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Abstract—Drug discovery is incredibly time-consuming and 

expensive, averaging over 10 years and $985 million per drug. 

Calculating the binding affinity between a target protein and a 

ligand through Virtual Screening is critical for discovering viable 

drugs. Although supervised machine learning (ML) can predict 

binding affinity accurately, models experience severe overfitting 

due to an inability to identify informative properties of protein-

ligand complexes. This study used unsupervised ML to reveal 

underlying protein-ligand characteristics that strongly influence 

binding affinity. Protein-ligand 3D models were collected from 

the PDBBind database and vectorized into 2422 features per 

complex. Principal Component Analysis (PCA), t-Distributed 

Stochastic Neighbor Embedding (t-SNE), K-Means Clustering, 

and heatmaps were used to identify groups of complexes and the 

features responsible for the separation. ML benchmarking was 

used to determine the features’ effect on ML performance. The 

PCA heatmap revealed groups of complexes with binding affinity 

of pKd<6 and pKd>8 and identified the number of CCCH and 

CCCCCH fragments in the ligand as the most responsible 

features. A high correlation of 0.8337, their ability to explain 

18% of the binding affinity’s variance, and an error increase of 

0.09 in Decision Trees when trained without the two features 

suggests that the fragments exist within a larger ligand 

substructure that significantly influences binding affinity. This 

discovery is a baseline for informative ligand representations to 

be generated so that ML models overfit less and can more 

reliably identify novel drug candidates. Future work will focus on 

validating the ligand substructure’s presence and discovering 

more informative intra-ligand relationships. 
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I. INTRODUCTION 

Drug discovery is the basis of the modern pharmaceutical 
market and encompasses most of the industry’s research and 
development funding [1]. On average, it takes 12-15 years and 
$985 million to deliver a drug to market, demonstrating the 
exhaustive time and effort required to complete the drug 
discovery process [2, 3]. Drug-Target Interaction (DTI) 
analysis is one of the most critical parts of drug discovery, and 
it involves calculating the binding affinity between a target 
protein and a ligand molecule so that appropriate ligand 
candidates for drugs can be chosen. These ligand candidates go 
on to be included in in vitro experimentation in order to 
identify lead compounds for the final drug. The affinity of a 

ligand to bind with a protein depends on the atomic 
interactions between the ligand and the binding region (referred 
to as the “binding pocket”) on the protein, as shown in Fig. 1 
[4]. Calculating the binding affinity between a protein and 
ligand can be completed through Virtual Screening (VS), 
shown in Fig. 2, where compounds are screened and binding 
affinity calculated using molecular simulation software [5]. 

 

Fig. 1. Molecular view of Complex between 29G11 Protein and PHENYL 

[1-(1-N-SUCCINYLAMINO) PENTYL] PHOSPHONATE, Generated using 

Mol*. 

 

Fig. 2. Virtual Screening Workflow. 
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The “Scoring Function”, which is the function used to 
calculate binding affinity, is critical for VS. Machine Learning 
(ML) algorithms have demonstrated considerable promise as a 
scoring function compared to other standard function types [6]. 
Given a set of training data, ML algorithms are able to learn 
pharmaco-like features from protein-ligand models through 
supervised learning functions. This allows them to accurately 
predict the binding affinity based on learned features that have 
statistically high influence [7-9, 11]. However, ML algorithms 
“overfit”, or learn patterns that do not correlate to a physical 
phenomenon but still decrease error by chance [7-9, 11, 12]. 
This reduces their ability to generalize to out-of-distribution 
(OOD) data, making them unreliable for analyzing novel 
ligand candidates [7]. It is necessary to uncover underlying 
relationships between the features of protein-ligand data in 
order to inform the development of ML models that experience 
less overfitting [8]. 

Supervised learning techniques used to predict binding 
affinity can also analyze features, yet the results suffer from 
inconsistency and unreliability due to the overfitting of their 
parent algorithms [10, 13, 14, 18]. In comparison, unsupervised 
learning techniques such as Principal Component Analysis 
(PCA) are effective at identifying important features from 
protein-ligand models without overfitting because they are not 
designed to only minimize prediction error [15, 17]. t-
Distributed Stochastic Neighbor Embedding (t-SNE) is also 
useful at visualizing the features of proteins due to its ability to 
retain high-dimensional information [16]. However, 
unsupervised learning has not been applied to analyze the 
differences between protein-ligand complexes in regard to 
binding affinity. This research can be filled help develop ML 
models that overfit considerably less. 

The paper is structured as follows: Section II discusses the 
methodology, Section III presents and discusses the results, 
and Section IV concludes the study and proposes future work. 

A. Objectives 

There is a pressing need to reliably identify specific 
biomechanical features that influence binding affinity and 
quantify their effect on ML performance. Current literature 
either suffer from drawbacks in reliability and consistency 
caused by supervised learning or do not specifically analyze 
the variance in binding affinity caused by protein/ligand 
features. The objectives of this study are three-fold: 
1) Discover the presence of underlying biomechanical 
interactions that influence binding affinity, 2) Identify specific 
pharmaco-like features responsible for high variance in binding 
affinities, and 3) Determine the effect of these features on the 
performance of ML models in predicting binding affinity. 

Gathering a greater understanding of which features 
influence binding affinity is necessary for designing ML 
models that do not overfit to training data and interpret noisy 
features as important patterns. Models will thereby be more 
generalizable to OOD data, and more successful at identifying 
lead compounds for inclusion in innovative drugs. 

II. METHODOLOGY 

A. Dataset Preprocessing 

In this study, protein-ligand models were collected from the 
PDBBind database [19, 41]. The 2015 “Refined” set and the 
2015 “Core” set were downloaded. In order to extract relevant 
quantitative features of each model, a workflow described in 
[40] was utilized, as shown in Fig. 3. 

 

Fig. 3. Computational Workflow used to Translate 3D Molecular Models 

into 1D Tabular Data. 

For each complex, 2422 quantitative features were 
collected. The frequency of 2282 unique substructural 
molecular fragments was collected. The remaining 140 features 
were frequencies of amino-acid interactions, with seven types 
of interactions per amino acid: 1) Hydrophobic, 2) Face-to-face 
aromatic, 3) Edge-to-edge aromatic, 4) H-bond accepted by 
ligand, 5) H-bond donated by ligand, 6) Ionic bond (ligand 
partially negative), and 7) Ionic bond (ligand partially 
positive). Files with a resolution of <2.5 Å were retained to 
ensure the accuracy of all feature counts, resulting in 3481 
complexes from the “Refined” set and 180 from the “Core” set. 

B. Feature Analysis 

To reveal underlying feature correlations in the dataset, a 
combination of PCA, t-SNE, K-Means Clustering, and 
heatmap projections shown in Fig. 4 were performed using 
Python and the Scikit-Learn, Pandas, and NumPy packages. 

C. PCA/K-Means 

PCA (n=2) was performed to transform the 2422-feature 
data into two dimensions for visualization and to capture the 
features with the highest variance. K-Means Clustering (k=10) 
was performed on this transformation to determine if there 
were categories of complexes. The similarity of the clusters 
was calculated using the Davies-Bouldin Score (DBS). The 
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presence of sparse categories and a low DBS would indicate an 
underlying biomechanical phenomenon between features. 
Another PCA (n=3) with K-Means Clustering (k=10) was 
performed to verify the outcome of the 2D PCA. 

 

Fig. 4. Feature Analysis Workflow. 

D. PCA/t-SNE/K-Means 

 Due to the ability of t-SNE to interpret non-linearity, a 
PCA (n=100) and then t-SNE (n=2) was performed to retain 
high-dimensional characteristics of the data. K-Means 
Clustering (k=10) was then performed to determine if the high-
dimensional characteristics could describe separable categories 
of complexes. DBS was again used to score the similarity of 
the clusters. 

E. t-SNE Heatmap 

In order to determine if a biomechanical relationship could 
be demonstrated without clustering, a heatmap was generated 
of the t-SNE results where the “heat” was determined by the 
binding affinity. The quality of grouping was calculated using 
an adjusted R

2
 correlation value. It is significant to note that 

there are 2422 features per complex; therefore what may seem 
to be low R

2
 correlation values may actually be statistically 

significant due to the large number of features. 

F. PCA Heatmap 

In order to verify or refute the results of the t-SNE 
heatmap, a heatmap was generated with the PCA components 
in the same manner as the t-SNE heatmap. Similarly, the 
quality of grouping was evaluated using an adjusted R

2
 

correlation value. 

G. Correlation Analysis 

Although each clustering plot and heatmap could determine 
the presence of a biomechanical relationship, only the PCA 
plots could indicate which specific features are statistically 
responsible for it because each Principal Component is 
organized along the variance of each feature. Whichever 2D 
PCA plot (clustered plot or heatmap) indicated separable 
groups had the variance of each feature in its Principal 
Components returned to find the two most informative 
features. A covariance matrix was generated to identify the 
direction of the relationship between the features. The 
Spearman Correlation Coefficient was calculated to determine 

the strength of the covariance between the two features and the 
strength of each feature’s covariance to the binding affinity. A 
heatmap of the features’ correlation to binding affinity was 
generated to confirm the Spearman Correlation calculations. 
The results of this analysis suggested what specific 
biomechanical relationship may exist between the features. 

H. Machine Learning Benchmarking 

To determine the effect of the features on ML performance, 
five state-of-the-art ML models were trained/tested on two 
datasets: one with and one without the features. The five 
models were as follows: 1) Random Forests, 2) Support Vector 
Machine, 3) K-Nearest Neighbors, 4) Decision Tree, and 
5) LightGBM Regressor. The “Refined” set was used for 
training and validation, and the “Core” for testing. The 
“Refined” set was split such that a random 80% of complexes 
went into the training subset and the other 20% into the 
validation subset. The Root Mean Squared Error (RMSE) and 
Pearson Correlation Coefficient (PCC) of each model’s testing 
predictions were calculated to evaluate the model. 

 

Fig. 5. Projection of t-SNE (n=2) Transformed Data after being Reduced 

using PCA (n=100) and Clustered using K-Means (k=10). 

III. RESULT AND DISCUSSION 

A. PCA/K-Means 

A PCA (n=2) was performed and the transformed data was 
clustered using K-Means (k=10). Another PCA (n=3) was used 
to verify the 2D PCA. The 2D PCA exhibited a high DBS 
(>0.5) of 0.83 and dense clusters shown in Fig. 6A. The 3D 
PCA exhibited a similar outcome as the 2D PCA, with a higher 
DBS of 0.93, as shown in Fig. 6B. The clusters indicate that 
separable categories of complexes do not exist, suggesting that 
the PCA and clustering was unable to capture a biomechanical 
relationship between features. 

B. PCA/t-SNE/K-Means 

A PCA (n=100) followed a t-SNE (n=2) transformation 
was performed. The transformed data was clustered using K-
Means (k=10). The t-SNE plot in Fig. 5 shows dense clusters 
and a high DBS of 0.99, suggesting that the t-SNE/clustering 
was also unable to identify a biomechanical relationship. 
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Fig. 6. Projection of PCA (n=2, A) and PCA (n=3, B) Transformed Data after being Clustered using K-Means Clustering (k=10). 

C. t-SNE Heatmap 

The t-SNE (n=2) transformed data was projected to a 
heatmap, where the “heat” was determined by the binding 
affinity. The plot exhibited no significant groups and an R

2
 

value of 0.0007, as shown in Fig. 7. The low R
2
 and lack of 

groups reinforce the indication that the t-SNE components 
were unable to identify distinguished groups of complexes and 
therefore unable to identify a significant relationship between 
features. 

 

Fig. 7. Heatmap of t-SNE (n=2) Transformed Data with “Heat” Determined 

by binding Affinity. 

D. PCA Heatmap: 2D 

The PCA (n=2) results were projected to a heatmap in the 
same manner as the t-SNE heatmap. The PCA heatmap showed 
a notable difference between complexes with binding affinity 
of pKd<6 (blue-purple group) and those with pKd>8 (orange-
yellow group) at a higher adjusted R

2
 value of 0.17, as shown 

in Fig. 8. The R
2
 supports that there does exist a biomechanical 

relationship between features which is significantly responsible 
for binding affinity. A select number of features from the 
Principal Components are likely to have significant chemical 
importance in determining binding affinity [20-25]. 

E. PCA Heatmap: 3D 

Another PCA (n=3) was performed and projected to a 3D 
heatmap to verify the results of the 2D PCA. If a similar 
grouping was evident in the 3D PCA as the 2D, the grouping 

would be more statistically likely to be significant rather than 
by chance. The 3D heatmap did show a similar phenomenon as 
the 2D heatmap, with a noticeable grouping of complexes with 
pKd<6 (blue-purple group) and pKd>8 (orange-yellow group) 
at a similar R

2
 correlation value of 0.18, as shown in Fig. 9. 

The grouping supports the indication that the Principal 
Components were able to identify a biomechanical relationship 
that significantly affects binding affinity. High-variance 
features from the Principal Components are likely to be 
responsible for this relationship [20-25]. 

 

Fig. 8. Heatmap of PCA (n=2) Transformed Data with “Heat” Determined 

by binding Affinity. 

 

Fig. 9. Heatmap of PCA (n=2) Transformed Data with “Heat” Determined 

by binding Affinity. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 11, 2021 

627 | P a g e  

www.ijacsa.thesai.org 

F. Correlation Analysis 

In order to determine which specific features were most 
likely involved in the biomechanical relationship, the feature 
with the highest variance in each Principal Component was 
returned. It was found that the CCCH and CCCCCH 
substructural ligand fragments features had the highest 
variance in the first Principal Component and the second 
Principal Component, respectively. In order to verify the 
presence of a relationship between CCCH and CCCCCH 
fragments, a covariance matrix was calculated between the two 
fragment counts. A direct (positive) relationship is evident with 
a covariance value of 358.34, as shown in Fig. 10. The 
covariance suggests that the specific relationship between the 
fragments is that they are both part of a larger molecular 
substructure within the ligand that is critical in determining 
binding affinity [26-28]. 

In order to verify the implication of the covariance matrix, 
the Spearman Correlation Coefficient was calculated between 
each combination of fragments and the binding affinity. The 
CCCH and CCCCCH fragments showed a high correlation of 
0.8337. Each fragment and the binding affinity had a moderate 
correlation of 0.4286 and 0.3457, respectively, as shown in 
Table I. The high correlation between the fragments supports 
that they have a biomechanical relationship and that both 
fragments are part of a larger molecular substructure [26-28]. 
The moderate correlation between each fragment and binding 
affinity suggests that both fragments are involved in 
chemically determining binding affinity [29, 30]. 

The correlation calculations did not measure correlation 
between both fragments together and the binding affinity. 
Therefore, a heatmap of the fragment counts with the binding 
affinity was generated to verify that the fragment relationship 
influences binding affinity. 

The same grouping that was evident in the PCA heatmaps 
occurred, with one group of complexes with pKd<6 and 
another with pKd>8 at a significant R

2
 correlation of 0.18 as 

shown in Fig. 11. The grouping suggests that the CCCH-
CCCCCH relationship is significantly responsible for 
determining the binding affinity with a protein. The CCCH-
CCCCCH relationship is likely a critical influence on the 
optimal docking pose between the ligand and protein [31]. 

 

Fig. 10. Heatmap of Covariance Matrix between CCCH and CCCCCH 

Substructural Molecular Fragments. 

TABLE I. SPEARMAN CORRELATION COEFFICIENTS BETWEEN HIGH-
VARIANCE FEATURES AND BINDING AFFINITY 

Rank 

Variable #1 

Rank 

Variable #2 

Spearman Correlation 

Coefficient 
P-Value 

CCCH Count 
CCCCCH 

Count 
0.8337 0.0 

CCCH Count 
Binding 

Affinity 
0.4286 8.25e-125 

CCCCCH 

Count 

Binding 

Affinity 
0.3457 5.82e-79 

 

Fig. 11. Heatmap of Correlation between CCCH-CCCCCH Fragment Count 

and binding Affinity. 

G. Machine Learning Benchmarking 

In order to determine the effect of the CCCH-CCCCCH 
relationship on the performance of ML models in predicting 
binding affinity, five models were trained/tested on datasets 
with and without the fragment counts. The absence of the 
counts had an insignificant effect on most models except for 
the Decision Tree, which experienced an increase in RMSE of 
0.09 and a decrease in PCC of 0.05, as shown in Table II. The 
insignificant effect on most models suggests that there are 
other factors with notable influence on binding affinity. The 
decreased performance of the Decision Tree suggests that the 
CCCH/CCCCCH count is an important decision rule for tree-
based learning algorithms [32]. 

TABLE II. EFFECT OF CCCH AND CCCCCH ON MACHINE LEARNING 

PERFORMANCE 

Model 

With CCCH and CCCCH 

fragment counts 

Without CCCH and 

CCCCH fragment counts 

RMSE PCC RMSE PCC 

Random 

Forests 
1.49 0.77 1.50 0.77 

Support 
Vector 

Machine 

1.70 0.68 1.69 0.69 

K-Nearest 
Neighbors 

1.71 0.64 1.69 0.66 

Decision Tree 1.95 0.57 2.04 0.52 

LightGBM 
Regression 

1.46 0.77 1.44 0.77 
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IV. CONCLUSION AND FUTURE WORK 

The biomechanical relationship discovered in this study 
serves as a baseline for further ligand interactions to be found. 
Including the relationship elucidated through this work, more 
interactions can be gathered to develop a corpus of ligand 
fragment relationships that influence binding affinity. This will 
produce a more accurate representation of ligand chemistry in 
regard to protein binding, improving the performance of 
predictive ML models [33, 34, 36]. Understanding the effect of 
ligand relationships on ML, as was done in this study, will also 
help researchers improve model performance [35]. 

Most importantly, uncovering specific ligand relationships 
will result in ML models that overfit less, making them more 
generalizable to new datasets and thus reliable for analyzing 
novel drug candidates [37-39]. 

The effect of generalizable ML models on effective VS is 
profound. It has already been demonstrated that for certain 
proteins such as Interleukin-1 receptor associated kinase-1 
(IRAK1), ML models can increase novel ligand hit rates by 
over 1000% compared to standard scoring functions [40]. 
Developing ML models that are more generalizable can result 
in similar increases across wide ranges of proteins because 
models will be able to screen novel ligands without significant 
decreases in reliability. Using the relationship uncovered in this 
study as well as others to develop generalizable ML models is 
therefore critical for identifying promising drug candidates for 
innovative medicines. 

It is significant to note that the relationship discovered in 
this study is useful in other scientific contexts, such as 
synthetic drug design. Using known information on fragments 
such as the two discussed in this study (CCCH and CCCCCH), 
synthetic ligands can be chemically designed to bind optimally 
to a target protein [42, 43]. Computational tools (including, but 
not limited to, ML models) can also be developed to design 
novel synthetic drugs using known relationships between 
ligand fragments [44-46]. Gathering a clear, data-driven 
understanding of ligand fragment activity is a significant 
method by which synthetic drug design for new medications 
can be improved [48]. 

There are several limitations in this work that present 
promising directions for future research. Only several 
unsupervised learning techniques were used in this study, yet 
multiple other unsupervised/self-supervised techniques such as 
Uniform Manifold Approximation and Projection (UMAP) and 
Autoencoder Networks can be used to verify the results of this 
study [50]. Further, multicollinearity between features was not 
analyzed in this study, but can significantly affect feature 
selection methods. Therefore, multicollinearity analysis will 
validate the presence of the larger substructure (containing 
CCCH and CCCCCH fragments) suggested in this study’s 
results [47]. Should it exist, in-vitro experimentation can be 
performed to determine how the substructure affects ML 
performance in predicting binding affinity, revealing important 
information on the usefulness of such substructures in VS [49]. 
In addition, the protein-ligand models used in this study came 
from a single dataset, which introduces dataset bias and may 
affect the results of feature analysis. Therefore, incorporating 
data from other reliable datasets will verify/refute the results of 

this study and decrease potential bias. Future work based on 
this study will aid in significantly progressing protein-ligand 
binding affinity research. 
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