
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol.12, No. 11, 2021

Design and Implementation of HSQL: A SQL-like
language for Data Analysis in Distributed Systems

Anurag Singh Bhadauria1
Computer Science and Engineering

R. V. College of Engineering
Bengaluru, India

Atreya Bain2
Computer Science and Engineering

R. V. College of Engineering
Bengaluru, India

Prof. Jyoti Shetty3
Computer Science and Engineering

R. V. College of Engineering
Bengaluru, India

Dr. Shobha G.4
Computer Science and Engineering

R. V. College of Engineering
Bengaluru, India

Arjuna Chala5
Sr. Director, Innovative Technologies

LexisNexis Risk Solutions
Atlanta, U.S.A

Jeremy Clements6
Software Engineer III

LexisNexis Risk Solutions
Atlanta, U.S.A

Abstract—In today’s modern world, we’re experiencing a
substantial increase in the use of data in various fields, and
this has necessitated the use of distributed systems to consume
and process Big Data. Machine learning tends to benefit from
the usage of Big Data, and the models generated from such
techniques tend to be more effective. However, there is a steep
learning curve to getting used to handling Big Data, as traditional
data management tools fail to perform well. Distributed systems
have become popular, where the task of data processing is split
amongst various nodes in clusters. SQL, is a popular database
management language popular to data scientists. It is often given
second class support, where SQL can be embedded into a primary
language of use (e.g. SQL in Scala for Spark), which allows for
using SQL but one still needs to know the primary language
of the platform (Scala, as per the example, or ECL in HPCC
Systems). It may also be present as a supported language. In
either case, using useful tooling such as Visualizing data and
creating and using machine learning models become difficult, as
the user needs to fall back to the primary language of the system.
In the proposed work, a new SQL-like language, HSQL, an open
source distributed systems solution, was developed for allowing
new users to get used to its distributed architecture and the
ECL language, with which it primarily operates with (which was
chosen as a target). Additionally, a program that could translate
HSQL-based programs to ECL for use was made. HSQL was
made to be completely inter-compatible with ECL programs,
and it was able to provide a compact and easy to comprehend
SQL-like syntax for performing general data analysis, creation
of Machine learning models and visualizations while allowing a
modular structure to such programs.

Keywords—ANTLR4; big data; context free grammar; dis-
tributed systems; HPCC; Javascript; language; machine learning;
Parser; SQL; transpiler

I. INTRODUCTION

Data has become an essential resource in this age of
computing, where a lot of the advancements and innovations
we see right now, are based upon models which require
huge amounts of data to be built. There has been widespread
adoption of Machine Learning, and Data Analysis tools have
become ever more important, especially with Big Data being
increasingly common. SQL has been a widespread language
that has been primarily used and well known to data analysts,

for data analysis; especially due to the time its been around
and its prevalence in relational databases.

Big data, has made it somewhat difficult to continue using
traditional tools for data analysis, where standard databases
would take too long to process the data. This, has led to a boom
in the usage of Distributed Systems, where data is processed
with the use of multiple different computing systems (often
referred to as nodes) in a cluster. If done effectively, distributed
computing is a vastly better option as it is not possible to
vertical scaling (using more powerful hardware) cannot keep
up with the scale and volume of data that is being generated
nowadays. [?]

Distributed Systems have become popular, with Hadoop
being a well-known option. Hadoop’s core technologies are
based on a storage section, and a processing part; it offers
a huge library of plugins and integrations which allow it to
be easily used for a variety of use-cases. Spark, is one such
plugin that is known as a unified analytics engine, used as part
of Hadoop. The primary languages used here are a mixture
of SQL acting as a second-class language and Scala as the
primary language of use. [?]

This is commonplace, as pure SQL often makes data
analysis difficult (Eg. Visualizations and Machine Learning
aren’t a part of SQL). Here, SQL takes a second-class language
approach where it is embedded in a primary language (e.g. in
Scala for Spark [?], in ECL for HPCC Systems®). There are
also places where SQL have first-class support, but here access
to valuable tools such as visualizations and working with
Machine Learning Models as well as commonplace language
features get restricted, which have become commonplace and
important since the time SQL was developed.

As such technologies are being applied everywhere, having
a steep learning curve for such tools would be rather inconve-
nient. Hence, as data analysis grows more important, there is a
good need for an SQL-like analytics language that has support
for querying, visualization and machine learning.

Hence, HPCC Structured Query Language – HSQL was de-
veloped, a language that is SQL-like, for focusing on easy-to-
learn and simple data analytics. HPCC Systems was chosen as

www.ijacsa.thesai.org 796 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol.12, No. 11, 2021

the target architecture; an open source platform developed by
LexisNexis® Risk Solutions, which uses commodity hardware
for data-intensive parallel computing. The platform presents an
all-in-one integrated data lake solution that is extremely versa-
tile and removed from the MapReduce Architecture of Hadoop
that allows for much more versatile programming. HSQL is
open-source, easy to write, comprehend and transpiles to ECL
for use in HPCC Systems. Many of the typical preprocessing
for ECL is abstracted away in HSQL, and the simple SQL-
like syntax eases the learning curve related to getting started
with HPCC Systems. Additionally, targeted to work with ECL,
HSQL compliments ECL very well by providing an abstraction
that is easy to use by data scientists who are already familiar
with SQL; where data scientists can still take their time to
learn the more complex and powerful ECL language for any
complex solution they may require. This helps quickly bridg
the skill gap to use the same Data Lake to both shape the
data (ECL) and perform analytics (HSQL). Here, some key
concepts of HPCC Systems will be introduced in order to
explain the architecture that HSQL targets, and the features to
bee used. Following this, a design for HSQL is shown which
presents a concrete syntax and then, an implementation for a
compiler that translates the specification to ECL, the language
used in HPCC Systems.

II. HPCC SYSTEMS AND ECL

HPCC Systems (High Performance Computing Clusters),
an open source platform developed by LexisNexis® Risk
Solutions, has been used to set up a cluster, distribute the
data and perform all the operations parallelly for a faster and
a more effective computation. HPCC Systems provide high
performance, parallel processing and delivery for applications
using big data. It is open source, and presented as an all-in-
one solution as a data lake and big data processing system that
makes it easy and fuss-free to work with [?].

The entire platform (Fig. ??) is divided into separate
platforms, each optimized for a specific workload. The first
of these platforms is called Thor, a data refinery whose
overall purpose is the general processing of massive volumes
of raw data of any type. A Thor cluster is similar in its
function, execution environment, filesystem, and capabilities
to the Google and Hadoop MapReduce platforms [?]. The
second platform, named as Roxie, functions as a rapid data
delivery engine. A Roxie cluster is similar in its function and
capabilities to ElasticSearch and Hadoop with HBase and Hive
capabilities added.

HPCC Systems, including both Thor and Roxie clusters
utilize the ECL programming language for implementing ap-
plications, a data-centric declarative language designed specif-
ically for huge data projects using the HPCC Systems platform
[?] [?]. Each of the platforms use the declarations in a way that
best aligns with its goals for performance and latency. ECL as
a language allows for power ETL operations to be carried out.

Its extreme scalability comes from a design that allows you
to leverage every query you create for re-use in subsequent
queries as needed [?]. ECL, is a powerful language, and due
to its expansive and declarative nature, it is well suited for per-
forming data extraction, cleaning, normalizing and aggregating
[?].

Fig. 1. HPCC Systems Structure - CC/SA.

As HSQL is intended to be for data analysts, ECL was
chosen as a target due to its highly optimizing compiler and
that machine learning performs exceptionally fast in HPCC
Systems, even outperforming similarly configured Hadoop
for the first iteration of many configured Machine Learning
Algorithms.

HSQL is intended to be used in HPCC Systems, where the
primary intention is to complement ECL. The primary purpose
is to provide simpler syntax for common data operations, with-
out needing to know ECL but also introducing key concepts
of ECL and HPCC Systems along the way.

III. DESIGN AND IMPLEMENTATION: HSQL

Building a language such as HSQL, that can be used, would
atleast require a basic grammar specification and some way
of executing it on a machine. Languages either translate to
another language of lesser or similar levels of abstraction. This
operation of translation, is done by compilers [?]. Software that
translate programs to similar levels of abstraction, are specifi-
cally termed as Transpilers (e.g. Babel, which is a Javascript to
Javascript transpiler). Below sections will first define a syntax
then describe the various steps used to translate HSQL to the
target language ECL (Fig. ??). In the following subsections,
the HSQL language will be discussed as a language, followed
by a brief description of the implementation process.

A. Defining the HSQL Syntax

The first step towards making HSQL, was to define the
syntax and a barebones featureset. HSQL is a language de-
signed to be SQL-like, and yet, expose many features of ECL

www.ijacsa.thesai.org 797 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol.12, No. 11, 2021

Fig. 2. General Conversion Workflow.

such as modules, layouts (analogous to SQL’s CREATE TABLE)
and actions. The general syntax of statements can be seen as:

<identifier_name> = <statement>;

Actions have been defined with the following syntax:

<action> <identifier> [options];

A <statement> would be an SQL select statement which
uses existing definitions or loads up a dataset from a table.

Listing 1: Simple statement and an action
p = SELECT * FROM table1;
OUTPUT p;

This syntax was made to keep a lot of similarity to SQL,
but to slowly introduce concepts of ECL to a user, such as
imports and modules. Actions written above are always run
in sequential order. Like SQL, HSQL is also intended to be
case-insensitive, including its variables (additionally as ECL
is also case-insensitive).

Definitions in HSQL, can be exported, by writing an
optional export statement at the end, listing all the identifiers,
which shall be exported. HSQL, unlike ECL, presents only
two visibility modes, for ease of use and understanding. HSQL
definitions convert to SHARED or EXPORT in ECL.

The language was designed to be completely compatible
with ECL, and the transpiler developed, provides optional type
checks. (Imports from ECL files do not support type checking,
except a type definition file can be added in.) The language
also allows an optional export statement at the end, to allow
for specific definitions to be exported and available for use as
a module.

The general syntax of a program is intended to be (<,>
implying mandatory features, [,] implying optional):

Listing 2: General Syntax
import <identifier> [as <alias>];
<identifier> = <definition>;
<action> <identifier> <options>;
...
[export <identifier1>[,<identifier2>[,<identifier3

>,...]];

1) Layouts: Layouts can be considered as a structure for a
dataset (analogous to a structure definition in C). The syntax
for them is similarly designed as:

Listing 3: Creating a sample layout with two columns
sampleLayout = CREATE LAYOUT(

c1 integer,
c2 string

);

sampleLayout internally in the target language will be repre-
sented by a record, a case of one-to-one translation.

2) Plotting: Plotting is another important part of HSQL, as
a way of visualizing data to understand it better. This is done
with the use of the plot statement.

Listing 4: Plotting a table
plot from table1 title ’Optional_title’ type Column;

On the target language, visualizations are made by a named
output, followed by calling the respective call to an appropriate
Visualizer bundle function. These two statements are wrapped
into a singular statement in HSQL.

3) Machine Learning: The idea behind using Machine
Learning in HSQL is to be able to easily create and use
Machine Learning models. This is done by using the train

and predict statements.

Listing 5: Making a model
model = train from ind,dep method LinearRegression;

The making of model requires anywhere from 3-6 state-
ments in ECL, which involves adding a sequential ID, con-
verting from the standard row-based form to the ML bundle
compatible cell-based form and then calling the model creation
statement on the result (Which is based on the method re-
quired). This is represented in one singular statement in HSQL.

Similarly, the predict statement can be used to make
predictions from models. This similarly requires some table
conversions, and is represented via a singular statement in
HSQL.

model1_predict = predict model1 from test_ind method
RegressionForest;

B. Language Recognition

As the language and its primary featureset been established,
the target implementation was carried out; The general syntax
of the language, was written in CFGs (Most languages are
expressed as a context free grammar at the syntactic analysis
phase [?]), so that it can be passed to ANTLR4. ANTLR4 is
able to accept a CFG (Context Free Grammar) which does
not contain left recursive derivations [?] to create lexers,
and parsers which use the ALL(*) parsing methodology for
generating a parse tree for the given CFG. The lexers and
parsers created support a variety of targets languages, including
C++, JavaScript, C# and so on. For this work, JavaScript was
chosen as it would allow fast development and allow for further
integration in web services. The lexer and the parsers created,
are able to take in a stream of text, and break them up into
tokens, and then construct a parse tree (Fig. ??) according to
the grammar made for the language. ANTLR4 sets up the class
structure for each node in the parse tree, which is useful while
processing the parse tree [?].

www.ijacsa.thesai.org 798 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol.12, No. 11, 2021

Fig. 3. Parse Tree for a Simple Statement.

The core of the conversion is through ANTLR4 and using
String Templates to template generated code. The translation
of HSQL to ECL happens in two phases - both in the parsing
stage and while processing the parse tree nodes.

Fig. 4. Basic Architecture for the Program.

The process of walking the parse tree was split into various
visitors as per the architecture Fig. ??, which allows for better
code readability and better structure. The visitors (Objects
written under the well-known visitor pattern [?]), traverse the
parse tree, calling other visitors as required, and return the
specific translations. The visitors also perform other important
functions, and some of the other functions are enumerated as
we go along.

1) Symbol Table Management: HSQL uses a flat table of
identifiers; it does not have scoping; Identifiers and their types
are tracked by the transpiler where available via an object
oriented symbol Table [?]. ECL, which is the language HSQL
converts to, does have the concept of types, and hence this
applies to HSQL too. However, this cannot be read easily.
This has been couteracted by making type checking optional
- HSQL will attempt to obtain and infer types when possible
and show issues with it if present, but otherwise will allow
the users to continue. As it needs to be compatible with ECL,
such type checking is kept optional.

Listing 6: Selecting from a module
import module1;
a = select col1 from module1.table1;

In the above example ??, if there exists a module1.hsql,
then that file is parsed. Similarly, if there exists a module1.

dhsql file, that is also referred to for understanding what types
are exported. In these cases, the compiler can check if table1
exists, and can raise an error if table1 or col1 does not exist.
However, if no files are found, then a compiler error is raised.
Additionally, if there is only a module1.ecl, in that case no
checking is done, and all columns are allowed; ie. the types
are not known, and can be as per the user’s discretion.

Listing 7: dummy.ecl - ECL File
export dummy := module

export Layout1 := RECORD
INTEGER col;
STRING25 col2;

END;
export Layout2 := RECORD

INTEGER col3;
STRING col4;

END;
export someTable := TABLE(DATASET([{1,’foo’}],

Layout1));
export someTable2 := TABLE(DATASET([{2,’bar’}],

Layout2));
end;

Listing 8: dummy.d.hsql - ECL File’s Type Definition
map export a INTEGER;
map export someTable TABLE (col INTEGER,col2 STRING

);
map export someTable2 TABLE (col3 INTEGER,col4

STRING);

In HSQL, ECL files can be imported without any issues,
but do not have any form of type checking, but this can be
worked around, by adding a type definition file (File that
mentions the export types, with extension .d.hsql). Imported
HSQL files, are parsed in a recursive manner, and their
exported types are extracted and used.

2) Dependency Tracking: The primary visitor in the tran-
spiler implemented, tracks all the dependencies and allows for
recursively parsing dependent HSQL modules too. Addition-
ally, for every ECL file imported, it looks for a corresponding
type definitions file (File with same name but .d.hsql exten-
sion) to provide the types exported by it. Cyclic imports are
prevented by the use of an import list which keeps track of all
the imports that have occurred for a given module to require
transpilation.

3) Actions Collecting: Collecting actions - All the actions
that are mentioned in HSQL, are tracked, as they are translated
to definitions for the action. To ensure modules can be exe-
cuted, the target ECL code contains a main function export,
that calls on all the actions sequentially. This, allows modules
to keep actions that can be executed. This is not usually used
in ECL, but is retained in HSQL for maintaining ease of use.
An example for this is shown later on.

4) Module Support: Module field visibility is done by an
export statement, present at the end of the program. Here,
specific identifiers can be marked for being exported.

Listing 9: Source HSQL
import source;

-- lets see the marks for each column
markslist = select marks from source.marks ;
-- or even better

www.ijacsa.thesai.org 799 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol.12, No. 11, 2021

output markslist title ’marksList’;

-- lets get all the average marks of each subject
counting = select subid,AVG(marks) from source.

marks group by subid order by subid ;
// join this to get the subject names
marksJoined = select * from counting join source.

subs on counting.subid=source.subs.subid;

output marksJoined title ’avgmarks’;

Listing 10: Target ECL - Wrapped in a Module
IMPORT source ;
export hsqlc:= MODULE
SHARED markslist := TABLE(source.marks,{marks});
SHARED _reservedaction0 := OUTPUT(markslist,,NAMED(’

marksList’));
SHARED counting := SORT(TABLE(source.marks,{subid,

REAL marks := ave(GROUP,marks)},subid),subid);
SHARED marksJoined := TABLE(JOIN(counting,source.

subs,LEFT.subid = RIGHT.subid,INNER));
SHARED _reservedaction1 := OUTPUT(marksJoined,,NAMED

(’avgmarks’));
EXPORT main := FUNCTION return PARALLEL(

_reservedaction0,_reservedaction1); END;
END;

After translating the statements, two tasks need to be
executed:

• Arranging the tasks to be executed into a main field
that will be exported to be executed

• Wrapping the translated statement into an ECL mod-
ule.

The main visitor then returns the resultant statements as an
array to the rest of the program (which handles the arguments,
errors and output). The rest of the module wraps the output of
the visitors, and allows access to the types as understood by
HSQLC, and warnings and errors that may have been raised
by it.

C. Transpiler

The lexer, parser and the visitor are only part of the whole
program, which makes up the transpiler HSQLC which is used
to translate HSQL to ECL. The whole program wraps up the
above components, in a command line UI, and provides:

• Wrappers to read and write files for the visitors as
required.

• A general command line user interface for accepting
files, arguments, and for presenting errors and warn-
ings neatly.

• Endpoints for interfacing with the transpiler. Various
functions for providing a string or a file is provided.
These function calls also have Typescript definitions,
to allow use inside a TypeScript environment as well.

The transpiler can hence run as a command line tool for
transpiling HSQL files to ECL files, or function as a module
that can be called on to provide translation, syntax highlighting
and other such language features.

IV. FEATURES OF THE PROPOSED LANGUAGE

The HSQL language and the transpiler hence built, had a
set of notable features which should prove it easy to use and
integrate into existing workflows.

Intercompatibility

HSQL was designed to be fully compatible with the
existing structure of HPCC Systems, and is completely inter-
usable with ECL. HSQL modules can be imported from within
ECL after translation, and HSQL can make use of existing
ECL modules to provide extended functionality or use data
from other sources.

Fig. 5. ECL Cloud IDE, using HSQL.

Integration

As the transpiler(HSQLC) was made using Javascript, it
is rather easy to integrate into web solutions, and use for
supporting HSQL in a web environment. Using this, it was
also integrated into the ECL Cloud IDE Fig. ??, a web-based
solution for running ECL on a HPCC Systems cluster.

HSQLC was also used to create a language server to
provide language support for HSQL in popular IDEs. The
initial target was VSCode, but as the Language Server Protocol
Fig. ?? is well established, it can be easily ported over to other
IDEs which support using the LSP [?] [?].

V. CONCLUSIONS

The language HSQL was defined, which lets users write
SQL-like queries without worrying about most of the prepro-
cessing required in HPCC Systems while using ECL, and a ba-
sic syntax set was produced, for performing filters, joins, sorts,
and so on. This, allows for HPCC Systems as a Distributed
Systems to be accessed and used easily by a person who is
familiar with SQL. The transpiler HSQLC was created to be
able to use this language, was able to successfully translate
HSQL to ECL, and was able to correctly report syntax and
semantic errors, while also allowing HSQL and ECL modules
to be used interchangeably. The compiler can also report the
data types for the variables used in its program to help with
integration into IDEs.

www.ijacsa.thesai.org 800 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol.12, No. 11, 2021

Fig. 6. Language Server - Providing Syntax Highlighting, Completion and
Error Highlighting.

Using this, HSQLC was also integrated into a language
server, creating a VSCode Extension, which could be used to
provide language support in development environments, and
also in ECL Cloud IDE, to easily allow writing HSQL in a
web-based editor.

Testing was set up for testing the validity of the machine
learning models created and basic syntax, which reported
predictions within good intervals. Various examples have also
been shown to showcase the syntax in HSQL ?? ?? ?? ??,
comparing it to the translated code in ECL. These program
snippets compare the languages and show how some of the
boilerplate code in ECL is automatically generated by the
HSQL compiler. A complete file transpilation is also shown, ??
where a simple Random Forest Regression model is created.

Limitations and Future Work

The current solution focuses on extensibility, usability and
simplicity heavily.

HSQL, contains only some basic operations in the current
revision, and can be extensively improved by adding in syntax
for other ECL features which can still use a SQL-like syntax,
which should improve its usability and allow for greater and
more extensive usecases.

HSQLC, has been made as a simple command line, and
hence, is an additional step require to run a program on HPCC
Systems. This can be worked around by automating the process
(e.g. by using a task automation toolkit/make utility), or by
integrating it with existing systems. The compiler can also be
better maintained with the help of static typing [?], although
this is slightly impeded by ANTLR4 Typescript support still
being in the works at the time of writing.

The language server developed for HSQL uses HSQLC
to provide language support in IDEs, and performs syntax
checking, but cannot perform syntax highlighting [?] as of

the current specification, and requires the use of IDE-specific
extensions (e.g. VSCode requires providing a Textmate Gram-
mar) for syntax highlighting.

REFERENCES

[1] A. Prasad, G. Shobha, N. Deepamala, S. S. Badhya, Y. Yashwanth and
S. Rohan, ”Machine Learning Techniques to Understand Partial and Im-
plied Data Values for Conversion of Natural Language to SQL Queries
on HPCC Systems,” 2019 4th International Conference on Computa-
tional Systems and Information Technology for Sustainable Solution
(CSITSS), 2019, pp. 1-5, doi: 10.1109/CSITSS47250.2019.9031035.

[2] E. Shaikh, I. Mohiuddin, Y. Alufaisan and I. Nahvi, ”Apache Spark: A
Big Data Processing Engine,” 2019 2nd IEEE Middle East and North
Africa COMMunications Conference (MENACOMM), 2019, pp. 1-6,
doi: 10.1109/MENACOMM46666.2019.8988541.

[3] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies
Liu, Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J.
Franklin, Ali Ghodsi, and Matei Zaharia. 2015. Spark SQL: Relational
Data Processing in Spark. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’15). As-
sociation for Computing Machinery, New York, NY, USA, 1383–1394.
DOI:https://doi.org/10.1145/2723372.2742797

[4] HPCC Systems, ”Why HPCC Systems is a superior alterna-
tive to Hadoop”,[Online] Available: https://hpccsystems.com/about/
hpcc-hadoop-comparison/superior-to-hadoop

[5] HPCC Systems, ”Introduction to HPCC Systems”, 2015, [Online] Avail-
able: http://cdn.hpccsystems.com/whitepapers/wp introduction HPCC.
pdf. [Accessed July 1, 2020]

[6] A.M. Middleton. Handbook of Cloud Computing. Springer, 2010.,
Handbook of Cloud Computing, ”Data-Intensive Technologies for
Cloud Computing” [Online] Available: https://www.springer.com/gp/
book/9781441965233

[7] HPCC Systems, ”ECL Language Reference”, 2020, [Online] Avail-
able: https://d2wulyp08c6njk.cloudfront.net/releases/CE-Candidate-7.8.
24/docs/EN US/ECLLanguageReference EN US-7.8.24-1.pdf . [Ac-
cessed July 1, 2020]

[8] Aho, Sethi, Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley, 1986.

[9] N. Chomsky, ”Three models for the description of language,” in
IRE Transactions on Information Theory, vol. 2, no. 3, pp. 113-124,
September 1956, doi: 10.1109/TIT.1956.1056813.

[10] Parr et al., Adaptive LL(*) ”Parsing: The Power of Dynamic Analysis”,
[Online] Available: https://www.antlr.org/papers/allstar-techreport.pdf.
[Accessed June 21, 2020]

[11] Danyang Cao and Donghui Bai, ”Design and implementation for
SQL parser based on ANTLR,” 2010 2nd International Conference on
Computer Engineering and Technology, 2010, pp. V4-276-V4-279, doi:
10.1109/ICCET.2010.5485593.

[12] Jens Palsberg1 C. and Barry Jay ,”The Essence of Design Patterns”,
[Online] Available: http://web.cs.ucla.edu/∼palsberg/paper/compsac98.
pdf. [Accessed June 23, 2020]

[13] J. F. Power and B. A. Malloy, ”Symbol table construction and name
lookup in ISO C++,” Proceedings 37th International Conference on
Technology of Object-Oriented Languages and Systems. TOOLS-
Pacific 2000, 2000, pp. 57-68, doi: 10.1109/TOOLS.2000.891358.

[14] Matt, Language Server Protocol, May 7 2020, [Online] Available: https:
//nshipster.com/language-server-protocol/ [Accessed July 20, 2020]

[15] Z. Gao, C. Bird and E. T. Barr, ”To Type or Not to Type: Quantifying
Detectable Bugs in JavaScript,” 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), 2017, pp. 758-769, doi:
10.1109/ICSE.2017.75.

[16] Microsoft, ”Language Server Protocol”, [Online] Available: https://
microsoft.github.io/language-server-protocol/ [Accessed July 15, 2020]

www.ijacsa.thesai.org 801 | P a g e

https://doi.org/10.1145/2723372.2742797
https://hpccsystems.com/about/hpcc-hadoop-comparison/superior-to-hadoop
https://hpccsystems.com/about/hpcc-hadoop-comparison/superior-to-hadoop
http://cdn.hpccsystems.com/whitepapers/wp_introduction_HPCC.pdf
http://cdn.hpccsystems.com/whitepapers/wp_introduction_HPCC.pdf
https://www.springer.com/gp/book/9781441965233
https://www.springer.com/gp/book/9781441965233
https://d2wulyp08c6njk.cloudfront.net/releases/CE-Candidate-7.8.24/docs/EN_US/ECLLanguageReference_EN_US-7.8.24-1.pdf
https://d2wulyp08c6njk.cloudfront.net/releases/CE-Candidate-7.8.24/docs/EN_US/ECLLanguageReference_EN_US-7.8.24-1.pdf
https://www.antlr.org/papers/allstar-techreport.pdf
http://web.cs.ucla.edu/~palsberg/paper/compsac98.pdf
http://web.cs.ucla.edu/~palsberg/paper/compsac98.pdf
https://nshipster.com/language-server-protocol/
https://nshipster.com/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol.12, No. 11, 2021

APPENDIX - TRANSLATED EXAMPLES

TABLE I. SELECT STATEMENTS

HSQL ECL

weatherSnowy = s e l e c t Date , SnowDepth from
w e a t h e r where SnowDepth>0; weatherSnowy := TABLE(w e a t h e r (SnowDepth > 0) ,{ Date , SnowDepth }) ;

w e a t h e r = s e l e c t * from ’ ˜ h s q l : : t e s t f i l e s
: : w e a t h e r d a t a . csv ’ l a y o u t common .
Wea therDataLayou t ;

w e a t h e r := TABLE(DATASET(’ ˜ h s q l : : t e s t f i l e s : : w e a t h e r d a t a . csv ’ ,
common . WeatherDataLayout , CSV(HEADING(1)))) ;

weatherSnowyNum = s e l e c t COUNT(SnowDepth)
from w e a t h e r where SnowDepth>0;

weatherSnowyNum := COUNT(TABLE(w e a t h e r (SnowDepth > 0) ,{ SnowDepth
})) ;

wea the rSnowyTota l = s e l e c t Sum(SnowDepth)
from w e a t h e r where SnowDepth>0;

weatherSnowy := TABLE(w e a t h e r (SnowDepth > 0 and NewSnow > 0) ,{
Date , SnowDepth , NewSnow}) ;

wea the rGrp = s e l e c t Date , SnowDepth from
w e a t h e r group by SnowDepth ; wea therGrp := TABLE(wea ther ,{ Date , SnowDepth } , SnowDepth) ;

w e a t h e r j o i n = s e l e c t * from
weatherSnowDepth where newSnow>0 j o i n

weatherNewSnow on weatherSnowDepth .
Date = weatherNewSnow . Date ;

w e a t h e r j o i n := TABLE(JOIN (weatherSnowDepth , weatherNewSnow , LEFT .
Date=RIGHT . Date , INNER) (newSnow > 0)) ;

TABLE II. PLOTTING

HSQL ECL

p l o t from wea the rSnowyTota l t i t l e ’
SnowyDays ’ t y p e b a r ;

r e s e r v e d a c t i o n 4 := OUTPUT(weatherSnowyTota l ,NAMED(’ SnowyDays ’)) ;
r e s e r v e d a c t i o n 5 := V i s u a l i z e r . MultiD . Bar (’ SnowyDays ’) ;

TABLE III. TRAINING A ML MODEL

HSQL ECL

model1 = t r a i n from ind , dep method
R e g r e s s i o n F o r e s t ;

ML Core . T o F i e l d (ind , r e s e r v e d i n d 0) ;
SHARED r e s e r v e d i n d 1 := r e s e r v e d i n d 0 ;
ML Core . T o F i e l d (dep , r e s e r v e d d e p 0) ;
SHARED r e s e r v e d d e p 1 := r e s e r v e d d e p 0 ;
SHARED r e s e r v e d i n d 1 0 := PROJECT (r e s e r v e d i n d 1 ,TRANSFORM(

RECORDOF(LEFT) , SELF . i d :=COUNTER, SELF :=LEFT)) ;
SHARED r e s e r v e d d e p 1 0 := PROJECT (r e s e r v e d d e p 1 ,TRANSFORM(

RECORDOF(LEFT) , SELF . i d :=COUNTER, SELF :=LEFT)) ;
SHARED model1 := L e a r n i n g T r e e s . R e g r e s s i o n F o r e s t () . ge tModel (

r e s e r v e d i n d 1 0 , r e s e r v e d d e p 1 0) ;

www.ijacsa.thesai.org 802 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol.12, No. 11, 2021

TABLE IV. PREDICTING RESULTS FROM A MODEL

HSQL ECL

m o d e l 1 p r e d i c t = p r e d i c t model1 from
t e s t i n d method R e g r e s s i o n F o r e s t ;

ML Core . T o F i e l d (t e s t i n d , r e s e r v e d t e s t i n d 0) ;
SHARED r e s e r v e d t e s t i n d 1 := r e s e r v e d t e s t i n d 0 ;
SHARED r e s e r v e d t e s t i n d 0 0 := PROJECT (r e s e r v e d t e s t i n d 1 ,

TRANSFORM(RECORDOF(LEFT) , SELF . i d :=COUNTER, SELF := LEFT)) ;
SHARED m o d e l 1 p r e d i c t := L e a r n i n g T r e e s . R e g r e s s i o n F o r e s t () . P r e d i c t

(model1 , r e s e r v e d t e s t i n d 0 0) ;

TABLE V. CREATING A MODEL AND USING IT

HSQL (ols.hsql) ECL (ols.ecl)

i m p o r t commonsimple ;

i n d = s e l e c t PersonID , age from
commonsimple . s i m p l e T a b l e where
PersonID <5;

dep = s e l e c t PersonID , wage from
commonsimple . s i m p l e T a b l e where
PersonID <5;

o u t p u t i n d ;
o u t p u t dep ;

t e s t = s e l e c t PersonID , age from
commonsimple . s i m p l e T a b l e where
PersonID >4;

model = t r a i n from ind , dep method
L i n e a r R e g r e s s i o n ;

r e s u l t = p r e d i c t model from t e s t ;

o u t p u t r e s u l t ;

IMPORT ML Core ;
IMPORT ML Core . Types AS Types ;
IMPORT commonsimple ;
IMPORT L i n e a r R e g r e s s i o n ;
e x p o r t o l s := MODULE

SHARED i n d := TABLE(commonsimple . s i m p l e T a b l e (PersonID < 5) ,{
PersonID , age }) ;

SHARED dep := TABLE(commonsimple . s i m p l e T a b l e (PersonID < 5) ,{
PersonID , wage }) ;

SHARED r e s e r v e d a c t i o n 0 := OUTPUT(i n d) ;
SHARED r e s e r v e d a c t i o n 1 := OUTPUT(dep) ;
SHARED t e s t := TABLE(commonsimple . s i m p l e T a b l e (PersonID > 4) ,{

PersonID , age }) ;
ML Core . T o F i e l d (ind , r e s e r v e d i n d 0) ;
SHARED r e s e r v e d i n d 1 := r e s e r v e d i n d 0 ;
ML Core . T o F i e l d (dep , r e s e r v e d d e p 0) ;
SHARED r e s e r v e d d e p 1 := r e s e r v e d d e p 0 ;
SHARED r e s e r v e d i n d 1 0 := PROJECT (r e s e r v e d i n d 1 ,TRANSFORM(

RECORDOF(LEFT) , SELF . i d : = (COUNTER−1) /MAX(r e s e r v e d i n d 1 ,
r e s e r v e d i n d 1 . number) +1 ,SELF :=LEFT)) ;

SHARED r e s e r v e d d e p 1 0 := PROJECT (r e s e r v e d d e p 1 ,TRANSFORM(
RECORDOF(LEFT) , SELF . i d : = (COUNTER−1) /MAX(r e s e r v e d d e p 1 ,

r e s e r v e d d e p 1 . number) +1 ,SELF :=LEFT)) ;
SHARED model := L i n e a r R e g r e s s i o n . OLS(r e s e r v e d i n d 1 0 ,

r e s e r v e d d e p 1 0) . GetModel ;
ML Core . T o F i e l d (t e s t , r e s e r v e d t e s t 0) ;
SHARED r e s e r v e d t e s t 1 := r e s e r v e d t e s t 0 ;
SHARED r e s e r v e d t e s t 0 0 := PROJECT (r e s e r v e d t e s t 1 ,TRANSFORM(

RECORDOF(LEFT) , SELF . i d : = (COUNTER−1) /MAX(r e s e r v e d t e s t 1 ,
r e s e r v e d t e s t 1 . number) +1 ,SELF :=LEFT)) ;

SHARED r e s u l t := L i n e a r R e g r e s s i o n . OLS () . P r e d i c t (
r e s e r v e d t e s t 0 0 , model) ;

SHARED r e s e r v e d a c t i o n 2 := OUTPUT(r e s u l t) ;
EXPORT main := FUNCTION r e t u r n SEQUENTIAL(r e s e r v e d a c t i o n 0 ,

r e s e r v e d a c t i o n 1 , r e s e r v e d a c t i o n 2) ; END;
END;

www.ijacsa.thesai.org 803 | P a g e

	Introduction
	HPCC Systems and ECL
	Design and Implementation: HSQL
	Defining the HSQL Syntax
	Layouts
	Plotting
	Machine Learning

	Language Recognition
	Symbol Table Management
	Dependency Tracking
	Actions Collecting
	Module Support

	Transpiler

	Features of the Proposed Language
	Conclusions
	References

