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Abstract—Artificial intelligence is the science of enabling 

computers to act without being further programmed. 

Particularly, computer vision is one of its innovative fields that 

manages how computers acquire comprehension from videos and 

images. In the previous decades, computer vision has been 

involved in many fields such as self-driving cars, efficient 

information retrieval, effective surveillance, and a better 

understanding of human behaviour. Based on deep neural 

networks, object detection is actively growing for pushing the 

limits of detection accuracy and speed. Object Detection aims to 

locate each object instance and assign a class to it in an image or 

a video sequence. Object detectors are usually provided with a 

backbone network designed for feature extractors, a neck model 

for feature aggregation, and finally a head for prediction. Neck 

models, which are the purpose of study in this paper, are neural 

networks used to make a fusion between high-level features and 

low-level features and are known by their efficiency in object 

detection. The aim of this study to present a review of neck 

models together before making a benchmarking that would help 

researchers and scientists use it as a guideline for their works. 
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I. INTRODUCTION 

Object detection is often called image detection, object 
identification, and object recognition; and all these concepts 
are synonymous. It is a computer vision method for locating 
instances of objects in an image or video sequence. Object 
detection algorithms, therefore, typically benefit from machine 
learning techniques or deep learning techniques to gain 
meaningful results. When humans look at images or videos, 
they could locate and recognize objects of interest easily. The 
goal of object detection is to mimic this intelligence using a 
computer. With recent advancements in Deep Learning-based 
computer vision models, Object Detection use cases are 
spreading more than ever before. A wide range of applications 
is implemented, for instance, self-driving cars, object tracking, 
anomaly detection, and video surveillance. 

Object Detection could be divided into two main 
categories Deep Learning-based techniques and Machine 
Learning based techniques. Deep Learning based techniques 
could be separated into two approaches one stage detectors 
and two-stage detectors. Object Detection based Deep 

Learning approaches are a set of models of Deep Learning, 
starting from input, then a backbone for feature extraction 
model, then neck model for feature fusion, and finally a head 
model class/box network. 

The neck of the object detector refers to the additional 
layers existing between the backbone [1] and the head. Their 
role is to collect feature maps from different stages. The neck 
models are composed of several top-down paths and several 
bottom-up paths. The idea behind this feature aggregation 
existing in this model is to allow low-level features to interact 
more directly with high-level features, by mixing information 
from this high-level feature with the low-level feature. They 
reach aggregation and feature interaction across many layers, 
since the distance between the two feature maps is large. 
Several methods can reach be implemented in this part, for 
example, PAN [2] or FPN [3] (see Fig. 1). 

Head is the last model of object detection, predicts 
bounding boxes and classes of objects and could be a sparse 
prediction that belongs to One-stage detectors such as YOLO 
[4] , SDD [5], CenterNet [6], or a Dense prediction that 
belongs to Two-stage detectors, such as Fast R-CNN [7], 
Faster R-CNN [8], Mask R-CNN [9] (see Fig. 1). On the one 
hand, One Stage detectors have high inference speeds, these 
models predict bounding boxes in a one or single step without 
using region proposals. On the other hand, two stage detectors 
have high localization and recognition accuracy. Firstly, they 
use a Region Proposal Network to generate regions of 
interests; secondly, they send the region proposals for object 
classification and bounding-box regression. 

We aim that our benchmarking study can provide a timely 
comparison of neck models of object detection for 
practitioners and researchers to further master research on 
object detection models. The rest of our study is organized as 
follows: In Section 2, we are going to discuss the different 
existing related works about feature aggregation. In Section 3, 
we list the neck neural networks about object detection used 
for feature fusion, their architecture is discussed also in their 
categories. In Section 4, our comparative study is presented. In 
Section 5, we highlight the different recognizable results and 
Section 6 covers the discussion. Finally, in Section 7, we 
conclude and discuss future directions. 

https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/deep-learning.html
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Fig. 1. Models’ Taxonomy of Object Detectors in each Part Backbone, Head, and Neck. 

II. RELATED WORK 

Several scientific works and researches have been 
implemented to develop and evolve Object Detection 
applications and systems and depend on enormous 
methodologies of the deep learning era, machine learning era 
and other eras. Several researchers and scientists are 
expanding their implementation and research to develop and 
apply enormous methodologies. Such us the case of feature 
aggregation methods that are used to make a connection 
between low and high feature for better object recognition in 
video sequence and images. Feature aggregation is used 
widely  in action recognition [10], [11], [12], [13], [14] and 
video description [15],[16]. Most of these methods use 
recurrent neural network (RNNs) in order to aggregate 
features from consecutive frames on the one hand. Exhaustive 
temporal-spatial convolution is used to extract temporal-
spatial features, on the other hand. U-Net [17] was proposes to 
concatenate features from low level to high-level for medical 
image segmentation, and it achieved great success in that 
field. In order to gain an outstanding feature for object 
detection, the FPN stands for Feature Pyramid Networks 
aggregated both the transformed feature from the bottom-up 
weighted pyramid and the top-down lateral convolutions 
through a simple sum operation. Relied on Feature Pyramid 
Networks, several extensive works [18], [19], [20], [2] define 
new option on connectivity between scales. Attention based 
models also prove their efficiency in several applications of 
deep learning era [21], [22], [23], [24], [25], [26]. Self-
attention models by measuring and applying a context relied 
encoding summarized from a dimension of feature. All these 
works cited propose to aggregate and fuse features via  
element-wise concatenation  or summation. 

III. BACKGROUND 

Since Feature Pyramid Networks appearance, the focus of 
this work is the object detector neck, the existing part between 
the backbone and the head. These techniques are useful for 
many reasons. 

1) Aggregation network models (FPN): FPN [3] is a top-

down architecture with lateral connections, it is 

implemented in building high-level semantic feature maps at 

all scales (see Fig. 2). 

 

Fig. 2. FPN Architecture. 

https://www.bing.com/search?q=define+grow&FORM=DCTRQY
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2) Neural architecture search FPN (NAS-FPN): NAS-

FPN [19] consists of a combination of top-down and bottom-

up connections to fuse features across scales (see Fig. 3). 

 

Fig. 3. PANet Architecture. 

3) Neural architecture search FPN (NAS-FPN): NAS-

FPN [19] consists of a combination of top-down and bottom-

up connections to fuse features across scales (see Fig. 4). 

 

Fig. 4. NAS-FPN Architecture. 

4) Bi-directional feature pyramid network (BiFPN): 

BiFPN [27] is a type of feature pyramid network that allows 

fast and easy multi-scale feature fusion.  BiFPN incorporates 

the other feature fusion models. It enables information to flow 

in the top-down and bottom-up directions, while using 

efficient and regular connections. This network improves the 

connections by removing some nodes and treats each 

bidirectional path as a feature network layer (Fig. 5). 

 

Fig. 5. BiFPN Architecture. 

Based on the architecture above PANET is more 
performant then FPN et NAS-FPN, but the computation cost is 
higher. 

5) Fully-connected FPN: Fully-connected, the calculation 

is the most complex all scales use the most complete 

connection (see Fig. 6). 

 

Fig. 6. Fully-Connected FPN Architecture. 

6) Simplified PANet: Simplified PANet, this method 

simplifies and removes only one input node (see Fig. 7). 

 

Fig. 7. Simplified FPN Architecture. 

https://developpaper.com/tag/node/
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IV. COMPARISON 

Table I below illustrates the models that we are going to 
compare based on different comparison metrics. The measures 
are gathered carefully to cover several methods. 

This table illustrates the deep learning models used for the 
object detection task of the COCO dataset. It defines the used 
models for the prediction for classification and bounding 

boxes. The Backbone determines the backbone used for 
feature extraction the number associated refers to the number 
of layers, and finally, the neck illustrates the feature 
aggregation network used. 

Table I contains the model’s name, Reference, Journal 
year, Year, Backbone, Neck, AP, AP50, AP75, APS, APM, 
APL (see Table I). 

TABLE I. DETAILED COMPARISONS ON MULTIPLE POPULAR BASELINE OBJECT DETECTORS ON THE COCO DATASET 

Model 

Ref 
Journal  Model Backbone Neck AP AP50 AP75 APS APM APL 

[18] 
 

CVPR 2019 
 

Libra R-CNN ResNet-50 FPN 38.7 59.9 42.0 22.5 41.1 48.7 

Libra R-CNN ResNet-101 FPN 40.3 61.3 43.9 22.9 43.1 51.0 

Libra R-CNN ResNeXt-101 FPN 43.0 64 47 25.3 45.6 54.6 

[8]  

Faster R-CNN ResNet-50 FPN 37.8 58.7 40.6 21.3 41.0 49.5 

Faster R-CNN ResNet-50 AdaFPN 39.0 58.8 41.8 22.6 42.3 50.0 

Faster R-CNN ResNet-50 AugFPN 38.8 61.5 42.0 23.3 42.1 47.7 

Faster R-CNN ResNet-101 AugFPN 41.5  63.9 45.1 23.8 44.7 52.8 

Faster R-CNN ResNext-101- 32x4d AugFPN 41.9  64.4 45.6 25.2 45.4 52.6 

Faster R-CNN ResNext-101-64x4d AugFPN 43.0  65.6 46.9 26.2 46.5 53.9 

Faster R-CNN MobileNet-v2 AugFPN 34.2  56.6 36.2 19.6 36.4 43.1 

[28] 
ICCV 2019  

 

FCOS ResNet-50 AugFPN 37.9 58.0 40.4 21.2 40.5 47.9 

FCOS ResNet-50 FPN 39.1 57.9 42.1 23.3 43.0 50.2 

FCOS ResNet-50 AdaFPN 40.1 58.6 43.2 24.1 43.6 50.6 

FCOS ResNeXt-101 FPN 42.7 62.2 46.1 26.0 45.6 52.6 

[9] ICCV 2017 

Mask R-CNN ResNet-101 FPN 38.2 60.3 41.7 20.1 41.1 50.2 

Mask R-CNN ResNeXt-101 FPN 39.8 62.3 43.4 22.1 43.2 51.2 

Mask R-CNN ResNet-50 AugFPN 39.5 61.8 42.9 23.4 42.7 49.1 

Mask R-CNN ResNet-101 AugFPN 42.4  64.4 46.3 24.6 45.7 54.0 

Mask R-CNN ResNet-50 A2 -FPN 36.6  59.3  39.1  19.8  39.3  48.0 

Mask R-CNN ResNet-101 A2 -FPN 37.9  60.8  40.5  20.6  41.8  50.1 

[29] CVPR 2018 

CascadeR-CNN ResNet-50 FPN 36.5 59 39.2 20.3 38.8 46.4 

CascadeR-CNN ResNet-101 FPN 38.8 61.1 41.9 21.3 41.8 49.8 

CascadeR-CNN ResNet-101 AC-FPN 45.0  64.4  49.0  26.9  47.7  56.6 

[30] 
ICCV 2017  

 

RetinaNet ResNet-101  FPN 39.1 59.1 42.3 21.8 42.7 50.2 

RetinaNet ResNeXt-101 FPN 40.8 61.1 44.1 24.1 44.2 51.2 

RetinaNet ResNet-50 AugFPN 37.5  58.4 40.1 21.3 40.5 47.3 

RetinaNet MobileNet-v2 AugFPN 34.0  54.0 36.0 18.6 36.0 44.0 

[31] arXiv 2019 RetinaMask ResNet-50 FPN 39.4 58.6 42.3 21.9 42.0 51.0 

[32] CVPR 2019 Grid R-CNN ResNeXt-101 FPN 43.2 63.0 46.6 25.1 46.5 55.2 

[33] CVPR 2019  

HTC ResNeXt-101 FPN 47.1 63.9 44.7 22.8 43.9 54.6 

HTC ResNet-50 FPN 38.4  60.0  41.5  20.4  40.7  51.2 

HTC ResNet-101 FPN 39.7  61.8 43.1 21.0 42.2 53.5 

HTC ResNet-50 A2 -FPN 39.8  62.3 43.0 21.6 42.4 52.8 

HTC ResNet-101 A2 -FPN 40.8  63.6  44.1  22.3  43.5  54.4  

HTC ResNeXt -101 A2 -FPN 42.1  65.3  45.7  23.6  44.8  56.0 

[34] CVPR 2020 DetectRS  ResNeXt-101-DCN RFP 53.3 71.6 58.5 33.9 56.5 66.9 

[35] arXiv 2021 CenterNet2 Res2Net-101-DCN BiFPN 56.4 74.0 61.6 38.7 59.7 68.6 

https://paperswithcode.com/conference/cvpr-2019-6
https://paperswithcode.com/conference/iccv-2019-10
https://paperswithcode.com/conference/iccv-2017-10
https://paperswithcode.com/conference/cvpr-2018-6
https://paperswithcode.com/conference/iccv-2017-10
https://paperswithcode.com/conference/cvpr-2019-6
https://paperswithcode.com/conference/cvpr-2019-6
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Average Precision (AP) 

AP % AP at IoU=.50:.05:.95 

APIoU=.50  % AP at IoU=.50 

APIoU=.75  % AP at IoU=.75 

AP Across Scales: 

APsmall % AP for small objects: area < 322  

APmedium AP for medium objects: 322 < area < 962 

APlarge AP for large objects: area >962 

V. RESULT 

In this part, we are going to discuss the performance of 
different methods cited in Table I Libra R-CNN, Faster R-
CNN, FCOS, Mask R-CNN, Cascade R-CNN, RetinaNet, 
RetinaMask, Grid R-CNN, HTC, DetectRS, CenterNet2 
methods based on different feature aggregation networks and 
different backbone networks. In each model, we tried to fix 
either a backbone or a neck and see how the performance 
behave. These results show us the importance of both feature 
aggregation networks and feature extraction networks and 
how they impact the object detection models accuracy. 

1) Libra R-CNN: We have compared Libra R-CNN [18] 

with different backbones. This comparison reveals that the act 

of changing backbones with a solid feature aggregation model 

changes the performance. Regarding, Libra R-CNN with 

ResNeXt-101 as a backbone on top of the quality range. The 

two last models based on ResNet-50 and ResNet-101 as 

backbones, Libra R-CNN based ResNet-101 gain the highest 

performance (see Fig. 8). 

 

Fig. 8. Libra R-CNN Comparison based Different Feature Aggregation 

Models. 

2) Faster R-CNN: Faster R-CNN [8] relying on ResNext-

101-64x4d as a backbone and AugFPN as a feature 

aggregation model are leading the performance in this 

category. By fixing ResNet-50 as a backbone with changing 

different feature aggregation, the model based on AdaFPN 

gains the highest performance. Moreover, by fixing AugFPN 

and changing ResNext-101 the best performance was gained 

by ResNext-101-64x4d (see Fig. 9). 

 

Fig. 9. Faster R-CNN Comparison based Different Feature Aggregation 
Models. 

3) FCOS: The highest performance was obtained by 

FCOS [28] on the head,  ResNext-101 as a backbone, and 

FPN as a feature aggregator model. By changing feature 

aggregation models FPN, AdaFPN, and AugFPN, moreover 

fixing ResNet-50 the AdaFPN gains the best performance in 

this category, after that FPN and finally AugFPN (see 

Fig. 10). 

 

Fig. 10. FCOS Comparison based Different Feature Aggregation Models. 

4) Mask R-CNN: Regarding Mask R-CNN [9] models 

based on a diversity of backbones and necks relied on our 

category, ResNet-101 and FPN combination leads the 

performance then, ResNeXt-101 and FPN. By fixing ResNet-

101, mutating feature aggregation models the highest 

performance was gained by AugFPN, then FPN, and finally 

A2FPN. Concerning ResNet-50 as a backbone and A2 FPN or 

AugFPN as feature aggregation models, AugFPN attain the 

greatest performance (see Fig. 11). 

 

Fig. 11. Mask R-CNN Comparison based Different Feature Aggregation 

Models. 
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5) HTC: Related to HTC [33] model, ResNeXt-101 and 

A2FPN are leading in performance, the second performant 

fusion is ResNeXt-101 and FPN. Regarding the models based 

on ResNet as a backbone, ResNet-50 with A2FPN works 

better than ResNet-50 with FPN in terms of performance (see 

Fig. 12). 

 

Fig. 12. HTC Comparison based Different Feature Aggregation Models. 

6) Cascade R-CNN: Cascade R-CNN [29] performance 

was led by merging ResNet-101 and AC-FPN. The 

combination of ResNet-101 as a backbone and FPN neck has 

gained less performance (see Fig. 13). 

 

Fig. 13. Cascade R-CNN Comparison based Different Feature Aggregation 

Models. 

7) RetinaNet: Regarding RetinaNet,[30] firstly, ResNeXt-

101 as a backbone and FPN as a feature aggregation model 

compared to the other fusions, it has gained the highest 

performance; secondly, by merging ResNet-101 and FPN; and 

thirdly, ResNet-50 with AugFPN gains the performance, and 

finally, MobileNet-V2 with AugFPN (see Fig. 14). 

 

Fig. 14. RetinaNet Comparison based Different Feature Aggregation Models. 

8) Six Top average precision: On the one hand, after 

extracting the 6 best models in terms of average precision, we 

have preferred to compare the methods that gain the top 

average precision. On the other hand, in terms of performance 

and based on our spider, centerNet2 achieves the best 

performance. The best method is based on Res2Net101-DCN 

as a backbone and BiFPN as a feature aggregation model. The 

second rank is for DetectRs based on ResNeXt-101-DCN as a 

backbone and RFP as feature extraction (see Fig. 15). 

 

Fig. 15. Multicriteria Comparison based Different Feature Aggregation 

Models. 

VI. DISCUSSION 

In this paper, we have systematically depicted the 
importance of object detection components, covering the deep 
learning methodologies used in object detection, including, 
Two Stage detectors and one stage detectors. 

Firstly, we have started by presenting object detection 
methodologies that have been categorized on traditional 
methods and based deep learning methodologies. Secondly, 
we have talked about the main arrangement of object detection 
based on deep learning that includes a backbone usually 
pretrained used to extract feature then feature aggregation 
model for merging high and low features called neck and 
finally, the head used for prediction. 

Relied on our comparative study, we notice that the 
CenterNet2 with Res2Net-101-DCN as a backbone and 
BiFPN as a feature fusion model leads the performance and 
gains widespread dominance because of its supremacy 
regarding all criteria. 

DetectRS with ResNeXt-101-DCNas a backbone and RFP 
as a feature fusion model is reaching the second score. HTC is 
gaining the third position with its high performance based on 
ResNeXt-101 as a backbone and FPN. We notice also that 
there is no intersection between all the compared algorithms, 
each algorithm gains its performance regarding all criteria that 
the underlying algorithm. 

This comparison has also been made based on a set of 
criteria. The scores for each method evaluated were calculated 
using the Weight Score Model. Various scores or results have 
not only helped us determine an overall ranking, but they have 
also shown their internal strengths and weaknesses concerning 
each criterion. 

This comparison has also revealed the importance of 
making a benchmark in order to have a global straightforward 
view of building efficient models with high performance. 
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One the one hand, we hold in mind that from this review 
and comparison study that object detection based deep 
learning models, backbone, neck and head, impacting highly 
the performance. On the other hand, generally, more used 
layers give high performance. 

VII. CONCLUSION 

From the study handed, it has been noticed that several 
scientists and researchers from a diversity of ethnicities are 
working day after day on the object detection field, due to its 
utmost importance. Several models are appearing every month 
with the growth of deep learning. 

This comparison could be used as a support, by handing 
researchers a scientific comparison of different object 
detection methodologies and their main models, in order to 
build performant models. 

A comparison of neck used for feature aggregation 
between high and low features has been presented. We have 
been interested in giving you different necks and analyse the 
performance of their global models. 

Future work will be focusing on the implementation of 
some of the different models of object detection-based deep 
learning. We aim to implement, test, and analyze the results. 
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