering is based 
on the optimization of a specific cost function that allows 
separation between clusters. The performance of these different 
clustering algorithms depends on their accurate representation 
of the data. Hence, data representation learning is a critical step 
in the clustering process. 

Over the past several decades, many traditional 
representation learning techniques have been proposed. Some 
of these techniques are designed to learn low-dimensional data 
representation with linear projections, such as unsupervised 
principal component analysis (PCA) [2], supervised linear 
discriminant analysis (LDA) [3], kernel-based PCA [4], and 
generalized discriminant analysis (GDA) [5]. To discover the 
intrinsic structure of high-dimensional data, manifold learning 
algorithms that are based on locality were introduced, such as 
isometric feature mapping (Isomap) [6] and locally linear 
embedding (LLE) [7]. In 2006, Hinton et al. [8, 9] introduced 
the concept of deep learning by utilizing artificial neural 
networks (ANNs) for dimensionality reduction. Specifically, 
they introduced a greedy layer-wise pretraining process and a 
finetuning framework for deep neural network (DNN) learning. 
The resulting performance was better than that of state-of-the-
art algorithms on MNIST [9] handwritten digit recognition and 

document retrieval tasks. Following this groundbreaking work, 
a considerable number of deep representation learning 
algorithms were developed. 

Recently, frameworks that perform deep representation 
learning and clustering procedures have attracted much 
attention. These frameworks are referred to as deep clustering 
algorithms, and they can be divided into (1) separated deep 
clustering and (2) combined deep clustering methods. In 
separated deep clustering, the deep representation is learned 
first, and then fed into a clustering algorithm. However, 
because these two tasks are optimized separately, the learned 
representation may not be suitable or sufficient for the 
clustering. In combined deep clustering, the deep 
representation learning and clustering are jointly optimized. 
This implies that the clustering assignments and network 
parameters are reciprocally affected in every learning iteration. 
Such an approach yields a representation that is more suitable 
for clustering. Two approaches to achieve combined 
optimization exist: the pretraining and finetuning approach, 
and the joint training approach. In the pretraining and 
finetuning approach, the DNN is pre-trained with 
nonsclustering loss (network loss) to initialize the network 
parameters and learn initial representation. Then, the clustering 
loss is used to train (finetune) the initialized network and 
output clusters. In contrast, in the joint training approach, the 
network is trained with a joint loss function that integrates the 
clustering loss with a nonclustering loss (network loss). In this 
review, we survey joint deep clustering algorithms by 
examining different network structures and analyzing the 
building blocks of these algorithms. 

In Section 2, we introduce deep representation learning 
techniques. In Section 3, we will describe the clustering 
algorithms that are utilized in joint deep clustering. In 
Section 4, we provide a survey of the joint deep clustering 
approaches, and in Section 5, we present the conclusions from 
the results of this survey. 

II. DEEP REPRESENTATION LEARNING 

Deep representation learning techniques generate multiple 
levels or a hierarchy of representations. In this hierarchy, the 
high-level representations are constructed from multiple low-
level ones. These techniques are based on deep ANNs. A 
typical (single-layer) neural network consists of input, hidden, 
and output layers. The input layer receives the raw input data, 
whereas the output layer produces the task results, such as 
object classification or clustering. The hidden layer applies 
nonlinear transformation to extract more abstract and 
composite representations from the input data. DNNs contain 
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more than one hidden layer, to apply multiple nonlinear 
transformations and create the representation hierarchy. The 
word “deep” refers to the multiple hidden layers in the neural 
network. 

DNNs apply a supervised learning process, where a set of 
input–output pairs is provided for training. This learning 
process is composed of two passes: a forward pass (forward 
propagation) and a backward pass (backpropagation). The 
forward pass first randomly initializes the network parameters, 
that is, the connections, weights, and biases. Then, the input 
data are passed through the network layers, in the forward 
direction, to calculate the predicted output. Next, the predicted 
output is compared with the actual output through a task-
specific loss function. An optimization technique, namely, 
stochastic gradient descent (SGD), is then applied to minimize 
the loss function. Conversely, the backpropagation process is 
initiated by updating the network weights so that the predicted 
output is closer to the actual output. This can be achieved by 
minimizing the error of each output neuron in the entire 
network. 

In the following subsections, we discuss three DNN types 
that have been used as representation learning techniques for 
clustering tasks. The first is feedforward neural networks 
(FNNs), which fall into two categories: completely connected 
networks (FCNs) [10] and convolutional neural networks 
(CNNs) [11]; the second is deep belief network (DBNs), which 
are composed of a stochastic probabilistic component called a 
restricted Boltzmann machine (RBM); and the third is the 
autoencoder (AE), which comes in two types: the stacked AE 
(SAE) and convolutional AE (CAE). 

A. Feedforward Neural Networks 

The FNN [12] is the simplest type of neural network, where 
the connection between neurons does not form a cycle. The 
information in this type of network moves forward (in one 
direction) from the input neurons to the output neurons. In this 
case, there is no feedback from the output toward the input 
neurons. FNNs are arranged in the form of layers, as are all 
neural networks. Depending on the number of layers, an FNN 
can be a single- or a multilayer network. As mentioned above, 
FNNs fall into two types: FCNs and CNNs. 

An FCN, also known as a multilayer perceptron (MLP) 
[13], consists of multiple completely connected (FC) layers, 
where each neuron in one layer is connected to every neuron in 
the previous layer. In addition, every one of these connections 
has its own weight. FCNs are composed of an input layer, an 
output layer, and an arbitrary number of hidden layers. This 
type of feedforward network is tailored for supervised learning. 

Inspired by biological process, the neuron connectivity 
pattern in CNNs mimics the organization of the animal visual 
cortex. The first and core building block of a CNN is the 
convolutional layer, where each neuron is connected to only a 
few neurons in the previous layer. The same set of weights is 
used for every neuron. The second layer is the rectified linear 
unit (ReLU) layer, which applies an elementwise nonlinear 
activation function to retain the positive parts of the inputs and 
remove the negative ones by replacing them with zero. The 
reason for applying ReLU layers in a CNN is to increase the 

nonlinearity of the inputs. A pooling layer is frequently 
inserted between two consecutive convolutional layers. The 
pooling layer applies a function to reduce the spatial size of the 
representation by combining the output of the set of neurons in 
one layer into a single neuron in the next layer. As a 
consequence, the number of parameters and computations 
throughout the network is reduced and overfitting is controlled. 
The final layer of a CNN is an FC layer to classify the input. 
Similar to FCNs, CNNs are designed for supervised learning, 
and specifically to classify image datasets. 

Deep clustering algorithms that employ feedforward 
networks for unsupervised representation learning use 
clustering loss only to train the network. Hence, these 
algorithms aim to optimize the objective function, 

L = Lc               (1) 

where 𝐿  is the algorithm loss function and 𝐿𝑐  is the 
clustering loss function. In the absence of other measures and 
depending completely on the clustering loss, such deep 
clustering algorithms may lead to a distorted representation 
space, wherein all data points are assigned to tight clusters. 
Such a trivial solution results in a small amount of meaningless 
clustering loss. To alleviate this problem, and in addition to the 
careful design of the clustering loss function, suitable network 
parameter initialization is required to enhance the performance. 

B. Deep Belief Network 

DBNs [14] are a branch of DNNs, and are composed of a 
stack of RBMs [15] followed by a softmax layer that applies a 
softmax activation function to the input. An RBM is a two-
layer neural network, where the first is the visible (input) layer 
and the second is the hidden layer. A DBN is trained by greedy 
layer-wise unsupervised learning with RBMs as the building 
blocks for each layer. Then, the parameters of the DBN are 
finetuned according to a task-specific loss function. DBN-
based deep clustering algorithms finetune the network 
parameters using the clustering loss function only, and thus 
optimize an objective function similar to the feedforward 
network loss function in equation (1). Hence, careful clustering 
loss selection and good network parameter initialization affect 
the performance of the deep clustering algorithm. 

C. Autoencoder 

An AE [16] is a special type of neural network designed for 
unsupervised representation learning. It consists of three 
building blocks: an encoder, a bottleneck layer, and a decoder. 
The encoder maps the input 𝑥𝑖 to its hidden representation 𝑧𝑖 
through a nonlinear function 𝑓𝑊1

(∙), as in equation (2), and the 

decoder reconstructs the input 𝑥𝑖 from its hidden representation 
𝑧𝑖 by using a transformation function 𝑔𝑊2

(∙) as in equation (3). 

zi = fW1
(xi)              (2) 

yi = gW2
(zi)              (3) 

Here, 𝑊1  represents the encoding weight, and 𝑊2  the 
decoding weight. The encoder and decoder can comprise an FC 
network to construct an SAE [17], or a CNN to form a CAE 
[18]. The bottleneck layer controls the amount of information 
that traverses the network by learning a compressed 
representation of the input data. The learning problem can be 
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formulated as a supervised one that is aimed to output the 
reconstruction image 𝑦𝑖 from the input 𝑥𝑖. The entire network 

can be trained by minimizing the reconstruction loss 𝐿𝑟_𝐴𝐸 , 
which measures the differences between the original input 𝑥𝑖 
and the reconstructed image 𝑦𝑖: 

Lr =
1

n
∑ ‖xi − yi‖

2n
i=1             (4) 

AE-based deep clustering algorithms seek to optimize an 
objective function that combines clustering and reconstruction 
losses: 

L = Lr + γLc            (5) 

where 𝜸  is a coefficient to control the distortion of the 
representation embedding space. The existence of the 
reconstruction loss forces the algorithm to avoid trivial 
solutions and learn more feasible representations. 

D. Variational Autoencoder 

VAE [19] is a generative variant of AE that enforces the 
latent code to follow a predefined distribution. This goal is 
achieved by encoding the input data into two vectors instead of 
one: mean value and standard deviation. Unlike the output of 
the standard AEs that points directly to the encoded value in 
the latent space, VAE outputs point to the area where the 
encoded value can be. To be more specific, VAE initializes a 
probability distribution where the mean value controls the 
location point of the encoding center, and the standard 
deviation defines the area in which encoding can vary from the 
mean. As a consequence, VAE allows interpolation and 
generation of new samples. Mathematically, VAE measures the 
Kullback–Leibler (KL) divergence [20] from a prior 
distribution to approximate the variational posterior 
distribution. The objective function can be formulated as the 
following: 

Lr_VAE = Eq(z|xi)[log p(xi|z)]          (6) 

LVAE = Lr_VAE − ∑ KL(q(z|xi)‖p(z))n
i=1          (7) 

where 𝐿𝑟_𝑉𝐴𝐸 represents the reconstruction loss of the VAE, 
𝑝(𝑧)  is the prior over the latent variables, 𝑞(𝑧|𝑥𝑖)  is the 
variational posterior to approximate the true posterior 𝑝(𝑧|𝑥𝑖), 
and 𝑝(𝑥𝑖|𝑧) is the likelihood function. Gaussian distribution is 
the common choice as prior; however, VAE-based clustering 
algorithms should choose a distribution which can describe the 
structure of the clusters. 

E. Adversarial Autoencoder 

Similar to VAE, AAE [21] utilizes a prior distribution to 
control the encoding of the input data. Hence, the decoder 
learns only the mapping from the prior distribution to the data 
distribution. The output of the AAE encoder, i.e. the encoded 
value, is fed as input to the decoder and to a special generative 
adversarial network (GAN) [19]. In AAE, the encoder and 
decoder together form the generator model (𝐺), while the GAN 
is known as discriminator (𝐷). Through the learning process, 
AAE establishes a min–max adversarial game between its 
generator and the discriminator. While the generator tries to 
map a generated sample from a prior distribution to the data 
space, the discriminator computes the probability to detect 
whether its input a real sample from the data distribution or a 

fake sample from the generator. The training process of AAE is 
handled through two phases: (1) a reconstruction phase and (2) 
a regulation phase. During the reconstruction phase, the 
generator is trained to minimize the reconstruction loss of the 
generated sample and produce a reconstructed image of it. In 
the regulation phase, the discriminator parameters are updated 
to distinguish the real samples generated by the priori from the 
fake samples generated by the encoder. The discriminator 
network 𝐷 is updated by the following discriminative loss (𝐿𝑑): 

Ld =
1

n
∑ [logD(zî) + log(1 − D(zi))]n

i=1           (8) 

where 𝑧�̂� and 𝑧𝑖 are the sample from prior distribution and 
input sample, respectively. Then, the discriminator is fixed, and 
the encoder is updated to confuse the discriminator by 
increasing the classification error of 𝐷  on the input latent 

representation with generation loss 𝐿𝑔 , as in the following 

equation: 

Lg =
1

n
∑ log(1 − D(zi))n

i=1             (9) 

AAE-based deep clustering algorithms optimize a loss 
function that combines reconstruction loss, generation loss, and 
clustering loss: 

LAAE = Lr + αLg + βLc           (10) 

where 𝐿𝑟 ,  𝐿𝑔 , and  𝐿𝑐  represent the reconstruction loss 

defined in equation (4), the generation loss in equation (9), and 
a clustering loss, respectively. 𝛼 and 𝛽 are hyperparameters to 
balance the importance of the generation loss and the clustering 
loss, respectively. 

III. CLUSTERING TECHNIQUES 

As stated previously, clustering techniques can be divided 
into two types: hierarchical and partitional clustering. 
Hierarchical clustering methods iteratively merge smaller 
clusters into larger ones, or split large clusters into smaller 
ones. The difference between hierarchical algorithms includes 
the similarity measures that are used to determine which 
clusters should be merged or split. The results of hierarchical 
clustering are organized in a tree called a dendrogram, which 
shows the relationships between clusters. Conversely, 
partitional clustering seeks to decompose data into a set of 
disjointed groups. This decomposition is achieved based on the 
minimization of a specific objective loss function. Centroid-
based algorithms, such as K-means [22, 23] and KL-
divergence [20] clustering, distribution-based algorithms such 
as Gaussian mixture clustering [24], graph-based clustering 
algorithms such as spectral clustering [25] and RCC [26], and 
density-based algorithms such as DBSCAN [27] are all 
subtypes of partitional clustering algorithms. As existing joint 
deep clustering utilizes only centroid- and graph-based 
clustering, these two techniques are explained in the following 
subsections. Finally, we introduce some auxiliary clustering 
losses that are used in conjunction with other losses to guide 
deep representation learning. 

A. Centroid-Based Clustering 

Given a dataset 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛 points together with 
its extracted representation 𝑍 = {𝑧, … , 𝑧𝑛} , centroid-based 
clustering partitions the data points into clusters with central 
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representatives called centroids. These cluster centroids, 
denoted by ℳ = {𝜇1, … , 𝜇𝑘}, where 𝑘 is a predefined number 
of clusters, do not necessarily belong to the dataset. In joint 
deep clustering algorithms, two centroid-based algorithms are 
utilized: K-means and KL-divergence clustering. 

1) K-means Clustering: K-means clustering first randomly 

selects 𝑘 centroids from the input data representations, each of 

which represents a cluster. A K-means algorithm minimizes the 

total mean squared error between the input data and cluster 

centroids according to the loss function: 

LKM =  ∑ ∑ ‖zi −  μj‖2

2n
i=1

k
j=1          (11) 

An additional variation of the K-means loss function is the 
weighted least squares error, referred to as weighted K-means. 
It optimizes the cost function as: 

LWKM =  ∑ ∑ Sij‖zi −  μj‖2

2n
i=1

k
j=1         (12) 

where 𝑆𝑖𝑗  is a similarity weight that encodes the closeness 

of a data point to a cluster centroid; i.e., 𝑆𝑖𝑗  will be larger if the 

data point 𝑧𝑖  is close to the centroid 𝜇𝑗 . In the K-means 

learning process, the following two steps are repeated until 
convergence is reached: 

 Point assignment update, which is accomplished by (i) 
calculating the mean distance from the data point to 
every cluster centroid, and (ii) assigning points to the 
cluster with the minimum mean among all clusters. 

 Centroid update, which is computed according to the 
following equation, where 𝑚𝑗  is the number of points in 

the 𝑗𝑡ℎ cluster: 

μj =  (
1

mj
) ∑ zi

mj

i=1
         (13) 

K-means perform well when the distribution of the points is 
in circular form. Otherwise, K-means will attempt to group the 
points in circular form, which will affect the clustering result. 
To remedy this issue, K-means should be updated to employ a 
distribution-based model instead of a distance-based model. 

Gaussian Mixture Model (GMM) [24] is a probabilistic soft 
clustering technique which tends to group points with the same 
distribution together. The clustering process starts by 
initializing the means and covariances of the Gaussian 
distribution for 𝑘 clusters. Then, the expectations of all points 
assignments are calculated for all clusters. Furthermore, the 
distribution parameters are re-estimated, and the log-likelihood 
function is computed. This process continues until a predefined 
convergence criterion is reached. 

2) KL-divergence Clustering: KL-divergence clustering is 

a soft assignment clustering technique, in which each data 

point is assigned to all clusters with varying probabilities. This 

algorithm is initiated using K-means to obtain 𝑘  initial 

centroids. Next, the learning process is executed to optimize 

the following Kullback–Leibler (KL) divergence loss function: 

LKLD = KL(P||Q)  =  ∑ ∑ pij  𝑙𝑜𝑔 (
pij

qij
)ji          (14) 

where 𝑃 is an auxiliary target distribution and 𝑄 represents 
the data point soft assignments. The KL-divergence clustering 
algorithm refines the point assignments by learning from 
higher confidence points utilizing the auxiliary target 
distribution 𝑝𝑖𝑗 . Specifically, the algorithm matches the soft 

assignments 𝑞𝑖𝑗  with the target distribution 𝑝𝑖𝑗  by computing 

the KL divergence. The clustering algorithm iteratively 
performs the following steps until convergence is obtained or 
the maximum iteration is reached: 

1) Calculation of 𝑞𝑖𝑗,, the probability that a data point 𝑖 
belongs to cluster 𝑗. Two means of calculating 𝑞𝑖𝑗  exist: (1) 

student’s t-distribution [28], as in equation (15), and (2) a 

multinominal regression [28] function, as in equation (16). 

qij  =  
(1+‖zi−μj‖

2

2
)

−1

∑ (1+‖zi−μj‖
2

2
)

−1

j

         (15) 

 =  
exp (μj

T zi)

∑ exp (μj
T zi)j

                                                                     (16)

             

2) Computing 𝑝𝑖𝑗 , a higher confidence distribution that can 

be obtained by calculating the soft cluster frequencies by 

considering the formula: 

pij =
qij

2 ∑ qiji⁄

∑ (qij
2 ∑ qiji⁄ )j

          (17) 

3) Updating clusters centroids according to: 

μj = μj −
λ

n
∑

∂LKLD

∂μj

n
i=1           (18) 

B. Graph-Based Clustering 

Given a dataset 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛 points together with 
their corresponding representation 𝑍 = {𝑧, … , 𝑧𝑛},  graph 
clustering techniques first construct an undirected similarity 
graph 𝐺 = (𝑉, 𝐸) , where 𝑉 = {𝑣1, … , 𝑣𝑛}  denotes a set of 
vertices to represent the input data, and 𝐸 is the set of edges 
between vertices. Several approaches for building a similarity 
graph [1] exist, two of which are specifically used in joint deep 
clustering. These approaches are the following: 

 K-nearest neighbor (KNN) graph: this graph connects 
vertex 𝑣𝑖  with vertex 𝑣𝑗 , if 𝑣𝑗  is within K-nearest 

neighbors of 𝑣𝑖. One problem common to KNN is that 

the graph is asymmetric, which means that if 𝑣𝑗  is 

among the KNNs of 𝑣𝑖 , then 𝑣𝑖  is not necessarily 

among the KNNs of 𝑣𝑗. Hence, the constructed graph is 

a directed one. To alleviate this problem, there are two 
solutions; first, to insert an undirected edge between the 

two vertices 𝑣𝑖  and 𝑣𝑗 , if one of them is within the 

KNNs of the other; second, to restricts the edges, two 

vertices 𝑣𝑖 and 𝑣𝑗 are connected by an undirected edge 

only if they are both among the KNNs of each other. 
The resultant graph in the latter solution is called a 
mutual KNN graph. 

 Completely connected graph: this graph simply 
connects all vertices with each other by weighted edges. 
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The weight of an edge 𝑤𝑖𝑗 between two vertices 𝑣𝑖 and 

𝑣𝑗 represents the similarity between them. Because the 

graph should express the local neighborhood 
relationship, a Gaussian similarity function is usually 
utilized. 

The graph is represented by an adjacency matrix, in which 
the similarity 𝑤𝑖𝑗 b tween every two vertices is included. Two 

graph-based clustering algorithms are utilized in joint deep 
clustering techniques: spectral clustering [25] and robust 
continuous clustering (RCC) [26]. We briefly explain these two 
approaches. 

1) Spectral clustering: After the construction of the 

similarity graph and the extraction of the adjacency matrix, the 

spectral algorithm transforms the data into a low-dimensional 

space. To achieve this, another graph representation matrix is 

computed, the Laplacian matrix. The graph Laplacian matrix ℒ 

is computed as: 

ℒij = {

di , if i = j
wij, if (i, j) ∈ E

0, if (i, j) ∉ E

           (19) 

where 𝑑𝑖  is the degree of the vertex 𝑣𝑖 , which can be 
computed as: 

di = ∑ wij{j|(i,j)∈E}            (20) 

Then, the Laplacian matrix is utilized to find the 
eigenvalues 𝜆 and eigenvectors 𝜐, such that. 

λℒ = λυ            (21) 

Once the eigenvectors have been obtained, the low-
dimensional data transformation is completed. Finally, a K-
means clustering algorithm, explained in section 3.1, is applied 
to the transformed data (eigenvectors) to create clusters. 

2) Robust Continuous Clustering (RCC): This approach 

operates on a set of representations 𝑈 = {𝑢1, … , 𝑢𝑛} for the 

original dataset 𝑋 , where 𝑋  and 𝑈  have the same 

dimensionality. This algorithm minimizes the loss function. 

LRCC = Ldata + λLpairwise         (22) 

where 𝜆  is a coefficient that balances the two objective 
terms. The first term 𝐿𝑑𝑎𝑡𝑎 is the data loss that constrains the 
representations to remain near the corresponding data points. 
The data loss can be computed as: 

Ldata = ∑ ‖zi − ui‖2
2n

i=1            (23) 

The second term, which is the pairwise loss 𝐿𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 , is 

designed to encourage the representations to merge, and pulls 
them together according to. 

Lpairwise = ∑ wpqρ (‖up − uq‖
2

; μ)(p,q)∈E         (24) 

where {𝑤𝑝𝑞} represents appropriately defined weights, 𝜇 is 

a scale parameter, and 𝜌 is a redescending M-estimator that can 
be calculated according to a scaled Geman–McClure function 
[29]: 

ρ(x;  μ) =  
μx2

μ+x2           (25) 

The first stage in the RCC learning procedure is 
initialization, which includes the following steps: 

1) Construction of the similarity graph 𝐺1 = (𝑉, 𝐸) using 

mutual KNN. 

2) Initialization of the data representation with 𝑢𝑖 = 𝑧𝑖. 

3) Initialization of the line process 𝕃 = {ℓ𝑝𝑞}, where ℓ𝑝𝑞 

is an auxiliary variable between two connected vertices 𝑣𝑝 and 

𝑣𝑞 with ℓ𝑝𝑞 = 1. 

4) Initialization of a scale parameter 𝜇  with 𝜇 ≫
𝑚𝑎𝑥‖𝑧𝑝 − 𝑧𝑞‖

2
. 

The optimization is aimed to reveal the cluster structure 
latent in the data; thus, the number of clusters does not need to 
be known in advance. The following optimization steps are 
recursively repeated until a maximum iteration number is 
reached, or the difference between the clustering loss in two 
consecutive iterations is less than a predetermined threshold. 

1) Update ℓ𝑝𝑞 according to the following formula. 

ℓpq =  (
μ

μ+‖up−uq‖
2

2)

2

         (26) 

2) Update the representations 𝑈 = {𝑢1, … , 𝑢𝑛}  using the 

following equation: 

UM = Z           (27) 

where 

M = I + λ A          (28) 

𝐼 is the identity matrix, 𝑒𝑖 is an indicator vector with the 𝑖𝑡ℎ 
element set to 1, and 𝐴 is computed as the following: 

A = ∑ wpqℓpq(ep − eq)(p,q)∈E (ep − eq)T                     (29) 

Update the value of 𝜆 as. 

λ =
‖Z‖2

‖A‖2
           (30)       

Update the value of 𝜇 as. 

μ = max (
μ

2
,

δ

2
)           (31) 

where 𝛿 is a threshold set to be the mean of the lengths of 
the shortest 1% of the edges in 𝐸. Then, RCC constructs a new 

graph 𝐺2 = (𝑉, ℇ)  with 𝜀𝑝𝑞 = 1  if ‖𝑢𝑝
∗ − 𝑢𝑞

∗ ‖
2

> 𝛿 . Finally, 

the algorithm outputs the clusters given by the connected 
vertices of 𝐺2 . 

C. Auxiliary Clustering Losses 

Some clustering loss functions are designed to guide deep 
representation learning techniques to extract feasible 
clustering-oriented representations; they cannot, however, 
output clusters. These functions are known as auxiliary 
clustering losses. Considering a dataset 𝑋 = {𝑥1, … , 𝑥𝑛}  of 
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𝑛 points together with its extracted representations 𝑍 =
{𝑧, … , 𝑧𝑛}, we present the auxiliary clustering losses that have 
been used in joint deep representation clustering algorithms. 

1) Balanced assignment loss: Balanced assignment loss is 

used in conjunction with other clustering loss to enforce 

balanced clustering assignments. The difference between two 

distributions, 𝑓 and 𝑢, is measured based on KL divergence as 

follows: 

LBA = KL(f||u)  =
1

n
∑ ∑ pijlog (

fj

uj
)ji         (32) 

where 𝑃 is the target distribution proposed in equation (17) 
𝑢  is the uniform distribution, and 𝑓  is the probability 
distribution, which can be calculated as. 

fj =
1

n
∑ piji            (33) 

2) Locality-preserving loss: Locality-preserving loss 

preserves the local structure property of the original data by 

pushing the nearby points together as. 

LLP =  ∑ Sij‖zi − zj‖2

2

i,j∈Nk(i)          (34) 

where 𝑁𝑘(𝑖) is the set of 𝑘 nearest neighbors of the data 
point 𝑥𝑖 and 𝑆𝑖𝑗  is a similarity measure between 𝑥𝑖 and 𝑥𝑗 . 

3) Group sparsity loss: Group sparsity loss was inspired 

by spectral clustering, where a block-diagonal similarity matrix 

is utilized for representation learning. Specifically, the hidden 

units are divided into 𝑘  groups, where 𝑘  is the number of 

clusters. For each data point 𝑥𝑖, after its representation 𝑧𝑖 has 

been extracted, a 𝑘 group unit {𝑓𝑗(𝑥𝑖)}𝑗=1
𝑘  is obtained. Then, 

the group sparsity is computed as. 

LGS =  ∑ ∑ λ√ng‖f j(xi)‖
2

k
j=1

n
i=1           (35) 

where 𝑓(𝑥𝑖) is the representation encoding function, 𝜆 is a 
constant, and 𝑛𝑔 is the group size. 

4) Self-expressiveness loss: Self-expressiveness loss is a 

property where a point in a subspace can be expressed as a 

linear combination of other points in the same subspace. Let 𝑋 

be a column matrix of all data points; the self-expressiveness 

can then be represented as 𝑋 = 𝑋𝐶 , where 𝐶  is the self-

representation coefficient matrix. By minimizing a certain 

norm of 𝐶, and under the assumption that the subspaces are 

independent, 𝐶  is guaranteed to have a block-diagonal 

structure. This ensures that 𝑐𝑖𝑗 ≠ 0, where 𝑥𝑖  and 𝑥𝑗  are two 

data points lying in the same subspace. The matrix 𝐶 can then 

be leveraged by spectral clustering to construct the affinity 

matrix. Given this fact, each data representation 𝑧𝑖 in a latent 

subspace is approximated by a weighted linear combination of 

other points {𝑧𝑗}𝑗=1
𝑛  with weights 𝑐𝑖𝑗 . To encode self-

expressiveness, the following auxiliary clustering loss function 

is introduced: 

LSE = λ1‖C‖p +
λ2

2
‖Z − ZC‖2, s. t. (diag(c) = 0)        (36) 

where 𝜆1  and 𝜆2  are two regularization parameters to 

account for data corruption, and ‖∙‖𝑝  represents an arbitrary 

matrix norm. 

IV. JOINT DEEP CLUSTERING 

Given a dataset 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛  points, the goal of 
joint deep clustering techniques is simultaneously to learn a 
low-dimensional representation 𝑍 = {𝑧1, … , 𝑧𝑛}  for the data 
and to cluster it into groups jointly. This can be accomplished 
by optimizing a joint loss function that combines two losses: 
the representation learning loss and the clustering loss. Then, 
the low-dimensional representations, network parameters 
(weights and biases), and clustering parameters and 
assignments are updated jointly. In this section, we survey 
these algorithms, and provides a taxonomy from the 
perspective of clustering algorithms. Table I summarizes 
existing joint deep clustering algorithms. 

A. Deep Kullback–Leibler Divergence Clustering 

Guo et al. [28] proposed improved deep embedded 
clustering (IDEC), an algorithm that simultaneously learns 
low-level representation and cluster assignment. The IDEC 
algorithm consists of two phases: (1) parameter initialization, 
and (2) parameter optimization and clustering. In the 
initialization phase, IDEC initiates a denoising SAE [17], 
which reconstructs a data point 𝑥  from a corrupted (noisy) 
version 𝑥 to force the encoder and decoder to capture implicitly 
the structure of data that generate distribution. The SAE is 
trained based on reconstruction loss to obtain initial values for 
the network’s weights and biases. The clusters’ centroids are 
initiated by applying K-means to the representations extracted 
from the encoder element. When the initialization is 
completed, IDEC removes noise from the data to apply 
clustering to the representation learned from the clean data. 
When noise has been removed, the denoising SAE degenerates 
into a traditional SAE, which constrains the dimension of the 
hidden representation 𝑍 to be less than the dimension of the 
input data 𝑋. Then, the optimization and clustering phase is 
executed by finetuning using KL divergence as clustering loss 
and SAE reconstruction loss. This results in the joint loss 
function 

𝐿𝐼𝐷𝐸𝐶 = 𝐿𝑟 + 𝜆𝐿𝐾𝐿𝐷           (37) 

where 𝐿𝑟 is the reconstruction loss in equation (4),  𝐿𝐾𝐿𝐷 is 
the KL-divergence clustering loss in equation (14), and 𝜆 is a 
regularization parameter to balance the two terms. Clustering is 
achieved by alternating between computing the soft assignment 
based on the student’s t-distribution formula in equation (15), 
and auxiliary target distribution in equation (17). IDEC jointly 

optimizes the cluster centers 𝜇𝑗 and the network parameters 𝜃 

using an SGD algorithm [30]. The gradient is calculated for the 
clustering loss 𝐿𝑐  with respect to the cluster centroid 𝜇𝑗  and 

point representation 𝑧𝑖, and then is utilized in backpropagation. 
Experimental results have demonstrated the importance of 
locality preservation. Guo et al. [31] developed a deep 
clustering method with CAEs (DCEC) for image clustering; 
the DCEC framework is very similar to the IDEC model, but 
instead of an SAE, DCEC employs a CAE to better incorporate 
the relationship between image pixels. The effectiveness of 
CAE over SAE has also been demonstrated for image datasets.  
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TABLE I.  SUMMARY OF JOINT DEEP CLUSTERING ALGORITHMS 

Algorithm 
Clustering 

Technique 

Network 

Architecture 
Joint Loss Function Main Contribution 

IDEC 

KL-divergence 

SAE 

𝑳𝑰𝑫𝑬𝑪 = 𝑳𝒓 + 𝝀𝑳𝑲𝑳𝑫 

Joint version of DEC [35], the first well-known deep 

clustering algorithm. 

DCEC CAE Improves on IDEC by using CAE instead of SAE. 

ADEC AAE 𝑳𝑨𝑫𝑬𝑪 = 𝑳𝒓 + 𝜶𝑳𝒈 + 𝜷𝑳𝑲𝑳𝑫 
Preserve the relevance between representation learning 

and clustering and reach to better trade-off between 

feature drift and feature randomness issue. 

DEPICT CAE 𝑳𝑫𝑬𝑷𝑰𝑪𝑻 = 𝑳𝒓_𝑫𝑬𝑷𝑰𝑪𝑻 + 𝑳𝑲𝑳𝑫 + 𝑳𝑩𝑳 
Ensures balanced clustering assignments that provide 

robust and superior results over image datasets. 

DEN 

K-means SAE 

𝑳𝑫𝑬𝑵 = 𝑳𝒓 + 𝜶𝑳𝑳𝑷 + 𝜷𝑳𝑮𝑺 

Learns clustering-oriented representations with the 

following properties: (1) locality preservation and (2) 

group sparsity. 

DCN 𝑳𝑫𝑪𝑵 = 𝑳𝒓 + 𝝀𝑳𝑲𝑴 
First algorithm to perform K-means and representation 

learning simultaneously. 

DKM 𝑳𝑫𝑲𝑴 = 𝑳𝒓 + 𝝀𝑳𝑾𝑲𝑴 
Updates DCN to use weighted K-means instead of 

traditional K-means. 

DMC 
𝑳𝑫𝑴𝑪 = (𝟏 − 𝜶)𝑳𝒓 + 𝜶𝑳𝑳𝑷_𝑫𝑴𝑪

+ 𝜷𝑳𝑾𝑲𝑴 

Utilizes deep SAE to improve the traditional 

multimanifold clustering algorithm. 

DSC-Nets 

Spectral 

Clustering 

CAE 𝑳𝑫𝑺𝑪−𝑵𝒆𝒕𝒔 = 𝑳𝒓 + 𝑳𝑺𝑬 
Utilizes deep CAE to improve the traditional spectral 

clustering algorithm. 

DASC 

AAE 

𝑳𝑫𝑨𝑺𝑪 = 𝑳𝒓 + 𝜶𝑳𝒈 + 𝜷𝑳𝑺𝑬 
Learns subspace clustering-friendly representations 

using AAE and self-expressiveness constraint. 

DSC 
𝑳𝑫𝑺𝑪

= 𝑳𝒓 + 𝑳𝒈 + 𝒔𝒑𝒆𝒄𝒕𝒓𝒂𝒍 𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒊𝒏𝒈 

More robust to noise; since it enforces the 

reconstruction constraints for the latent 

representations and their noisy versions. 

DCC RCC SAE 
𝑳𝑫𝑪𝑪 =

𝟏

𝑫
𝑳𝒓 +

𝟏

𝒅
(𝑳𝒅𝒂𝒕𝒂_𝑫𝑪𝑪

+ 𝝀𝑳𝒑𝒂𝒊𝒓𝒘𝒊𝒔𝒆_𝑫𝑪𝑪) 

Utilizes deep SAE to improve on the traditional RCC 

algorithm. 

Similar to IDEC, Zhou et al. [21] introduced Deep 
Embedded Clustering With Adversarial Distribution 
Adaptation (ADEC). Instead of SAE, ADEC utilizes AAE to 
learn from data space to feature space. With a backpropagation 
algorithm, ADEC iteratively optimizes the following objective 
function: 

LADEC = Lr + αLg + βLKLD          (38) 

where 𝐿𝑟 ,  𝐿𝑔 ,  𝐿𝐾𝐿𝐷  is the reconstruction loss defined in 

           , the generation loss in (9), and the KL-
divergence clustering loss in equation (14), respectively, and 𝛼 
and 𝛽  are hyperparameters to balance the importance of the 
generation loss and the clustering loss, respectively. In deep 
learning, the optimization of a neural network’s loss function 
whose secondary component highly competes with the primary 
one may lead to feature drift. As a result, the global learning 
process will be affected, since the features learned by the 
primary loss can be easily drifted by updating the secondary 
one. Discarding one of the primary or secondary losses will 
lead to substitution of a significant portion of true labels for 
random ones, known as feature randomness. Mrabah et al. [32] 
enhanced the IDEC approach to reach a better trade-off 
between feature drift and feature randomness using AAE 
complemented with data augmentation. 

Dizaji et al. [33] proposed the deep embedded regularized 
clustering (DEPICT) model to learn data representation and 

perform the clustering task. DEPICT has a complicated 
network architecture composed of a softmax layer on top of a 
multilayer CAE. More specifically, DEPICT consists of four 
components: two encoders, one decoder, and one softmax 
layer. The encoder and decoder elements of the DEPICT 
network are referred to as paths. 

Thus, there are three paths in the DEPICT architecture. The 
first path is called the noisy encoder, which is the encoder part 
of the denoising CAE that accepts noisy input data to infer 
noisy hidden representations. The second path is called the 
noisy decoder (or just decoder), and is the decoder element of 
the denoising CAE for reconstructing the input from the 
learned noisy representations. The decoder element consists of 
a strided CNN, which is similar to the traditional one, except 
that the value of the convolutional kernel stride is greater than 
1. The third path is called the clean encoder, a CNN that 
accepts clean input data to infer clean hidden representations. 
The clean and the noisy encoder paths share the same network 
parameters, i.e., weights and biases. The softmax layer (the 
fourth component of the network) is stacked on top of the noisy 
encoder top layer and clean encoder top layer to obtain the 
clustering assignments. The first phase of the algorithm is 
initialization, where the network parameters, cluster centroids, 
and target distribution are initialized. Instead of initializing the 
network parameters randomly, DEPICT assigns the weights 
from a Gaussian distribution, where the input and output 
variances are the same for each layer. This initialization 
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approach is known as Xavier (or normalized) initialization 
[34]. Next, DEPICT is trained with reconstruction loss only 
(without clustering loss) to obtain initial embedded 
representations for the input data. Then, the K-means 
clustering technique is applied to obtain the initial cluster 
centroids and the initial target distribution 𝑃 , when the 
initialization phase is complete, the optimization and clustering 
phase starts. In the softmax layer, DEPICT iteratively 
minimizes the following three-term joint loss function: 

LDEPICT = Lr_DEPICT + LKLD + LBL          (39) 

where 𝐿𝐾𝐿𝐷  and 𝐿𝐵𝐿  are the KL-divergence and balanced 
assignment losses that were introduced in equations (14) and 
(32), respectively. The first term is a data-dependent 
regularization term, which is a reconstruction loss function 
introduced in DEPICT designed to enhance the representation 
learning process and avoid the overfitting problem. The 
reconstruction loss between the noisy decoder and the clean 
encoder representations is computed as. 

Lr_DEPICT =
1

n
∑ ∑

1

|zi
l|

L−1
l=1 ‖zi

l − ẑi
l‖

2

2n
i=1          (40) 

where 𝑛 is the size of the input data, 𝐿 is the number of 
noisy decoder and clean encoder layers, 𝑙 is the layer number, 

|𝑧𝑖
𝑙|  is the 𝑙𝑡ℎ  layer output size, 𝑧𝑖

𝑙  is the 𝑙𝑡ℎ  layer of clean 

representations (from the clean encoder), and �̂�𝑖
𝑙 is the 𝑙𝑡ℎ layer 

of noisy representations (from the noisy decoder). The second 
term of the DEPICT joint loss function is the KL-divergence 
clustering loss. A multinominal logistic regression function is 
employed to perform the soft clustering assignment. Note that 
DEPICT computes the soft assignment predictions 𝑄 based on 
noisy representations that are extracted from the noisy encoder, 
whereas the target distribution 𝑃 is computed from the clean 
representations extracted from the clean encoder path. The 
third term is a regularization term that encourages balanced 
cluster assignments and avoids the allocation of clusters to 
outlier samples. The effectiveness of DEPICT has been proven 
empirically, especially in terms of the running time 
complexity. 

B. Deep K-Means Clustering 

Huang et al. [36] introduced a deep embedding network, 
referred to as DEN, to learn clustering-oriented representations 
using a three-layer SAE. Similar to that of most deep clustering 
algorithms, the DEN learning procedure is composed of two 
phases: initialization (pretraining) and optimization. In the 
pretraining phase, a three-layer DBN [14] is trained based on 
the contrastive divergence loss only, to initialize the SAE 
parameters. Then, the learned representation from the DBN is 
fed into the three-layer SAE to begin the joint training 
optimization process. In this phase, the DEN minimizes the 
joint loss function. 

LDEN = Lr + αLLP + βLGS           (41) 

where 𝐿𝑟  is the reconstruction loss in equation (4), 𝐿𝐿𝑃  is 
the locality-preserving auxiliary clustering loss defined in (34), 
and 𝐿𝐺𝑆 is the group sparsity auxiliary clustering loss expressed 

in equation (35) with 𝑆𝑖𝑗 = 𝑒𝑥𝑝 (‖𝑥𝑖 − 𝑥𝑗‖
2

2
𝑡⁄ ). Further, 𝛼, 𝛽, 

and 𝑡 are tuning parameters. By considering these two auxiliary 

clustering losses, the DEN imposes two constraints on the 
learned representations: the first is the locality-preserving 
constraint to preserve the local structure property of the 
original data, and the second is the group sparsity constraint. 
These are imposed to facilitate the clustering process, and 
ensure that the learned representation incorporates cluster 
information, and thus, is more suitable for clustering. After the 
optimization phase, the traditional K-means clustering 
algorithm is employed to perform clustering. 

Yang et al. [37] proposed a dimensionality reduction and 
K-means clustering framework named the deep clustering 
network (DCN). A DNN, specifically an SAE, is utilized by 
the DCN for dimensionality reduction and representation 
learning. The DCN algorithm is initiated by a pretraining stage 
based on reconstruction loss to initialize the SAE weights and 
biases. To initialize the cluster centroids, K-means clustering is 
applied to the obtained representations from the pretraining. 
Then, the joint training phase is executed by iteratively 
optimizing the joint loss function. 

LDCN = Lr + λLKM          (42) 

where 𝐿𝑟 is the reconstruction loss as defined in equation 
(4), 𝐿𝐾𝑀 is the K-means clustering loss function described in 
equation (11), and 𝜆  is a regularization parameter, which 
balances the reconstruction error by finding K-means-oriented 
hidden representations. Instead of applying the traditional SGD 
for the optimization process, the DCN introduces an alternating 
SGD optimization algorithm to update its parameters. There 
are three sets of parameters to be updated in a DCN: cluster 
centroids, data point cluster assignments, and network 
parameters. The proposed alternating SGD suggests that each 
set of parameters should be treated as a subproblem; thus, DCN 
optimizes the subproblems with respect to one of the cluster 
centroids, data point assignments, and network parameters 
while keeping the other two sets fixed. For instance, to update 
network parameters, both the cluster centroids and data point 
assignment are fixed, and then the corresponding gradient is 
calculated by backpropagation. 

Fard et al. [38] proposed a deep K-means clustering 
algorithm named deep K-means (DKM), which is very similar 
to the DCN [37]. DKM differs from the DCN in the clustering 
loss only, where weighted K-means is employed instead of K-
means. Equation (43) shows the DKM joint loss function: 

LDKM = Lr + λLWKM           (43) 

where 𝐿𝑟 is the reconstruction loss as defined in equation 
(4), 𝐿𝑊𝐾𝑀  is the weighted K-means clustering loss function 
described in equation (12), and 𝜆  regulates the trade-off 
between seeking good representation and good clustering 
results. The similarity weight of the K-means loss function is 
computed according to the softmax function. 

Sij_DKM =
exp(−α‖zi−zμj

‖
2

2
)

∑ exp(−α‖zi−zμ
j′

‖
2

2
)k

j′=1

         (44) 

where 𝑧𝑖 is the learned representation of data point 𝑥𝑖, 𝑘 is 

the number of clusters, 𝑧𝜇𝑗
 is the representation of the cluster 

centroid 𝜇𝑗, and 𝛼 is a coefficient such that when its value is 0, 
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all of the data points in the embedding space are very close, 
and when its value is relatively high, the points are sparse in 
the space. The network architecture and learning process of 
DKM is similar to that of DCN, except that instead of 
alternating between continuous gradient updates and discrete 
cluster assignment steps, DKM relies on the gradient update 
only to learn both the representation and clustering parameters. 

Chen et al. [39] proposed a deep manifold clustering 
algorithm called deep manifold clustering (DMC) to address 
multimanifold clustering (MMC) [40].DMC’s architecture is 
similar to that of DEN [36], where an SAE [17] is employed 
for representation learning and a DBN [14] is utilized to 
initialize the SAE parameters. In DMC, a locality-preserving 
auxiliary clustering loss is introduced such that the locality of a 
manifold can be interpreted as similar inputs, and therefore, 
should have similar representations. Thus, a data point can be 
recovered using the representation of its nearby point. Based 
on this observation, the DMC [39] locality-preserving loss 
function is defined as. 

LLP_DMC =
1

k
∑ ‖yi − xj‖2

2

j∈Nk(i)           (45) 

where 𝑦𝑖  is the reconstructed image of data point 𝑥𝑖  and 
𝑁𝑘(𝑖) is the indices set of 𝑘 nearest neighbors of 𝑥𝑖. After the 
SAE weights and cluster centroids have been initialized, the 
joint training procedure proceeds by iteratively optimizing the 
joint loss function: 

LDMC = (1 − α)Lr + αLLPDMC
+ βLWKM         (46) 

where 𝐿𝑟 is the reconstruction loss defined in equation (4), 

𝐿𝐿𝑃_𝐷𝑀𝐶  is the locality-preserving loss function defined in 
equation (45), 𝐿𝑊𝐾𝑀  is the weighted K-means clustering loss 
function presented in equation (12), 𝛼 balances the importance 
between the reconstruction of 𝑥𝑖  itself and its local 
neighborhood, and 𝛽 is a parameter to balance the contribution 
of the first two terms and 𝐿𝑊𝐾𝑀 . DMC uses the Gaussian-
dependent kernel as the similarity weight of the weighted K-
means loss function. 

Sij_DMC =
exp(−α‖zi−zμj

‖
2

2
2σ⁄ )

∑ exp(−α‖zi−zμ
j′

‖
2

2
2σ⁄ )k

j′=1

          (47) 

Here, 𝜎  is the kernel bandwidth. The keystone point of 
DMC is to find the manifold center, because the cluster centers 
are most probably surrounded by nearby points with lower 
local density, and because they are at a relatively large distance 
from any points with a higher local density. Therefore, DMC 
calculates the density of the new representation by computing 
two metrics: the local density of a point, and its distance to 
points with higher density. The local density 𝜌𝑖  of the 
representation 𝑧𝑖 is defined as. 

ρi = ∑ e
−𝛥ij

�̂�n
j=1            (48) 

where Δ𝑖𝑗 is the distance between the representation 𝑧𝑖 and 

𝑧𝑗  and Δ̂  is a cut-off distance. Then, the points in the new 

embedding space are sorted based on their density in 

descending order, denoted by {𝜆𝑖}𝑖=1
𝑛  with 𝜌𝜆1 ≥ 𝜌𝜆2 ≥ ⋯ ≥

𝜌𝜆𝑛. The distance metric is therefore calculated as. 

ξλi
= {

min 
λj

j<i

{Δλiλj
} , i ≥ 2

𝑚𝑎𝑥 
j≥2

{ξλj
} , i = 1.

                     (49) 

Next, a third metric is defined as 

γi = ρiξi          (50) 

Similarly, the points in the new embedding space are sorted 
based on 𝛾𝑖, as computed in equation (44) in descending order, 
and denoted by {𝜋𝑖}𝑖=1

𝑛  with 𝛾𝜋1 ≥ 𝛾𝜋2 ≥ ⋯ ≥ 𝛾𝜋𝑛. Assuming 
that the number of clusters 𝑘 is known in advance, the cluster 
centers are determined by considering the 𝑘  largest 𝛾 . The 
experiments reported in [39] showed that DMC outperformed 
the state-of-the-art multimanifold clustering methods. 

C. Deep Spectral Clustering 

Ji et al. [41] introduced deep subspace clustering networks 
(referred to as DSC-Nets) based on CAE [18] to learn 
nonlinear mapping. The network architecture of DSC-Nets 
includes three parts: a CNN encoder, a middle layer called the 
self-expressive layer, and a CNN decoder. In the self-
expressive layer, the neurons are completely connected using 
linear weights without bias and nonlinear activation. The 
purpose of this FC layer is to encode the self-expressiveness 
property, as explained in section 3.3. Each node in this self-
expressive layer is a representation 𝑧𝑖 , and the weights 
correspond to the matrix 𝐶 in equation (36) which are further 
used to construct affinities between all data points. Therefore, 
essentially, the self-expressive layer enables the network to 
learn the affinity matrix directly. First, DSC-Nets pre-train the 
CAE without the self-expressive layer to initialize the encoder 
and decoder parameters. Then, in the finetuning process, the 
DSC-Nets deep network is first trained, and the following joint 
loss function is recursively optimized: 

LDSC−Nets = Lr + LSE           (51) 

where 𝐿𝑟 is the reconstruction loss defined in equation (4) 
and 𝐿𝑆𝐸  is the self-expressiveness loss as expressed in (36). 
When the training is completed, the parameters of the self-
expressive layer are used to build an affinity matrix for spectral 
clustering, as explained in section 3.2. The experiments 
reported in [41] showed that DSC-Nets yielded superior results 
for small datasets. However, this method cannot be applied on 
large datasets because of the memory complexity of the 
algorithm [19]. 

Similar to DSC-Nets, in [42], Zhou et al. proposed deep 
adversarial subspace clustering (DASC) model which learns 
subspace clustering-friendly representations using AAE and 
self-expressiveness constraint. Given that, DASC optimizes the 
following objective function: 

LDASC = Lr + αLg + βLSE           (52) 

where 𝐿𝑟 ,  𝐿𝑔 , and  𝐿𝑆𝐸  represent the reconstruction loss 

defined in (4), the generation loss in (9), and the self-
expressiveness loss that defined in (36), respectively, and 𝛼 
and 𝛽  are hyperparameters to balance the importance of the 
generation loss and the clustering loss, respectively. Upon the 
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completion of the training process, spectral clustering is 
applied to the resulting affinity matrix. 

Yang et al. in [43] presented a deep spectral clustering 
(DSC) approach based on AAE. In the proposed approach, the 
generator is a dual AE network (one encoder and two 
decoders) to enforce the reconstruction constraints for the 
latent representations and their noisy versions. As a 
consequence, the resulting latent representation will be more 
robust to noise. Hence, the reconstruction loss is updated to be 
in the following format: 

Lr_DSC =
1

n
∑ ‖yĩ − yi‖

2n
i=1 + δLr          (53) 

where 𝐿𝑟  is the reconstruction loss in (4), 𝑦𝑖  is the 
reconstructed image of input 𝑥𝑖, 𝑦�̃� is the reconstructed image 
of the noisy version of the input 𝑥𝑖, and 𝛿 balances the strength 
of the two losses. Then, the mutual information estimation is 
employed to boost the discriminator with more information 
from the inputs. To achieve this, the feature map of the middle 
convolutional layer of the encoder is extracted and combined 
with the latent representation to obtain a new feature map. 
Therefore, the generation loss will be as follows: 

Lg_DSC = −β [
1

n
∑ log D(xi, zi) + log(1 − D(xi, zi))n

i=1 ] −
β

hw
[∑

1

n
∑ log D(Cij, zk) + log (1 − D(Cij, zk))n

k=1i,j ] + γLKL   (54) 

where 𝐷  is the discriminator, 𝐶𝑖𝑗  represents the feature 

vector of the middle feature map at coordinates (𝑖, 𝑗), 𝑧𝑖 is the 
latent representation of input 𝑥𝑖, 𝐿𝐾𝐿 is the KL-divergence loss 
in equation (14), h and w represent the height and width of the 
feature map, and 𝛽  and 𝛾  are balancing parameters. 
Furthermore, the latent representations are embedded into the 
eigenspace to cluster them using a spectral clustering 
technique. 

D. More Deep Clustering Algorithms 

Shah et al. [44] presented deep continuous clustering 
(DCC), a framework for joint nonlinear embedding learning 
and clustering. The DCC framework integrates an RCC 
algorithm [44] with an SAE [17] as a deep representation 
learning technique. DCC consists of two stages: initialization 
and optimization. During the initialization stage, the denoising 
SAE is trained based on reconstruction loss only to initialize 
the network parameters, i.e., weights and biases. Then, the 
SAE is finetuned, using the reconstruction loss only, to 
complete the initialization. At the end of this stage, the learned 
representation 𝑍 is obtained from the bottleneck layer to have 
the initialization 𝑈 = 𝑍. Then, the optimization is conducted 
by minimizing the joint loss function. 

LDCC =
1

D
Lr +

1

d
(LdataDCC

+ λLpairwiseDCC
)         (55) 

where 𝐿𝑟 is the AE reconstruction loss in equation (4), 𝐷 is 
the dimensionality of the original input dataset, and 𝑑 is the 
dimensionality of the lower-dimensional representations 𝑍 . 
DCC modifies the data loss introduced in RCC [44] as. 

Ldata_DCC = ∑ ρ(‖ui − zi‖2; μ1)n
i=1           (56) 

where 𝜌 is the scaled Geman–McClure function defined in 
equation (25). The pairwise loss is also modified by DCC as. 

Lpairwise_DCC = ∑ wijρ (‖ui − uj‖2
; μ2)(i,j)∈E         (57) 

The parameters 𝜇1  and 𝜇2  control the radii of the convex 

basins of the estimators. The weights 𝑤𝑖𝑗 are computed based 

on. 

wij  =
1

n
∑ Nk

N
k=1

√NiNj
           (58) 

where 𝑁𝑖 is the degree of 𝑢𝑖  in the graph. To balance the 
different terms, DCC sets 𝜆 and 𝐴 according to equations (29) 
and (30), respectively. The network parameters, the 
representatives 𝑈, and the lower-dimensional representations 𝑍 
are updated by an SGD optimization algorithm [45] through 
backpropagation. Other DCC parameters, such as 𝜆 , are 
iteratively updated during the optimization as in the RCC 
algorithm [44]. 

Jiang et al. [46] proposed Variational Deep Embedding 
(VaDE), a probabilistic generative clustering technique within 
a VAE framework. In VaDE, Mixture-of-Gaussian is assumed 
to be the prior of the probabilistic clustering. To model the data 
generative procedure, VaDE utilizes GMM to pick a cluster 
from which a latent embedding is generated. Then, VAE 
decodes the latent embedding into an observable. Then, VAE is 
trained to maximize the evidence lower bound (ELBO) [19] 
according to VAE loss ( 𝐿𝑉𝐴𝐸 ) in equation (7). After 
maximizing the ELBO, the cluster assignment can be inferred 
by the learned GMM model. GMVA [47] is another 
probabilistic clustering algorithm based on VAE with a 
Gaussian mixture as a prior distribution. The main contribution 
of this algorithm is in introducing the minimum information 
constraint [48] to the VAE in order to overcome the problem of 
cluster degeneracy, caused by the over-regularization of the 
VAE. The GMVA approach is more complex than VaDE, and 
has shown worse results in practice [19]. However, both VaDE 
and GMVA suffer from high computational complexity [19]. 

Mukherjee et al. [49] addressed the problem of clustering in 
the latent space of GAN [19] by introducing the ClusterGAN 
framework. In order to establish non-smooth geometry of the 
latent space, a mixture of discrete and continuous latent 
variables is utilized. To accommodate that mixture of 
variables, a new backpropagation algorithm is introduced to 
obtain the latent variable given a data input. The experimental 
results showed that GAN is able to preserve latent space 
interpolation across different categories. 

As shown in Table I, we compared the studied joint deep 
clustering algorithms based on their clustering technique, loss 
functions, and main contributions. From the presented review, 
deep clustering algorithms with autoencoders are the most 
common technique and this due to two reasons. We can 
summarize these two points as: (1) the ability to combine the 
autoencoders with the most clustering algorithm, (2) 
autoencoders reconstruction loss is capable to learn feasible 
representations and avoid trivial solutions. It is important to 
note that, the computational cost of autoencoder based deep 
clustering algorithms is highly affected by the clustering loss. 
However, for computational feasibility, such algorithms have 
limited network depth due to the symmetry architecture of 
autoencoder. On the other hand, deep clustering algorithms 
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with VAE, AAE, and GAN minimize the variational lower 
bound on the marginal likelihood of data which make them 
theoretically guaranteed. Unfortunately, these clustering 
techniques suffer from high computational complexity. 
Comparing VAE deep clustering algorithms with AAE and 
GAN clustering algorithms, AAE and GAN algorithms are 
more flexible and diverse than VAE algorithms. Nonetheless, 
AAE and GAN based clustering algorithms have slow 
convergence rate. 

V. CONCLUSION 

Recently, clustering algorithms have benefited from the 
new deep learning research field. In fact, new active research 
studies are focused on integrating deep representation learning 
with clustering tasks. Beyond joint deep clustering algorithms, 
more recent algorithms have been proposed, some of which 
have been classified as separated deep clustering approaches, 
and others categorized as combined deep clustering techniques, 
but not joint. DeepCluster, clustering by unmasking, rank-
constrained spectral clustering, SDEC, parameter-free 
clustering, and learning deep graph representation are all 
examples of not-joint deep clustering algorithms. 

In this article, we reviewed the existing joint deep 
clustering algorithms by describing their network structure and 
analyzing their objective functions. Based on the survey of 
algorithms discussed here, theoretical analysis of how and why 
jointly optimizing reconstruction and clustering losses 
significantly improves the clustering performance is itself 
significant. Also, studying whether deep supervised learning 
techniques, such as data augmentation and regularization, are 
applicable and useful for deep unsupervised clustering is 
meaningful. Exploring the feasibility of applying the proposed 
joint deep clustering algorithms on sequential data is highly 
encouraged. Moreover, exploring the viability of combining 
deep clustering techniques with other unsupervised learning 
tasks such as transfer learning is strongly recommended. 
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