
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 10, 2021

863 | P a g e
www.ijacsa.thesai.org

Joint Deep Clustering: Classification and Review

Arwa Alturki, Ouiem Bchir, Mohamed Maher Ben Ismail

Department of Computer Science

King Saud University, Riyadh

Saudi Arabia

Abstract—Clustering is a fundamental problem in machine

learning. To address this, a large number of algorithms have

been developed. Some of these algorithms, such as K-means,

handle the original data directly, while others, such as spectral

clustering, apply linear transformation to the data. Still others,

such as kernel-based algorithms, use nonlinear transformation.

Since the performance of the clustering depends strongly on the

quality of the data representation, representation learning

approaches have been extensively researched. With the recent

advances in deep learning, deep neural networks are being

increasingly utilized to learn clustering-friendly representation.

We provide here a review of existing algorithms that are being

used to jointly optimize deep neural networks and clustering

methods.

Keywords—Clustering; deep learning; deep neural network;

representation learning; clustering loss; reconstruction loss

I. INTRODUCTION

Clustering is a challenging problem in machine learning, as
its purpose is to categorize objects into groups according to
similarity measures. To achieve this, many clustering
algorithms have been published in the literature [1]. These
algorithms can be classified into two groups: hierarchical and
partitional approaches. In hierarchical clustering, the data are
organized into nested clusters that are merged into larger ones
or divided into smaller ones. This yields a hierarchy of clusters
called a dendrogram. Conversely, partitional clustering is based
on the optimization of a specific cost function that allows
separation between clusters. The performance of these different
clustering algorithms depends on their accurate representation
of the data. Hence, data representation learning is a critical step
in the clustering process.

Over the past several decades, many traditional
representation learning techniques have been proposed. Some
of these techniques are designed to learn low-dimensional data
representation with linear projections, such as unsupervised
principal component analysis (PCA) [2], supervised linear
discriminant analysis (LDA) [3], kernel-based PCA [4], and
generalized discriminant analysis (GDA) [5]. To discover the
intrinsic structure of high-dimensional data, manifold learning
algorithms that are based on locality were introduced, such as
isometric feature mapping (Isomap) [6] and locally linear
embedding (LLE) [7]. In 2006, Hinton et al. [8, 9] introduced
the concept of deep learning by utilizing artificial neural
networks (ANNs) for dimensionality reduction. Specifically,
they introduced a greedy layer-wise pretraining process and a
finetuning framework for deep neural network (DNN) learning.
The resulting performance was better than that of state-of-the-
art algorithms on MNIST [9] handwritten digit recognition and

document retrieval tasks. Following this groundbreaking work,
a considerable number of deep representation learning
algorithms were developed.

Recently, frameworks that perform deep representation
learning and clustering procedures have attracted much
attention. These frameworks are referred to as deep clustering
algorithms, and they can be divided into (1) separated deep
clustering and (2) combined deep clustering methods. In
separated deep clustering, the deep representation is learned
first, and then fed into a clustering algorithm. However,
because these two tasks are optimized separately, the learned
representation may not be suitable or sufficient for the
clustering. In combined deep clustering, the deep
representation learning and clustering are jointly optimized.
This implies that the clustering assignments and network
parameters are reciprocally affected in every learning iteration.
Such an approach yields a representation that is more suitable
for clustering. Two approaches to achieve combined
optimization exist: the pretraining and finetuning approach,
and the joint training approach. In the pretraining and
finetuning approach, the DNN is pre-trained with
nonsclustering loss (network loss) to initialize the network
parameters and learn initial representation. Then, the clustering
loss is used to train (finetune) the initialized network and
output clusters. In contrast, in the joint training approach, the
network is trained with a joint loss function that integrates the
clustering loss with a nonclustering loss (network loss). In this
review, we survey joint deep clustering algorithms by
examining different network structures and analyzing the
building blocks of these algorithms.

In Section 2, we introduce deep representation learning
techniques. In Section 3, we will describe the clustering
algorithms that are utilized in joint deep clustering. In
Section 4, we provide a survey of the joint deep clustering
approaches, and in Section 5, we present the conclusions from
the results of this survey.

II. DEEP REPRESENTATION LEARNING

Deep representation learning techniques generate multiple
levels or a hierarchy of representations. In this hierarchy, the
high-level representations are constructed from multiple low-
level ones. These techniques are based on deep ANNs. A
typical (single-layer) neural network consists of input, hidden,
and output layers. The input layer receives the raw input data,
whereas the output layer produces the task results, such as
object classification or clustering. The hidden layer applies
nonlinear transformation to extract more abstract and
composite representations from the input data. DNNs contain

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 10, 2021

864 | P a g e
www.ijacsa.thesai.org

more than one hidden layer, to apply multiple nonlinear
transformations and create the representation hierarchy. The
word “deep” refers to the multiple hidden layers in the neural
network.

DNNs apply a supervised learning process, where a set of
input–output pairs is provided for training. This learning
process is composed of two passes: a forward pass (forward
propagation) and a backward pass (backpropagation). The
forward pass first randomly initializes the network parameters,
that is, the connections, weights, and biases. Then, the input
data are passed through the network layers, in the forward
direction, to calculate the predicted output. Next, the predicted
output is compared with the actual output through a task-
specific loss function. An optimization technique, namely,
stochastic gradient descent (SGD), is then applied to minimize
the loss function. Conversely, the backpropagation process is
initiated by updating the network weights so that the predicted
output is closer to the actual output. This can be achieved by
minimizing the error of each output neuron in the entire
network.

In the following subsections, we discuss three DNN types
that have been used as representation learning techniques for
clustering tasks. The first is feedforward neural networks
(FNNs), which fall into two categories: completely connected
networks (FCNs) [10] and convolutional neural networks
(CNNs) [11]; the second is deep belief network (DBNs), which
are composed of a stochastic probabilistic component called a
restricted Boltzmann machine (RBM); and the third is the
autoencoder (AE), which comes in two types: the stacked AE
(SAE) and convolutional AE (CAE).

A. Feedforward Neural Networks

The FNN [12] is the simplest type of neural network, where
the connection between neurons does not form a cycle. The
information in this type of network moves forward (in one
direction) from the input neurons to the output neurons. In this
case, there is no feedback from the output toward the input
neurons. FNNs are arranged in the form of layers, as are all
neural networks. Depending on the number of layers, an FNN
can be a single- or a multilayer network. As mentioned above,
FNNs fall into two types: FCNs and CNNs.

An FCN, also known as a multilayer perceptron (MLP)
[13], consists of multiple completely connected (FC) layers,
where each neuron in one layer is connected to every neuron in
the previous layer. In addition, every one of these connections
has its own weight. FCNs are composed of an input layer, an
output layer, and an arbitrary number of hidden layers. This
type of feedforward network is tailored for supervised learning.

Inspired by biological process, the neuron connectivity
pattern in CNNs mimics the organization of the animal visual
cortex. The first and core building block of a CNN is the
convolutional layer, where each neuron is connected to only a
few neurons in the previous layer. The same set of weights is
used for every neuron. The second layer is the rectified linear
unit (ReLU) layer, which applies an elementwise nonlinear
activation function to retain the positive parts of the inputs and
remove the negative ones by replacing them with zero. The
reason for applying ReLU layers in a CNN is to increase the

nonlinearity of the inputs. A pooling layer is frequently
inserted between two consecutive convolutional layers. The
pooling layer applies a function to reduce the spatial size of the
representation by combining the output of the set of neurons in
one layer into a single neuron in the next layer. As a
consequence, the number of parameters and computations
throughout the network is reduced and overfitting is controlled.
The final layer of a CNN is an FC layer to classify the input.
Similar to FCNs, CNNs are designed for supervised learning,
and specifically to classify image datasets.

Deep clustering algorithms that employ feedforward
networks for unsupervised representation learning use
clustering loss only to train the network. Hence, these
algorithms aim to optimize the objective function,

L = Lc (1)

where 𝐿 is the algorithm loss function and 𝐿𝑐 is the
clustering loss function. In the absence of other measures and
depending completely on the clustering loss, such deep
clustering algorithms may lead to a distorted representation
space, wherein all data points are assigned to tight clusters.
Such a trivial solution results in a small amount of meaningless
clustering loss. To alleviate this problem, and in addition to the
careful design of the clustering loss function, suitable network
parameter initialization is required to enhance the performance.

B. Deep Belief Network

DBNs [14] are a branch of DNNs, and are composed of a
stack of RBMs [15] followed by a softmax layer that applies a
softmax activation function to the input. An RBM is a two-
layer neural network, where the first is the visible (input) layer
and the second is the hidden layer. A DBN is trained by greedy
layer-wise unsupervised learning with RBMs as the building
blocks for each layer. Then, the parameters of the DBN are
finetuned according to a task-specific loss function. DBN-
based deep clustering algorithms finetune the network
parameters using the clustering loss function only, and thus
optimize an objective function similar to the feedforward
network loss function in equation (1). Hence, careful clustering
loss selection and good network parameter initialization affect
the performance of the deep clustering algorithm.

C. Autoencoder

An AE [16] is a special type of neural network designed for
unsupervised representation learning. It consists of three
building blocks: an encoder, a bottleneck layer, and a decoder.
The encoder maps the input 𝑥𝑖 to its hidden representation 𝑧𝑖
through a nonlinear function 𝑓𝑊1

(∙), as in equation (2), and the

decoder reconstructs the input 𝑥𝑖 from its hidden representation
𝑧𝑖 by using a transformation function 𝑔𝑊2

(∙) as in equation (3).

zi = fW1
(xi) (2)

yi = gW2
(zi) (3)

Here, 𝑊1 represents the encoding weight, and 𝑊2 the
decoding weight. The encoder and decoder can comprise an FC
network to construct an SAE [17], or a CNN to form a CAE
[18]. The bottleneck layer controls the amount of information
that traverses the network by learning a compressed
representation of the input data. The learning problem can be

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 10, 2021

865 | P a g e
www.ijacsa.thesai.org

formulated as a supervised one that is aimed to output the
reconstruction image 𝑦𝑖 from the input 𝑥𝑖. The entire network

can be trained by minimizing the reconstruction loss 𝐿𝑟_𝐴𝐸 ,
which measures the differences between the original input 𝑥𝑖
and the reconstructed image 𝑦𝑖:

Lr =
1

n
∑ ‖xi − yi‖

2n
i=1 (4)

AE-based deep clustering algorithms seek to optimize an
objective function that combines clustering and reconstruction
losses:

L = Lr + γLc (5)

where 𝜸 is a coefficient to control the distortion of the
representation embedding space. The existence of the
reconstruction loss forces the algorithm to avoid trivial
solutions and learn more feasible representations.

D. Variational Autoencoder

VAE [19] is a generative variant of AE that enforces the
latent code to follow a predefined distribution. This goal is
achieved by encoding the input data into two vectors instead of
one: mean value and standard deviation. Unlike the output of
the standard AEs that points directly to the encoded value in
the latent space, VAE outputs point to the area where the
encoded value can be. To be more specific, VAE initializes a
probability distribution where the mean value controls the
location point of the encoding center, and the standard
deviation defines the area in which encoding can vary from the
mean. As a consequence, VAE allows interpolation and
generation of new samples. Mathematically, VAE measures the
Kullback–Leibler (KL) divergence [20] from a prior
distribution to approximate the variational posterior
distribution. The objective function can be formulated as the
following:

Lr_VAE = Eq(z|xi)[log p(xi|z)] (6)

LVAE = Lr_VAE − ∑ KL(q(z|xi)‖p(z))n
i=1 (7)

where 𝐿𝑟_𝑉𝐴𝐸 represents the reconstruction loss of the VAE,
𝑝(𝑧) is the prior over the latent variables, 𝑞(𝑧|𝑥𝑖) is the
variational posterior to approximate the true posterior 𝑝(𝑧|𝑥𝑖),
and 𝑝(𝑥𝑖|𝑧) is the likelihood function. Gaussian distribution is
the common choice as prior; however, VAE-based clustering
algorithms should choose a distribution which can describe the
structure of the clusters.

E. Adversarial Autoencoder

Similar to VAE, AAE [21] utilizes a prior distribution to
control the encoding of the input data. Hence, the decoder
learns only the mapping from the prior distribution to the data
distribution. The output of the AAE encoder, i.e. the encoded
value, is fed as input to the decoder and to a special generative
adversarial network (GAN) [19]. In AAE, the encoder and
decoder together form the generator model (𝐺), while the GAN
is known as discriminator (𝐷). Through the learning process,
AAE establishes a min–max adversarial game between its
generator and the discriminator. While the generator tries to
map a generated sample from a prior distribution to the data
space, the discriminator computes the probability to detect
whether its input a real sample from the data distribution or a

fake sample from the generator. The training process of AAE is
handled through two phases: (1) a reconstruction phase and (2)
a regulation phase. During the reconstruction phase, the
generator is trained to minimize the reconstruction loss of the
generated sample and produce a reconstructed image of it. In
the regulation phase, the discriminator parameters are updated
to distinguish the real samples generated by the priori from the
fake samples generated by the encoder. The discriminator
network 𝐷 is updated by the following discriminative loss (𝐿𝑑):

Ld =
1

n
∑ [logD(zî) + log(1 − D(zi))]n

i=1 (8)

where 𝑧�̂� and 𝑧𝑖 are the sample from prior distribution and
input sample, respectively. Then, the discriminator is fixed, and
the encoder is updated to confuse the discriminator by
increasing the classification error of 𝐷 on the input latent

representation with generation loss 𝐿𝑔 , as in the following

equation:

Lg =
1

n
∑ log(1 − D(zi))n

i=1 (9)

AAE-based deep clustering algorithms optimize a loss
function that combines reconstruction loss, generation loss, and
clustering loss:

LAAE = Lr + αLg + βLc (10)

where 𝐿𝑟 , 𝐿𝑔 , and 𝐿𝑐 represent the reconstruction loss

defined in equation (4), the generation loss in equation (9), and
a clustering loss, respectively. 𝛼 and 𝛽 are hyperparameters to
balance the importance of the generation loss and the clustering
loss, respectively.

III. CLUSTERING TECHNIQUES

As stated previously, clustering techniques can be divided
into two types: hierarchical and partitional clustering.
Hierarchical clustering methods iteratively merge smaller
clusters into larger ones, or split large clusters into smaller
ones. The difference between hierarchical algorithms includes
the similarity measures that are used to determine which
clusters should be merged or split. The results of hierarchical
clustering are organized in a tree called a dendrogram, which
shows the relationships between clusters. Conversely,
partitional clustering seeks to decompose data into a set of
disjointed groups. This decomposition is achieved based on the
minimization of a specific objective loss function. Centroid-
based algorithms, such as K-means [22, 23] and KL-
divergence [20] clustering, distribution-based algorithms such
as Gaussian mixture clustering [24], graph-based clustering
algorithms such as spectral clustering [25] and RCC [26], and
density-based algorithms such as DBSCAN [27] are all
subtypes of partitional clustering algorithms. As existing joint
deep clustering utilizes only centroid- and graph-based
clustering, these two techniques are explained in the following
subsections. Finally, we introduce some auxiliary clustering
losses that are used in conjunction with other losses to guide
deep representation learning.

A. Centroid-Based Clustering

Given a dataset 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛 points together with
its extracted representation 𝑍 = {𝑧, … , 𝑧𝑛} , centroid-based
clustering partitions the data points into clusters with central

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 10, 2021

866 | P a g e
www.ijacsa.thesai.org

representatives called centroids. These cluster centroids,
denoted by ℳ = {𝜇1, … , 𝜇𝑘}, where 𝑘 is a predefined number
of clusters, do not necessarily belong to the dataset. In joint
deep clustering algorithms, two centroid-based algorithms are
utilized: K-means and KL-divergence clustering.

1) K-means Clustering: K-means clustering first randomly

selects 𝑘 centroids from the input data representations, each of

which represents a cluster. A K-means algorithm minimizes the

total mean squared error between the input data and cluster

centroids according to the loss function:

LKM = ∑ ∑ ‖zi − μj‖2

2n
i=1

k
j=1 (11)

An additional variation of the K-means loss function is the
weighted least squares error, referred to as weighted K-means.
It optimizes the cost function as:

LWKM = ∑ ∑ Sij‖zi − μj‖2

2n
i=1

k
j=1 (12)

where 𝑆𝑖𝑗 is a similarity weight that encodes the closeness

of a data point to a cluster centroid; i.e., 𝑆𝑖𝑗 will be larger if the

data point 𝑧𝑖 is close to the centroid 𝜇𝑗 . In the K-means

learning process, the following two steps are repeated until
convergence is reached:

 Point assignment update, which is accomplished by (i)
calculating the mean distance from the data point to
every cluster centroid, and (ii) assigning points to the
cluster with the minimum mean among all clusters.

 Centroid update, which is computed according to the
following equation, where 𝑚𝑗 is the number of points in

the 𝑗𝑡ℎ cluster:

μj = (
1

mj
) ∑ zi

mj

i=1
 (13)

K-means perform well when the distribution of the points is
in circular form. Otherwise, K-means will attempt to group the
points in circular form, which will affect the clustering result.
To remedy this issue, K-means should be updated to employ a
distribution-based model instead of a distance-based model.

Gaussian Mixture Model (GMM) [24] is a probabilistic soft
clustering technique which tends to group points with the same
distribution together. The clustering process starts by
initializing the means and covariances of the Gaussian
distribution for 𝑘 clusters. Then, the expectations of all points
assignments are calculated for all clusters. Furthermore, the
distribution parameters are re-estimated, and the log-likelihood
function is computed. This process continues until a predefined
convergence criterion is reached.

2) KL-divergence Clustering: KL-divergence clustering is

a soft assignment clustering technique, in which each data

point is assigned to all clusters with varying probabilities. This

algorithm is initiated using K-means to obtain 𝑘 initial

centroids. Next, the learning process is executed to optimize

the following Kullback–Leibler (KL) divergence loss function:

LKLD = KL(P||Q) = ∑ ∑ pij 𝑙𝑜𝑔 (
pij

qij
)ji (14)

where 𝑃 is an auxiliary target distribution and 𝑄 represents
the data point soft assignments. The KL-divergence clustering
algorithm refines the point assignments by learning from
higher confidence points utilizing the auxiliary target
distribution 𝑝𝑖𝑗 . Specifically, the algorithm matches the soft

assignments 𝑞𝑖𝑗 with the target distribution 𝑝𝑖𝑗 by computing

the KL divergence. The clustering algorithm iteratively
performs the following steps until convergence is obtained or
the maximum iteration is reached:

1) Calculation of 𝑞𝑖𝑗,, the probability that a data point 𝑖
belongs to cluster 𝑗. Two means of calculating 𝑞𝑖𝑗 exist: (1)

student’s t-distribution [28], as in equation (15), and (2) a

multinominal regression [28] function, as in equation (16).

qij =
(1+‖zi−μj‖

2

2
)

−1

∑ (1+‖zi−μj‖
2

2
)

−1

j

 (15)

 =
exp (μj

T zi)

∑ exp (μj
T zi)j

 (16)

2) Computing 𝑝𝑖𝑗 , a higher confidence distribution that can

be obtained by calculating the soft cluster frequencies by

considering the formula:

pij =
qij

2 ∑ qiji⁄

∑ (qij
2 ∑ qiji⁄)j

 (17)

3) Updating clusters centroids according to:

μj = μj −
λ

n
∑

∂LKLD

∂μj

n
i=1 (18)

B. Graph-Based Clustering

Given a dataset 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛 points together with
their corresponding representation 𝑍 = {𝑧, … , 𝑧𝑛}, graph
clustering techniques first construct an undirected similarity
graph 𝐺 = (𝑉, 𝐸) , where 𝑉 = {𝑣1, … , 𝑣𝑛} denotes a set of
vertices to represent the input data, and 𝐸 is the set of edges
between vertices. Several approaches for building a similarity
graph [1] exist, two of which are specifically used in joint deep
clustering. These approaches are the following:

 K-nearest neighbor (KNN) graph: this graph connects
vertex 𝑣𝑖 with vertex 𝑣𝑗 , if 𝑣𝑗 is within K-nearest

neighbors of 𝑣𝑖. One problem common to KNN is that

the graph is asymmetric, which means that if 𝑣𝑗 is

among the KNNs of 𝑣𝑖 , then 𝑣𝑖 is not necessarily

among the KNNs of 𝑣𝑗. Hence, the constructed graph is

a directed one. To alleviate this problem, there are two
solutions; first, to insert an undirected edge between the

two vertices 𝑣𝑖 and 𝑣𝑗 , if one of them is within the

KNNs of the other; second, to restricts the edges, two

vertices 𝑣𝑖 and 𝑣𝑗 are connected by an undirected edge

only if they are both among the KNNs of each other.
The resultant graph in the latter solution is called a
mutual KNN graph.

 Completely connected graph: this graph simply
connects all vertices with each other by weighted edges.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 10, 2021

867 | P a g e
www.ijacsa.thesai.org

The weight of an edge 𝑤𝑖𝑗 between two vertices 𝑣𝑖 and

𝑣𝑗 represents the similarity between them. Because the

graph should express the local neighborhood
relationship, a Gaussian similarity function is usually
utilized.

The graph is represented by an adjacency matrix, in which
the similarity 𝑤𝑖𝑗 b tween every two vertices is included. Two

graph-based clustering algorithms are utilized in joint deep
clustering techniques: spectral clustering [25] and robust
continuous clustering (RCC) [26]. We briefly explain these two
approaches.

1) Spectral clustering: After the construction of the

similarity graph and the extraction of the adjacency matrix, the

spectral algorithm transforms the data into a low-dimensional

space. To achieve this, another graph representation matrix is

computed, the Laplacian matrix. The graph Laplacian matrix ℒ

is computed as:

ℒij = {

di , if i = j
wij, if (i, j) ∈ E

0, if (i, j) ∉ E

 (19)

where 𝑑𝑖 is the degree of the vertex 𝑣𝑖 , which can be
computed as:

di = ∑ wij{j|(i,j)∈E} (20)

Then, the Laplacian matrix is utilized to find the
eigenvalues 𝜆 and eigenvectors 𝜐, such that.

λℒ = λυ (21)

Once the eigenvectors have been obtained, the low-
dimensional data transformation is completed. Finally, a K-
means clustering algorithm, explained in section 3.1, is applied
to the transformed data (eigenvectors) to create clusters.

2) Robust Continuous Clustering (RCC): This approach

operates on a set of representations 𝑈 = {𝑢1, … , 𝑢𝑛} for the

original dataset 𝑋 , where 𝑋 and 𝑈 have the same

dimensionality. This algorithm minimizes the loss function.

LRCC = Ldata + λLpairwise (22)

where 𝜆 is a coefficient that balances the two objective
terms. The first term 𝐿𝑑𝑎𝑡𝑎 is the data loss that constrains the
representations to remain near the corresponding data points.
The data loss can be computed as:

Ldata = ∑ ‖zi − ui‖2
2n

i=1 (23)

The second term, which is the pairwise loss 𝐿𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 , is

designed to encourage the representations to merge, and pulls
them together according to.

Lpairwise = ∑ wpqρ (‖up − uq‖
2

; μ)(p,q)∈E (24)

where {𝑤𝑝𝑞} represents appropriately defined weights, 𝜇 is

a scale parameter, and 𝜌 is a redescending M-estimator that can
be calculated according to a scaled Geman–McClure function
[29]:

ρ(x; μ) =
μx2

μ+x2 (25)

The first stage in the RCC learning procedure is
initialization, which includes the following steps:

1) Construction of the similarity graph 𝐺1 = (𝑉, 𝐸) using

mutual KNN.

2) Initialization of the data representation with 𝑢𝑖 = 𝑧𝑖.

3) Initialization of the line process 𝕃 = {ℓ𝑝𝑞}, where ℓ𝑝𝑞

is an auxiliary variable between two connected vertices 𝑣𝑝 and

𝑣𝑞 with ℓ𝑝𝑞 = 1.

4) Initialization of a scale parameter 𝜇 with 𝜇 ≫
𝑚𝑎𝑥‖𝑧𝑝 − 𝑧𝑞‖

2
.

The optimization is aimed to reveal the cluster structure
latent in the data; thus, the number of clusters does not need to
be known in advance. The following optimization steps are
recursively repeated until a maximum iteration number is
reached, or the difference between the clustering loss in two
consecutive iterations is less than a predetermined threshold.

1) Update ℓ𝑝𝑞 according to the following formula.

ℓpq = (
μ

μ+‖up−uq‖
2

2)

2

 (26)

2) Update the representations 𝑈 = {𝑢1, … , 𝑢𝑛} using the

following equation:

UM = Z (27)

where

M = I + λ A (28)

𝐼 is the identity matrix, 𝑒𝑖 is an indicator vector with the 𝑖𝑡ℎ
element set to 1, and 𝐴 is computed as the following:

A = ∑ wpqℓpq(ep − eq)(p,q)∈E (ep − eq)T (29)

Update the value of 𝜆 as.

λ =
‖Z‖2

‖A‖2
 (30)

Update the value of 𝜇 as.

μ = max (
μ

2
,

δ

2
) (31)

where 𝛿 is a threshold set to be the mean of the lengths of
the shortest 1% of the edges in 𝐸. Then, RCC constructs a new

graph 𝐺2 = (𝑉, ℇ) with 𝜀𝑝𝑞 = 1 if ‖𝑢𝑝
∗ − 𝑢𝑞

∗ ‖
2

> 𝛿 . Finally,

the algorithm outputs the clusters given by the connected
vertices of 𝐺2 .

C. Auxiliary Clustering Losses

Some clustering loss functions are designed to guide deep
representation learning techniques to extract feasible
clustering-oriented representations; they cannot, however,
output clusters. These functions are known as auxiliary
clustering losses. Considering a dataset 𝑋 = {𝑥1, … , 𝑥𝑛} of

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 10, 2021

868 | P a g e
www.ijacsa.thesai.org

𝑛 points together with its extracted representations 𝑍 =
{𝑧, … , 𝑧𝑛}, we present the auxiliary clustering losses that have
been used in joint deep representation clustering algorithms.

1) Balanced assignment loss: Balanced assignment loss is

used in conjunction with other clustering loss to enforce

balanced clustering assignments. The difference between two

distributions, 𝑓 and 𝑢, is measured based on KL divergence as

follows:

LBA = KL(f||u) =
1

n
∑ ∑ pijlog (

fj

uj
)ji (32)

where 𝑃 is the target distribution proposed in equation (17)
𝑢 is the uniform distribution, and 𝑓 is the probability
distribution, which can be calculated as.

fj =
1

n
∑ piji (33)

2) Locality-preserving loss: Locality-preserving loss

preserves the local structure property of the original data by

pushing the nearby points together as.

LLP = ∑ Sij‖zi − zj‖2

2

i,j∈Nk(i) (34)

where 𝑁𝑘(𝑖) is the set of 𝑘 nearest neighbors of the data
point 𝑥𝑖 and 𝑆𝑖𝑗 is a similarity measure between 𝑥𝑖 and 𝑥𝑗 .

3) Group sparsity loss: Group sparsity loss was inspired

by spectral clustering, where a block-diagonal similarity matrix

is utilized for representation learning. Specifically, the hidden

units are divided into 𝑘 groups, where 𝑘 is the number of

clusters. For each data point 𝑥𝑖, after its representation 𝑧𝑖 has

been extracted, a 𝑘 group unit {𝑓𝑗(𝑥𝑖)}𝑗=1
𝑘 is obtained. Then,

the group sparsity is computed as.

LGS = ∑ ∑ λ√ng‖f j(xi)‖
2

k
j=1

n
i=1 (35)

where 𝑓(𝑥𝑖) is the representation encoding function, 𝜆 is a
constant, and 𝑛𝑔 is the group size.

4) Self-expressiveness loss: Self-expressiveness loss is a

property where a point in a subspace can be expressed as a

linear combination of other points in the same subspace. Let 𝑋

be a column matrix of all data points; the self-expressiveness

can then be represented as 𝑋 = 𝑋𝐶 , where 𝐶 is the self-

representation coefficient matrix. By minimizing a certain

norm of 𝐶, and under the assumption that the subspaces are

independent, 𝐶 is guaranteed to have a block-diagonal

structure. This ensures that 𝑐𝑖𝑗 ≠ 0, where 𝑥𝑖 and 𝑥𝑗 are two

data points lying in the same subspace. The matrix 𝐶 can then

be leveraged by spectral clustering to construct the affinity

matrix. Given this fact, each data representation 𝑧𝑖 in a latent

subspace is approximated by a weighted linear combination of

other points {𝑧𝑗}𝑗=1
𝑛 with weights 𝑐𝑖𝑗 . To encode self-

expressiveness, the following auxiliary clustering loss function

is introduced:

LSE = λ1‖C‖p +
λ2

2
‖Z − ZC‖2, s. t. (diag(c) = 0) (36)

where 𝜆1 and 𝜆2 are two regularization parameters to

account for data corruption, and ‖∙‖𝑝 represents an arbitrary

matrix norm.

IV. JOINT DEEP CLUSTERING

Given a dataset 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛 points, the goal of
joint deep clustering techniques is simultaneously to learn a
low-dimensional representation 𝑍 = {𝑧1, … , 𝑧𝑛} for the data
and to cluster it into groups jointly. This can be accomplished
by optimizing a joint loss function that combines two losses:
the representation learning loss and the clustering loss. Then,
the low-dimensional representations, network parameters
(weights and biases), and clustering parameters and
assignments are updated jointly. In this section, we survey
these algorithms, and provides a taxonomy from the
perspective of clustering algorithms. Table I summarizes
existing joint deep clustering algorithms.

A. Deep Kullback–Leibler Divergence Clustering

Guo et al. [28] proposed improved deep embedded
clustering (IDEC), an algorithm that simultaneously learns
low-level representation and cluster assignment. The IDEC
algorithm consists of two phases: (1) parameter initialization,
and (2) parameter optimization and clustering. In the
initialization phase, IDEC initiates a denoising SAE [17],
which reconstructs a data point 𝑥 from a corrupted (noisy)
version 𝑥 to force the encoder and decoder to capture implicitly
the structure of data that generate distribution. The SAE is
trained based on reconstruction loss to obtain initial values for
the network’s weights and biases. The clusters’ centroids are
initiated by applying K-means to the representations extracted
from the encoder element. When the initialization is
completed, IDEC removes noise from the data to apply
clustering to the representation learned from the clean data.
When noise has been removed, the denoising SAE degenerates
into a traditional SAE, which constrains the dimension of the
hidden representation 𝑍 to be less than the dimension of the
input data 𝑋. Then, the optimization and clustering phase is
executed by finetuning using KL divergence as clustering loss
and SAE reconstruction loss. This results in the joint loss
function

𝐿𝐼𝐷𝐸𝐶 = 𝐿𝑟 + 𝜆𝐿𝐾𝐿𝐷 (37)

where 𝐿𝑟 is the reconstruction loss in equation (4), 𝐿𝐾𝐿𝐷 is
the KL-divergence clustering loss in equation (14), and 𝜆 is a
regularization parameter to balance the two terms. Clustering is
achieved by alternating between computing the soft assignment
based on the student’s t-distribution formula in equation (15),
and auxiliary target distribution in equation (17). IDEC jointly

optimizes the cluster centers 𝜇𝑗 and the network parameters 𝜃

using an SGD algorithm [30]. The gradient is calculated for the
clustering loss 𝐿𝑐 with respect to the cluster centroid 𝜇𝑗 and

point representation 𝑧𝑖, and then is utilized in backpropagation.
Experimental results have demonstrated the importance of
locality preservation. Guo et al. [31] developed a deep
clustering method with CAEs (DCEC) for image clustering;
the DCEC framework is very similar to the IDEC model, but
instead of an SAE, DCEC employs a CAE to better incorporate
the relationship between image pixels. The effectiveness of
CAE over SAE has also been demonstrated for image datasets.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 10, 2021

869 | P a g e
www.ijacsa.thesai.org

TABLE I. SUMMARY OF JOINT DEEP CLUSTERING ALGORITHMS

Algorithm
Clustering

Technique

Network

Architecture
Joint Loss Function Main Contribution

IDEC

KL-divergence

SAE

𝑳𝑰𝑫𝑬𝑪 = 𝑳𝒓 + 𝝀𝑳𝑲𝑳𝑫

Joint version of DEC [35], the first well-known deep

clustering algorithm.

DCEC CAE Improves on IDEC by using CAE instead of SAE.

ADEC AAE 𝑳𝑨𝑫𝑬𝑪 = 𝑳𝒓 + 𝜶𝑳𝒈 + 𝜷𝑳𝑲𝑳𝑫
Preserve the relevance between representation learning

and clustering and reach to better trade-off between

feature drift and feature randomness issue.

DEPICT CAE 𝑳𝑫𝑬𝑷𝑰𝑪𝑻 = 𝑳𝒓_𝑫𝑬𝑷𝑰𝑪𝑻 + 𝑳𝑲𝑳𝑫 + 𝑳𝑩𝑳
Ensures balanced clustering assignments that provide

robust and superior results over image datasets.

DEN

K-means SAE

𝑳𝑫𝑬𝑵 = 𝑳𝒓 + 𝜶𝑳𝑳𝑷 + 𝜷𝑳𝑮𝑺

Learns clustering-oriented representations with the

following properties: (1) locality preservation and (2)

group sparsity.

DCN 𝑳𝑫𝑪𝑵 = 𝑳𝒓 + 𝝀𝑳𝑲𝑴
First algorithm to perform K-means and representation

learning simultaneously.

DKM 𝑳𝑫𝑲𝑴 = 𝑳𝒓 + 𝝀𝑳𝑾𝑲𝑴
Updates DCN to use weighted K-means instead of

traditional K-means.

DMC
𝑳𝑫𝑴𝑪 = (𝟏 − 𝜶)𝑳𝒓 + 𝜶𝑳𝑳𝑷_𝑫𝑴𝑪

+ 𝜷𝑳𝑾𝑲𝑴

Utilizes deep SAE to improve the traditional

multimanifold clustering algorithm.

DSC-Nets

Spectral

Clustering

CAE 𝑳𝑫𝑺𝑪−𝑵𝒆𝒕𝒔 = 𝑳𝒓 + 𝑳𝑺𝑬
Utilizes deep CAE to improve the traditional spectral

clustering algorithm.

DASC

AAE

𝑳𝑫𝑨𝑺𝑪 = 𝑳𝒓 + 𝜶𝑳𝒈 + 𝜷𝑳𝑺𝑬
Learns subspace clustering-friendly representations

using AAE and self-expressiveness constraint.

DSC
𝑳𝑫𝑺𝑪

= 𝑳𝒓 + 𝑳𝒈 + 𝒔𝒑𝒆𝒄𝒕𝒓𝒂𝒍 𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒊𝒏𝒈

More robust to noise; since it enforces the

reconstruction constraints for the latent

representations and their noisy versions.

DCC RCC SAE
𝑳𝑫𝑪𝑪 =

𝟏

𝑫
𝑳𝒓 +

𝟏

𝒅
(𝑳𝒅𝒂𝒕𝒂_𝑫𝑪𝑪

+ 𝝀𝑳𝒑𝒂𝒊𝒓𝒘𝒊𝒔𝒆_𝑫𝑪𝑪)

Utilizes deep SAE to improve on the traditional RCC

algorithm.

Similar to IDEC, Zhou et al. [21] introduced Deep
Embedded Clustering With Adversarial Distribution
Adaptation (ADEC). Instead of SAE, ADEC utilizes AAE to
learn from data space to feature space. With a backpropagation
algorithm, ADEC iteratively optimizes the following objective
function:

LADEC = Lr + αLg + βLKLD (38)

where 𝐿𝑟 , 𝐿𝑔 , 𝐿𝐾𝐿𝐷 is the reconstruction loss defined in

 , the generation loss in (9), and the KL-
divergence clustering loss in equation (14), respectively, and 𝛼
and 𝛽 are hyperparameters to balance the importance of the
generation loss and the clustering loss, respectively. In deep
learning, the optimization of a neural network’s loss function
whose secondary component highly competes with the primary
one may lead to feature drift. As a result, the global learning
process will be affected, since the features learned by the
primary loss can be easily drifted by updating the secondary
one. Discarding one of the primary or secondary losses will
lead to substitution of a significant portion of true labels for
random ones, known as feature randomness. Mrabah et al. [32]
enhanced the IDEC approach to reach a better trade-off
between feature drift and feature randomness using AAE
complemented with data augmentation.

Dizaji et al. [33] proposed the deep embedded regularized
clustering (DEPICT) model to learn data representation and

perform the clustering task. DEPICT has a complicated
network architecture composed of a softmax layer on top of a
multilayer CAE. More specifically, DEPICT consists of four
components: two encoders, one decoder, and one softmax
layer. The encoder and decoder elements of the DEPICT
network are referred to as paths.

Thus, there are three paths in the DEPICT architecture. The
first path is called the noisy encoder, which is the encoder part
of the denoising CAE that accepts noisy input data to infer
noisy hidden representations. The second path is called the
noisy decoder (or just decoder), and is the decoder element of
the denoising CAE for reconstructing the input from the
learned noisy representations. The decoder element consists of
a strided CNN, which is similar to the traditional one, except
that the value of the convolutional kernel stride is greater than
1. The third path is called the clean encoder, a CNN that
accepts clean input data to infer clean hidden representations.
The clean and the noisy encoder paths share the same network
parameters, i.e., weights and biases. The softmax layer (the
fourth component of the network) is stacked on top of the noisy
encoder top layer and clean encoder top layer to obtain the
clustering assignments. The first phase of the algorithm is
initialization, where the network parameters, cluster centroids,
and target distribution are initialized. Instead of initializing the
network parameters randomly, DEPICT assigns the weights
from a Gaussian distribution, where the input and output
variances are the same for each layer. This initialization

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 10, 2021

870 | P a g e
www.ijacsa.thesai.org

approach is known as Xavier (or normalized) initialization
[34]. Next, DEPICT is trained with reconstruction loss only
(without clustering loss) to obtain initial embedded
representations for the input data. Then, the K-means
clustering technique is applied to obtain the initial cluster
centroids and the initial target distribution 𝑃 , when the
initialization phase is complete, the optimization and clustering
phase starts. In the softmax layer, DEPICT iteratively
minimizes the following three-term joint loss function:

LDEPICT = Lr_DEPICT + LKLD + LBL (39)

where 𝐿𝐾𝐿𝐷 and 𝐿𝐵𝐿 are the KL-divergence and balanced
assignment losses that were introduced in equations (14) and
(32), respectively. The first term is a data-dependent
regularization term, which is a reconstruction loss function
introduced in DEPICT designed to enhance the representation
learning process and avoid the overfitting problem. The
reconstruction loss between the noisy decoder and the clean
encoder representations is computed as.

Lr_DEPICT =
1

n
∑ ∑

1

|zi
l|

L−1
l=1 ‖zi

l − ẑi
l‖

2

2n
i=1 (40)

where 𝑛 is the size of the input data, 𝐿 is the number of
noisy decoder and clean encoder layers, 𝑙 is the layer number,

|𝑧𝑖
𝑙| is the 𝑙𝑡ℎ layer output size, 𝑧𝑖

𝑙 is the 𝑙𝑡ℎ layer of clean

representations (from the clean encoder), and �̂�𝑖
𝑙 is the 𝑙𝑡ℎ layer

of noisy representations (from the noisy decoder). The second
term of the DEPICT joint loss function is the KL-divergence
clustering loss. A multinominal logistic regression function is
employed to perform the soft clustering assignment. Note that
DEPICT computes the soft assignment predictions 𝑄 based on
noisy representations that are extracted from the noisy encoder,
whereas the target distribution 𝑃 is computed from the clean
representations extracted from the clean encoder path. The
third term is a regularization term that encourages balanced
cluster assignments and avoids the allocation of clusters to
outlier samples. The effectiveness of DEPICT has been proven
empirically, especially in terms of the running time
complexity.

B. Deep K-Means Clustering

Huang et al. [36] introduced a deep embedding network,
referred to as DEN, to learn clustering-oriented representations
using a three-layer SAE. Similar to that of most deep clustering
algorithms, the DEN learning procedure is composed of two
phases: initialization (pretraining) and optimization. In the
pretraining phase, a three-layer DBN [14] is trained based on
the contrastive divergence loss only, to initialize the SAE
parameters. Then, the learned representation from the DBN is
fed into the three-layer SAE to begin the joint training
optimization process. In this phase, the DEN minimizes the
joint loss function.

LDEN = Lr + αLLP + βLGS (41)

where 𝐿𝑟 is the reconstruction loss in equation (4), 𝐿𝐿𝑃 is
the locality-preserving auxiliary clustering loss defined in (34),
and 𝐿𝐺𝑆 is the group sparsity auxiliary clustering loss expressed

in equation (35) with 𝑆𝑖𝑗 = 𝑒𝑥𝑝 (‖𝑥𝑖 − 𝑥𝑗‖
2

2
𝑡⁄). Further, 𝛼, 𝛽,

and 𝑡 are tuning parameters. By considering these two auxiliary

clustering losses, the DEN imposes two constraints on the
learned representations: the first is the locality-preserving
constraint to preserve the local structure property of the
original data, and the second is the group sparsity constraint.
These are imposed to facilitate the clustering process, and
ensure that the learned representation incorporates cluster
information, and thus, is more suitable for clustering. After the
optimization phase, the traditional K-means clustering
algorithm is employed to perform clustering.

Yang et al. [37] proposed a dimensionality reduction and
K-means clustering framework named the deep clustering
network (DCN). A DNN, specifically an SAE, is utilized by
the DCN for dimensionality reduction and representation
learning. The DCN algorithm is initiated by a pretraining stage
based on reconstruction loss to initialize the SAE weights and
biases. To initialize the cluster centroids, K-means clustering is
applied to the obtained representations from the pretraining.
Then, the joint training phase is executed by iteratively
optimizing the joint loss function.

LDCN = Lr + λLKM (42)

where 𝐿𝑟 is the reconstruction loss as defined in equation
(4), 𝐿𝐾𝑀 is the K-means clustering loss function described in
equation (11), and 𝜆 is a regularization parameter, which
balances the reconstruction error by finding K-means-oriented
hidden representations. Instead of applying the traditional SGD
for the optimization process, the DCN introduces an alternating
SGD optimization algorithm to update its parameters. There
are three sets of parameters to be updated in a DCN: cluster
centroids, data point cluster assignments, and network
parameters. The proposed alternating SGD suggests that each
set of parameters should be treated as a subproblem; thus, DCN
optimizes the subproblems with respect to one of the cluster
centroids, data point assignments, and network parameters
while keeping the other two sets fixed. For instance, to update
network parameters, both the cluster centroids and data point
assignment are fixed, and then the corresponding gradient is
calculated by backpropagation.

Fard et al. [38] proposed a deep K-means clustering
algorithm named deep K-means (DKM), which is very similar
to the DCN [37]. DKM differs from the DCN in the clustering
loss only, where weighted K-means is employed instead of K-
means. Equation (43) shows the DKM joint loss function:

LDKM = Lr + λLWKM (43)

where 𝐿𝑟 is the reconstruction loss as defined in equation
(4), 𝐿𝑊𝐾𝑀 is the weighted K-means clustering loss function
described in equation (12), and 𝜆 regulates the trade-off
between seeking good representation and good clustering
results. The similarity weight of the K-means loss function is
computed according to the softmax function.

Sij_DKM =
exp(−α‖zi−zμj

‖
2

2
)

∑ exp(−α‖zi−zμ
j′

‖
2

2
)k

j′=1

 (44)

where 𝑧𝑖 is the learned representation of data point 𝑥𝑖, 𝑘 is

the number of clusters, 𝑧𝜇𝑗
 is the representation of the cluster

centroid 𝜇𝑗, and 𝛼 is a coefficient such that when its value is 0,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 10, 2021

871 | P a g e
www.ijacsa.thesai.org

all of the data points in the embedding space are very close,
and when its value is relatively high, the points are sparse in
the space. The network architecture and learning process of
DKM is similar to that of DCN, except that instead of
alternating between continuous gradient updates and discrete
cluster assignment steps, DKM relies on the gradient update
only to learn both the representation and clustering parameters.

Chen et al. [39] proposed a deep manifold clustering
algorithm called deep manifold clustering (DMC) to address
multimanifold clustering (MMC) [40].DMC’s architecture is
similar to that of DEN [36], where an SAE [17] is employed
for representation learning and a DBN [14] is utilized to
initialize the SAE parameters. In DMC, a locality-preserving
auxiliary clustering loss is introduced such that the locality of a
manifold can be interpreted as similar inputs, and therefore,
should have similar representations. Thus, a data point can be
recovered using the representation of its nearby point. Based
on this observation, the DMC [39] locality-preserving loss
function is defined as.

LLP_DMC =
1

k
∑ ‖yi − xj‖2

2

j∈Nk(i) (45)

where 𝑦𝑖 is the reconstructed image of data point 𝑥𝑖 and
𝑁𝑘(𝑖) is the indices set of 𝑘 nearest neighbors of 𝑥𝑖. After the
SAE weights and cluster centroids have been initialized, the
joint training procedure proceeds by iteratively optimizing the
joint loss function:

LDMC = (1 − α)Lr + αLLPDMC
+ βLWKM (46)

where 𝐿𝑟 is the reconstruction loss defined in equation (4),

𝐿𝐿𝑃_𝐷𝑀𝐶 is the locality-preserving loss function defined in
equation (45), 𝐿𝑊𝐾𝑀 is the weighted K-means clustering loss
function presented in equation (12), 𝛼 balances the importance
between the reconstruction of 𝑥𝑖 itself and its local
neighborhood, and 𝛽 is a parameter to balance the contribution
of the first two terms and 𝐿𝑊𝐾𝑀 . DMC uses the Gaussian-
dependent kernel as the similarity weight of the weighted K-
means loss function.

Sij_DMC =
exp(−α‖zi−zμj

‖
2

2
2σ⁄)

∑ exp(−α‖zi−zμ
j′

‖
2

2
2σ⁄)k

j′=1

 (47)

Here, 𝜎 is the kernel bandwidth. The keystone point of
DMC is to find the manifold center, because the cluster centers
are most probably surrounded by nearby points with lower
local density, and because they are at a relatively large distance
from any points with a higher local density. Therefore, DMC
calculates the density of the new representation by computing
two metrics: the local density of a point, and its distance to
points with higher density. The local density 𝜌𝑖 of the
representation 𝑧𝑖 is defined as.

ρi = ∑ e
−𝛥ij

�̂�n
j=1 (48)

where Δ𝑖𝑗 is the distance between the representation 𝑧𝑖 and

𝑧𝑗 and Δ̂ is a cut-off distance. Then, the points in the new

embedding space are sorted based on their density in

descending order, denoted by {𝜆𝑖}𝑖=1
𝑛 with 𝜌𝜆1 ≥ 𝜌𝜆2 ≥ ⋯ ≥

𝜌𝜆𝑛. The distance metric is therefore calculated as.

ξλi
= {

min
λj

j<i

{Δλiλj
} , i ≥ 2

𝑚𝑎𝑥
j≥2

{ξλj
} , i = 1.

 (49)

Next, a third metric is defined as

γi = ρiξi (50)

Similarly, the points in the new embedding space are sorted
based on 𝛾𝑖, as computed in equation (44) in descending order,
and denoted by {𝜋𝑖}𝑖=1

𝑛 with 𝛾𝜋1 ≥ 𝛾𝜋2 ≥ ⋯ ≥ 𝛾𝜋𝑛. Assuming
that the number of clusters 𝑘 is known in advance, the cluster
centers are determined by considering the 𝑘 largest 𝛾 . The
experiments reported in [39] showed that DMC outperformed
the state-of-the-art multimanifold clustering methods.

C. Deep Spectral Clustering

Ji et al. [41] introduced deep subspace clustering networks
(referred to as DSC-Nets) based on CAE [18] to learn
nonlinear mapping. The network architecture of DSC-Nets
includes three parts: a CNN encoder, a middle layer called the
self-expressive layer, and a CNN decoder. In the self-
expressive layer, the neurons are completely connected using
linear weights without bias and nonlinear activation. The
purpose of this FC layer is to encode the self-expressiveness
property, as explained in section 3.3. Each node in this self-
expressive layer is a representation 𝑧𝑖 , and the weights
correspond to the matrix 𝐶 in equation (36) which are further
used to construct affinities between all data points. Therefore,
essentially, the self-expressive layer enables the network to
learn the affinity matrix directly. First, DSC-Nets pre-train the
CAE without the self-expressive layer to initialize the encoder
and decoder parameters. Then, in the finetuning process, the
DSC-Nets deep network is first trained, and the following joint
loss function is recursively optimized:

LDSC−Nets = Lr + LSE (51)

where 𝐿𝑟 is the reconstruction loss defined in equation (4)
and 𝐿𝑆𝐸 is the self-expressiveness loss as expressed in (36).
When the training is completed, the parameters of the self-
expressive layer are used to build an affinity matrix for spectral
clustering, as explained in section 3.2. The experiments
reported in [41] showed that DSC-Nets yielded superior results
for small datasets. However, this method cannot be applied on
large datasets because of the memory complexity of the
algorithm [19].

Similar to DSC-Nets, in [42], Zhou et al. proposed deep
adversarial subspace clustering (DASC) model which learns
subspace clustering-friendly representations using AAE and
self-expressiveness constraint. Given that, DASC optimizes the
following objective function:

LDASC = Lr + αLg + βLSE (52)

where 𝐿𝑟 , 𝐿𝑔 , and 𝐿𝑆𝐸 represent the reconstruction loss

defined in (4), the generation loss in (9), and the self-
expressiveness loss that defined in (36), respectively, and 𝛼
and 𝛽 are hyperparameters to balance the importance of the
generation loss and the clustering loss, respectively. Upon the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 10, 2021

872 | P a g e
www.ijacsa.thesai.org

completion of the training process, spectral clustering is
applied to the resulting affinity matrix.

Yang et al. in [43] presented a deep spectral clustering
(DSC) approach based on AAE. In the proposed approach, the
generator is a dual AE network (one encoder and two
decoders) to enforce the reconstruction constraints for the
latent representations and their noisy versions. As a
consequence, the resulting latent representation will be more
robust to noise. Hence, the reconstruction loss is updated to be
in the following format:

Lr_DSC =
1

n
∑ ‖yĩ − yi‖

2n
i=1 + δLr (53)

where 𝐿𝑟 is the reconstruction loss in (4), 𝑦𝑖 is the
reconstructed image of input 𝑥𝑖, 𝑦�̃� is the reconstructed image
of the noisy version of the input 𝑥𝑖, and 𝛿 balances the strength
of the two losses. Then, the mutual information estimation is
employed to boost the discriminator with more information
from the inputs. To achieve this, the feature map of the middle
convolutional layer of the encoder is extracted and combined
with the latent representation to obtain a new feature map.
Therefore, the generation loss will be as follows:

Lg_DSC = −β [
1

n
∑ log D(xi, zi) + log(1 − D(xi, zi))n

i=1] −
β

hw
[∑

1

n
∑ log D(Cij, zk) + log (1 − D(Cij, zk))n

k=1i,j] + γLKL (54)

where 𝐷 is the discriminator, 𝐶𝑖𝑗 represents the feature

vector of the middle feature map at coordinates (𝑖, 𝑗), 𝑧𝑖 is the
latent representation of input 𝑥𝑖, 𝐿𝐾𝐿 is the KL-divergence loss
in equation (14), h and w represent the height and width of the
feature map, and 𝛽 and 𝛾 are balancing parameters.
Furthermore, the latent representations are embedded into the
eigenspace to cluster them using a spectral clustering
technique.

D. More Deep Clustering Algorithms

Shah et al. [44] presented deep continuous clustering
(DCC), a framework for joint nonlinear embedding learning
and clustering. The DCC framework integrates an RCC
algorithm [44] with an SAE [17] as a deep representation
learning technique. DCC consists of two stages: initialization
and optimization. During the initialization stage, the denoising
SAE is trained based on reconstruction loss only to initialize
the network parameters, i.e., weights and biases. Then, the
SAE is finetuned, using the reconstruction loss only, to
complete the initialization. At the end of this stage, the learned
representation 𝑍 is obtained from the bottleneck layer to have
the initialization 𝑈 = 𝑍. Then, the optimization is conducted
by minimizing the joint loss function.

LDCC =
1

D
Lr +

1

d
(LdataDCC

+ λLpairwiseDCC
) (55)

where 𝐿𝑟 is the AE reconstruction loss in equation (4), 𝐷 is
the dimensionality of the original input dataset, and 𝑑 is the
dimensionality of the lower-dimensional representations 𝑍 .
DCC modifies the data loss introduced in RCC [44] as.

Ldata_DCC = ∑ ρ(‖ui − zi‖2; μ1)n
i=1 (56)

where 𝜌 is the scaled Geman–McClure function defined in
equation (25). The pairwise loss is also modified by DCC as.

Lpairwise_DCC = ∑ wijρ (‖ui − uj‖2
; μ2)(i,j)∈E (57)

The parameters 𝜇1 and 𝜇2 control the radii of the convex

basins of the estimators. The weights 𝑤𝑖𝑗 are computed based

on.

wij =
1

n
∑ Nk

N
k=1

√NiNj
 (58)

where 𝑁𝑖 is the degree of 𝑢𝑖 in the graph. To balance the
different terms, DCC sets 𝜆 and 𝐴 according to equations (29)
and (30), respectively. The network parameters, the
representatives 𝑈, and the lower-dimensional representations 𝑍
are updated by an SGD optimization algorithm [45] through
backpropagation. Other DCC parameters, such as 𝜆 , are
iteratively updated during the optimization as in the RCC
algorithm [44].

Jiang et al. [46] proposed Variational Deep Embedding
(VaDE), a probabilistic generative clustering technique within
a VAE framework. In VaDE, Mixture-of-Gaussian is assumed
to be the prior of the probabilistic clustering. To model the data
generative procedure, VaDE utilizes GMM to pick a cluster
from which a latent embedding is generated. Then, VAE
decodes the latent embedding into an observable. Then, VAE is
trained to maximize the evidence lower bound (ELBO) [19]
according to VAE loss (𝐿𝑉𝐴𝐸) in equation (7). After
maximizing the ELBO, the cluster assignment can be inferred
by the learned GMM model. GMVA [47] is another
probabilistic clustering algorithm based on VAE with a
Gaussian mixture as a prior distribution. The main contribution
of this algorithm is in introducing the minimum information
constraint [48] to the VAE in order to overcome the problem of
cluster degeneracy, caused by the over-regularization of the
VAE. The GMVA approach is more complex than VaDE, and
has shown worse results in practice [19]. However, both VaDE
and GMVA suffer from high computational complexity [19].

Mukherjee et al. [49] addressed the problem of clustering in
the latent space of GAN [19] by introducing the ClusterGAN
framework. In order to establish non-smooth geometry of the
latent space, a mixture of discrete and continuous latent
variables is utilized. To accommodate that mixture of
variables, a new backpropagation algorithm is introduced to
obtain the latent variable given a data input. The experimental
results showed that GAN is able to preserve latent space
interpolation across different categories.

As shown in Table I, we compared the studied joint deep
clustering algorithms based on their clustering technique, loss
functions, and main contributions. From the presented review,
deep clustering algorithms with autoencoders are the most
common technique and this due to two reasons. We can
summarize these two points as: (1) the ability to combine the
autoencoders with the most clustering algorithm, (2)
autoencoders reconstruction loss is capable to learn feasible
representations and avoid trivial solutions. It is important to
note that, the computational cost of autoencoder based deep
clustering algorithms is highly affected by the clustering loss.
However, for computational feasibility, such algorithms have
limited network depth due to the symmetry architecture of
autoencoder. On the other hand, deep clustering algorithms

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 10, 2021

873 | P a g e
www.ijacsa.thesai.org

with VAE, AAE, and GAN minimize the variational lower
bound on the marginal likelihood of data which make them
theoretically guaranteed. Unfortunately, these clustering
techniques suffer from high computational complexity.
Comparing VAE deep clustering algorithms with AAE and
GAN clustering algorithms, AAE and GAN algorithms are
more flexible and diverse than VAE algorithms. Nonetheless,
AAE and GAN based clustering algorithms have slow
convergence rate.

V. CONCLUSION

Recently, clustering algorithms have benefited from the
new deep learning research field. In fact, new active research
studies are focused on integrating deep representation learning
with clustering tasks. Beyond joint deep clustering algorithms,
more recent algorithms have been proposed, some of which
have been classified as separated deep clustering approaches,
and others categorized as combined deep clustering techniques,
but not joint. DeepCluster, clustering by unmasking, rank-
constrained spectral clustering, SDEC, parameter-free
clustering, and learning deep graph representation are all
examples of not-joint deep clustering algorithms.

In this article, we reviewed the existing joint deep
clustering algorithms by describing their network structure and
analyzing their objective functions. Based on the survey of
algorithms discussed here, theoretical analysis of how and why
jointly optimizing reconstruction and clustering losses
significantly improves the clustering performance is itself
significant. Also, studying whether deep supervised learning
techniques, such as data augmentation and regularization, are
applicable and useful for deep unsupervised clustering is
meaningful. Exploring the feasibility of applying the proposed
joint deep clustering algorithms on sequential data is highly
encouraged. Moreover, exploring the viability of combining
deep clustering techniques with other unsupervised learning
tasks such as transfer learning is strongly recommended.

ACKNOWLEDGMENT

The authors are grateful for the support of the Research
Center of the College of Computer and Information Sciences,
King Saud University. The authors thank the Deanship of
Scientific Research and RSSU at King Saud University for
their technical support.

REFERENCES

[1] D. Xu and Y. Tian, “A Comprehensive Survey of Clustering

Algorithms,” Ann. Data Sci., vol. 2, no. 2, pp. 165–193, 2015.

[2] I. T. Jolliffe, “Principal Components in Regression Analysis,” in
Principal component analysis, Springer, 1986, pp. 129–155.

[3] M. Li and B. Yuan, “2D-LDA: A statistical linear discriminant analysis

for image matrix,” Pattern Recognit. Lett., vol. 26, no. 5, pp. 527–532,
Apr. 2005.

[4] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear Component

Analysis as a Kernel Eigenvalue Problem,” Neural Comput., vol. 10, no.
5, pp. 1299–1319, 1998.

[5] I. National and D. Recherche, “Generalized Discriminant Analysis
Using a Kernel Approach,” Neural Comput., vol. 12, no. 1, pp. 1–13,

1994.

[6] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science (80-.)., vol.

290, no. 5500, pp. 2319–2323, 2000.

[7] Yuexian Hou, Peng Zhang, Xingxing Xu, Xiaowei Zhang, and Wenjie

Li, “Nonlinear Dimensionality Reduction by Locally Linear Inlaying,”
IEEE Trans. Neural Networks, vol. 20, no. 2, pp. 300–315, 2009.

[8] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm

for deep belief nets.,” Neural Comput., vol. 18, no. 7, pp. 1527–54,
2006.

[9] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of

data with neural networks,” Science (80-.)., vol. 313, no. 5786, pp. 504–
507, 2006.

[10] W. F. Schmidt, M. A. Kraaijveld, and R. P. W. Duin, “Feed forward

neural networks with random weights,” in Proceedings - International
Conference on Pattern Recognition, 1992, vol. 2, pp. 1–4.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification

with Deep Convolutional Neural Networks,” Adv. Neural Inf. Process.
Syst., pp. 1–9, 2012.

[12] D. Svozil, V. Kvasnieka, and J. Pospichal, “Introduction to multi-layer
feed-forward neural networks,” 1997.

[13] M. W. Gardner and S. R. Dorling, “Artificial neural networks (the

multilayer perceptron) - a review of applications in the atmospheric
sciences,” Atmos. Environ., vol. 32, no. 14–15, pp. 2627–2636, Aug.

1998.

[14] N. Lopes and B. Ribeiro, “Deep Belief Networks (DBNs),” in Machine
Learning for Adaptive Many-Core Machines-A Practical Approach,

Springer, 2015, pp. 155–186.

[15] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Unsupervised learning
of hierarchical representations with convolutional deep belief networks,”

Commun. ACM, vol. 54, no. 10, pp. 95–103, 2011.

[16] Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–27, 2009.

[17] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. A. Manzagol,

“Stacked denoising autoencoders: Learning Useful Representations in a
Deep Network with a Local Denoising Criterion,” J. Mach. Learn. Res.,

vol. 11, pp. 3371–3408, 2010.

[18] B. Leng, S. Guo, X. Zhang, and Z. Xiong, “3D object retrieval with

stacked local convolutional autoencoder,” Signal Processing, vol. 112,
pp. 119–128, 2015.

[19] E. Min, X. Guo, Q. Liu, G. Zhang, J. Cui, and J. Long, “A Survey of

Clustering with Deep Learning: From the Perspective of Network
Architecture,” IEEE Access, vol. 6, pp. 39501–39514, 2018.

[20] J. R. Hershey and P. A. Olsen, “Approximating the Kullback Leibler

divergence between Gaussian mixture models,” in ICASSP, IEEE
International Conference on Acoustics, Speech and Signal Processing -

Proceedings, 2007, vol. 4, pp. IV-317-IV–320.

[21] W. Zhou and Q. Zhou, “Deep Embedded Clustering With Adversarial
Distribution Adaptation,” IEEE Access, vol. 7, pp. 113801–113809,

2019.

[22] J. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley

Symposium on Mathematical Statistics and Probability, 1967, vol. 1, pp.
281–296.

[23] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-Means

Clustering Algorithm,” Appl. Stat., vol. 28, no. 1, p. 100, 1979.

[24] G. Celeux and G. Govaert, “Gaussian parsimonious clustering models,”

Pattern Recognit., vol. 28, no. 5, pp. 781–793, May 1995.

[25] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in Advances in Neural Information Processing

Systems, 2002, pp. 849–856.

[26] S. A. Shah and V. Koltun, “Robust continuous clustering,” Proc. Natl.
Acad. Sci. U. S. A., vol. 114, no. 37, pp. 9814–9819, 2017.

[27] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based

Algorithm for Discovering Clusters in Large Spatial Databases with
Noise,” in Proceedings of the 2nd International Conference on

Knowledge Discovery and Data Mining, 1996, pp. 226–231.

[28] X. Guo, L. Gao, X. Liu, and J. Yin, “Improved deep embedded
clustering with local structure preservation,” in IJCAI International Joint

Conference on Artificial Intelligence, 2017, pp. 1753–1759.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 10, 2021

874 | P a g e
www.ijacsa.thesai.org

[29] S. Geman and D. E. McClure, “Statistical methods for tomographic

image reconstruction,” Bull. Int. Stat. Inst, vol. 52, no. 4, pp. 5–21,
1987.

[30] L. Bottou, “Large-Scale Machine Learning with Stochastic Gradient

Descent,” in Proceedings of COMPSTAT’2010, Physica-Verlag HD,
2010, pp. 177–186.

[31] X. Guo, X. Liu, E. Zhu, and J. Yin, “Deep Clustering with

Convolutional Autoencoders,” in International conference on neural
information processing, 2017, vol. 10635 LNCS, pp. 373–382.

[32] N. Mrabah, M. Bouguessa, and R. Ksantini, “Adversarial Deep

Embedded Clustering: on a better trade-off between Feature
Randomness and Feature Drift,” IEEE Trans. Knowl. Data Eng., pp. 1–

1, 2020.

[33] K. G. Dizaji, A. Herandi, C. Deng, W. Cai, and H. Huang, “Deep
Clustering via Joint Convolutional Autoencoder Embedding and

Relative Entropy Minimization,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, vol. 2017-Octob,

pp. 5747–5756.

[34] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep

feedforward neural networks,” in Journal of Machine Learning
Research, 2010, vol. 9, pp. 249–256.

[35] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised Deep Embedding for

Clustering Analysis,” in International conference on machine learning,
2016.

[36] P. Huang, Y. Huang, W. Wang, and L. Wang, “Deep embedding

network for clustering,” in 22nd International conference on pattern
recognition, 2014, pp. 1532–1537.

[37] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards K-means-

friendly Spaces: Simultaneous Deep Learning and Clustering,” 2017.

[38] M. M. Fard, T. Thonet, and E. Gaussier, “Deep k-Means: Jointly
clustering with k-Means and learning representations,” arXiv Prepr.

arXiv1806.10069, 2018.

[39] D. Chen, J. Lv, and Z. Yi, “Unsupervised multi-manifold clustering by
learning deep representation,” in AAAI Workshop - Technical Report,

2017, vol. WS-17-01-, pp. 385–391.

[40] R. Souvenir and R. Piess, “Manifold clustering,” in Proceedings of the

IEEE International Conference on Computer Vision, 2005, vol. I, pp.
648–653.

[41] P. Ji, T. Zhang, H. Li, M. Salzmann, and I. Reid, “Deep subspace

clustering networks,” in Advances in Neural Information Processing
Systems, 2017, vol. 2017-Decem, pp. 24–33.

[42] P. Zhou, Y. Hou, and J. Feng, “Deep Adversarial Subspace Clustering,”

in Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2018, pp. 1596–1604.

[43] X. Yang, C. Deng, F. Zheng, J. Yan, and W. Liu, “Deep spectral

clustering using dual autoencoder network,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern

Recognition, 2019, vol. 2019-June, pp. 4061–4070.

[44] S. A. Shah and V. Koltun, “Deep Continuous Clustering,” arXiv Prepr.
arXiv1803.01449, 2018.

[45] I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning,” Nature,
vol. 521, no. 7553, p. 800, 2016.

[46] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou, “Variational deep

embedding: An unsupervised generative approach to Clustering,” in
IJCAI International Joint Conference on Artificial Intelligence, 2017,

pp. 1965–1972.

[47] N. Dilokthanakul et al., “Deep Unsupervised Clustering with Gaussian
Mixture Variational Autoencoders,” 2016.

[48] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and

M. Welling, “Improved variational inference with inverse autoregressive
flow,” in Advances in Neural Information Processing Systems, 2016, pp.

4743–4751.

[49] S. Mukherjee, H. Asnani, E. Lin, and S. Kannan, “ClusterGAN: Latent
Space Clustering in Generative Adversarial Networks,” Proc. AAAI

Conf. Artif. Intell., vol. 33, pp. 4610–4617, 2019.

