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Abstract—Facial expression is one of the obvious cues that 
humans used to express their emotions. It is a necessary aspect of 
social communication between humans in their daily lives. 
However, humans do hide their real emotions in certain 
circumstances. Therefore, facial micro-expression has been 
observed and analyzed to reveal the true human emotions. 
However, micro-expression is a complicated type of signal that 
manifests only briefly. Hence, machine learning techniques have 
been used to perform micro-expression recognition. This paper 
introduces a compact deep learning architecture to classify and 
recognize human emotions of three categories, which are positive, 
negative, and surprise. This study utilizes the deep learning 
approach so that optimal features of interest can be extracted 
even with a limited number of training samples. To further 
improve the recognition performance, a multi-scale module 
through the spatial pyramid pooling network is embedded into 
the compact network to capture facial expressions of various 
sizes. The base model is derived from the VGG-M model, which 
is then validated by using combined datasets of CASMEII, 
SMIC, and SAMM. Moreover, various configurations of the 
spatial pyramid pooling layer were analyzed to find out the most 
optimal network setting for the micro-expression recognition 
task. The experimental results show that the addition of a multi-
scale module has managed to increase the recognition 
performance. The best network configuration from the 
experiment is composed of five parallel network branches that 
are placed after the second layer of the base model with pooling 
kernel sizes of two, three, four, five, and six. 

Keywords—Micro expression recognition; facial expression; 
spatial pyramid pooling module; multi-scale approach; deep 
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I. INTRODUCTION 
According to the research from [1], [2], faces are the main 

human “tools” to express information in terms of emotion. 
Facial expression is an important means that enable humans to 
undergo social interaction with each other. This is because 
55% of human feelings are manifested by their facial 
expression. For example, an observer can deduce that someone 
is feeling disgusting if his/her upper lip is rising upward. 

Facial expression can be broken down into two categories, 
which are macro-expression and micro-expression. A macro-

expression is an intentional facial expression, while a micro-
expression is an unintentional facial expression. Benjamin et al. 
[3] investigated that the major differences between them are 
the intensity and time taken to manifest the expression. Deng et 
al. [4] reported both expressions are widely used as an input to 
various applications and the most obvious application is to 
estimate the hidden emotions. 

On the other hand, Micro-expression (ME) is an 
unintentional, quick facial movement that is primarily used to 
express the emotions of happiness, sadness, and surprise [5]. A 
ME happened in a short time, usually happened in the range of 
0.04s until 0.2s. Hence, it is a hard task for a human to use their 
bare eyes to detect the occurrence of ME. Even if a human is 
undergoing training to detect an ME, their average 
performance is only slightly better than other people who do 
not undergo the training process. Hence, Zhao and Li [6] 
showed that machine learning is proposed to aid humans in 
analyzing the ME to understand human’s true emotions. 

Machine learning (ML) can be broadly classified into 
traditional machine learning and deep learning. Researchers in 
pattern recognition tasks have frequently applied both 
techniques to the applications of facial expression recognition 
[7], human activity recognition [8], recycling system [9], and 
image recognition [10]. Traditional machine learning relies on 
a set of handcrafted features, which is then passed to a 
decision-making module algorithm such as decision tree, 
neural network, and Support Vector Machine (SVM) [11], 
[12]. However, it is a time-consuming task for a computer 
vision engineer to judge which features are the best to describe 
the emotions. 

The deep learning methodology is different compared to 
the traditional machine learning approach, whereby the 
features of interest are obtained through iterative optimal 
training such as through the convolution process [10], [13]. 
Usually, after the feature maps have passed through a 
convolution process, they will undergo a pooling process. 
Fig. 1 shows the generalized framework of traditional machine 
learning and deep learning algorithms for human emotion 
recognition tasks. 
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Fig. 1. Generalized Framework of Traditional Machine Learning (above) and Deep Learning (below). 

Spatial Pyramid Pooling (SPP) originates from spatial 
pyramid matching that utilizes spatial statistical properties to 
represent global information for recognition purposes. Ke et al. 
[14] discussed the main benefit of the SPP module is it can 
produce constantly desired outputs without considering the 
input size requirement to the deep learning model. The training 
process of a deep learning model with multiple sizes of the 
image can also prevent over-fitting problems [15]. In this work, 
several configurations of SPP have been explored that include 
different numbers of layers and kernel sizes, as well as 
placement of the module. Besides that, the base model that has 
been used in this work is also compact in nature, whereby it is 
commonly used in tracking application, which requires fast 
computational model [16]. In Oh et al. [17] have surveyed 
different algorithms from different researchers, and their 
respective accuracy is summarized in Table I. 

By referring to Table I, the previous works' accuracy using 
CASME II dataset is within the range of 40% to 60%, while for 
the SMIC dataset, the accuracy range is between 50% and 
70%. In general, these accuracies are not satisfactory enough 
for real-life application. By referring to Table I, the previous 
works' accuracy using CASME II dataset is within the range of 
40% to 60%, while for the SMIC dataset, the accuracy range is 
between 50% and 70%. In general, these accuracies are not 
satisfactory enough for real-life application. Micro-expression 
is a crucial set of facial cues that are extensively employed in 
all parts of human society. However, simple facial macro 
expression cues are not enough to effectively relay the real 
emotions. In order to resolve the issues, this study presents 
several variants of SPP to improve the recognition accuracy of 
the automated micro-expression recognition applications.  

TABLE I.  ACCURACY OF MICRO-EXPRESSION RECOGNITION FROM DIFFERENT PAPERS 

Papers Features  Classifier 
Accuracy (%) 

CASME II SMIC 

Huang et al. [18] SpatioTemporal Completed Local Quantiza-tion Patterns (STCLQP) SVM 58.39 64.02 

He et al. [19] Multi-task mid-level feature learning 
(MMFL) SVM 59.81 63.15 

Huang et al. [20] Discriminative Spatiotemporal Local Radon-based Binary Pattern 
(STLPB-IP) SVM 64.37 60.98 

Li et al. [21] Histograms of Image Gradient Orientation (HIGO) SVM 67.21 68.29 

Liong et al. [22] Local Binary Pattern histograms from Three Orthogonal Planes (LBP-
TOP) SVM 46.00 54.00 

Happy et al.[23] Fuzzy Histogram of Optical Flow Orientations (HFOFO) SVM 56.64 51.83 

Le Ngo et al. [24] LBP-TOP SVM 49.00 58.00 

Xu et al. [25] Facial Dynamics Map SVM 45.93 54.88 

Ping et al. [26] LBP-TOP Group Sparse Spation-Temporal 
Reature Learning (GSLSR) 67.89 70.12 

Zong et al. [27] Hierarchical STLBP-IP Kernelized Group Sparse Learning 
(KGSL) 63.83 60.78 
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Continuing from this introduction section will be Section II 
that presents a comprehensive overview of the basic 
architecture, hyperparameter function, and related layers used 
in modeling the CNN model. In Section III, the new improved 
CNN model is introduced by embedding spatial pyramid 
pooling into the basic model. Then, the experimental results 
were discussed in Section IV. Finally, the last section 
concludes the paper with some suggestions for future works. 

II. RELATED WORK 

A. Basic Architecture of CNN 
The structure of a neural network is very much similar to a 

human being’s brain neuron. When the neuron is excited, it 
will deliver a chemical substance to its neighboring neuron, 
which will alter the state potential. If the next neuron’s 
potential is higher than the threshold, the state will be activated 
and vice versa [28]. A compact deep learning structure of a 
convolutional neural network (CNN) mainly comprises three 
convolutional layers, pooling layers, and full-connected layers. 
The convolution process happened in convolutional layers to 
extract features from the input image through a sliding window 
operation. Then, the resultant feature maps will be passed to 
the pooling layers to reduce the map dimension. Fully-
connected layers will be used to segregate the data into 
different classes [29], [30]. Fig. 2 shows the basic architecture 
of a CNN. 

B. Convolutional Layer 
A convolution operator performs a linear operation to a 

spatial map through a sliding window process. The process 
starts by applying a small number array (kernel) on the input 
data (tensor) to compute the product of each element of kernel 
and tensor for all tensor data. After that, each of the computed 
outputs will be summed up to form a new value in the 
respective position of the tensor (feature map). The whole steps 
will be repeated by applying multiple kernels into the tensor 
[31]. Based on Ma et al. [32], one kernel can extract one 
pattern characteristic of the input image. Fig. 3 shows the 
summary of a convolution process. 

C. Padding 
According to Rikiya et al. [31], the overlapping between 

the center element of the kernel with the outermost element of 
the input tensor should be avoided. Hence, a padding operator 
was introduced to enlarge the feature map dimension. There 
are two popular types of padding operations which are zero 
padding (or called the same padding) and valid padding. The 
process of zero padding is to make the convolution image 
larger by adding the zeros to its borders. The size of the output 
from the zero padding will be the same as the size before 
undergoing the convolution process [33], [34]. Fig. 4 shows the 
summary of a zero-padding process. 

 
Fig. 2. Basic Architecture of CNN. 

 
Fig. 3. Summary of Convolution Process. 

 
Fig. 4. Summary of Zero Padding Process. 
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Fig. 5. Summary of VALID Padding Process. 

If a Keras-Tensorflow library is used, a valid padding 
option means that no padding will be applied. The size of the 
image going through a valid padding option will be the same as 
the size of the convolution image as shown in Fig. 5. 

D. Pooling Layer 
There are two advantages of applying a pooling layer to the 

deep network.  Firstly, it helps to decrease the size of the 
feature map and hence reduces the complexity of the network. 
Secondly, Guo et al. [35] shows it also helps to extract the 
important feature optimally. Based on Victor and Isabel [36], 
there are three types of pooling operators, which are maximum 
pooling, average pooling, and attentive pooling. For the 
maximum pooling operator, the maximum element in each 
overlapping area between the kernel and the feature map will 

be chosen as the resultant output. Shallu and Rajesh [37] 
identify the only disadvantage of maximum pooling operation 
is if most of the values on the feature map are high values, the 
significant features may be discarded. Fig. 6 shows the 
operational flow of the maximum pooling process with a 4 x 4 
feature map, 2 x 2 kernel size with a step size of two pixels. 

According to Sharma et al. [37], the average pooling 
operation process differs from the maximum pooling process. 
The new value in the respective position of the feature map is 
obtained by calculating the average pixels of each overlapping 
area between the kernel and the feature map. Fig. 7 shows the 
summary of an average pooling process with a 4 x 4 feature 
map, 2 x 2 kernel size with a step size of two pixels. 

 
Fig. 6. Operational Flow of a Maximum Pooling Process (4 x 4 Feature Map, 2 x 2 Kernel Size with Step Size of Two Pixels). 

 
Fig. 7. Operational Flow of an Average Pooling Process (4 x 4 Feature Map, 2 x 2 Kernel Size with Step Size of Two Pixels). 
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E. Activation Function 
The activation function, which is also known as the transfer 

function, is used to determine the neurons that will be excited 
and passed as the high state to the next neurons. According to 
Chigozie et al. [38] and Feng et al. [39], an ordinary neural 
network without an activation function, the output of each 
layer of the network will consist of a linear combination of its 
last layer, which is shown in (1). Let y = output, x = input, n = 
number of nth layers, b = bias. 

𝑦 =  𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑛𝑥𝑛 + 𝑏                                     (1) 

According to the formula above, the range of the output 
will start from the negative infinity until positive infinity. This 
shows that the neurons in the network are not limited to a 
certain finite range. Conversely, with the presence of an 
activation function, the linear output will be converted to a 
non-linear result and the output range will fall within a finite 
value. According to Chigozie et al. [38] and Feng et al. [39], 
the non-linear result is shown in (2). 

𝑦 =  𝑎(𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑛𝑥𝑛 + 𝑏)                               (2) 

In this study, two types of activation functions, which are 
ReLu and Softmax function will be utilized. Wang et al. [40] 
stated that ReLu is an activation function that is based on a 
piece-wise function. ReLu function is known to be good in 
handling gradient-vanishing problems. This is the main 
advantage of a ReLu function compared to other activation 
functions such as Sigmoid and Tanh functions [41]. Another 
advantage of a ReLu function is it can be computed at a faster 
speed compared to the other functions. A positive gradient with 
a value equal to one will be produced for positive input, while 
a negative gradient is produced when the input is negative. Fig. 
8 shows the graphical representation of the ReLu function. 

According to Martin et al. [42], the Softmax function is a 
useful function that converts the weight vector to the 
probability distribution. Such a function will make sure that the 
output is in the range between zero until one and the sum of the 
outputs will be unity [43]. The softmax function is commonly 
used in models with multiple classes. Chigozie et al. [38] 
showed that the probability of each class will be provided and 
the class with the highest probability is considered as the target 
class. The only disadvantage of the Softmax function is the 
output value of zero cannot be produced and hence, a sparse 
probability distribution cannot be produced through this 
function. This is because any small output value in the sparse 
probability distribution will be treated as a negligible value 
which is zero. 

F. Fully Connected Layer 
A fully connected layer means each neuron is connected to 

every neuron to its next layer. The major function of the fully 
connected layer is to classify the input image into a variety of 
classes. The Softmax function is used in its output layer [44]. 

G. Local Response Normalisation 
Local Response Normalisation (LNR) is a non-trainable 

layer based on the lateral inhibition process. It decreases the 
neighboring pixels activation state, which deems to be too huge 
in order to form a big contrast in a feature map. This 
normalization process involves a decreasing operator by 
squaring and normalizing the pixel values of the feature map in 
a local neighborhood [45]. From Alex et al. [46], the (3) 
representation for LNR operation is shown as below, where 
𝑏𝑥,𝑦
𝑖  = output neuron, 𝑎𝑥,𝑦

𝑖  = input neuron, N = total kernel in 
the layer, x, y = position of it kernel, others = constant value. 

𝑏𝑥,𝑦
𝑖 = 𝑎𝑥,𝑦

𝑖 /(𝑘 + 𝑎∑ (𝑎𝑥,𝑦
𝑗 )2min (𝑁−1,𝑖+

𝑛
2

)

𝑗=max (0,𝑖−
𝑛
2

)
)
𝐵

                             (3) 

 
Fig. 8. Graphical Representation of ReLu Function. 
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III. METHODOLOGY 

A. CNN Model 
In this study, a compact CNN model [47] derived from the 

VGG-M model, which was introduced by Chatfield et al. [48]. 
A compact model is utilized because of the small number of 
available training data will lead to the problem of over-fitting 
according to the study by Nicholas et al. [49]. By having a 
compact property, a deep learning model can be optimized well 
even with a small number of data. In this study, the combined 
datasets have only 441 micro-expression videos, which is 
considered as a small training set. This is the primary reason 
deeper and newer models, such as Resnet [50] and DenseNet-
SPP [51] are not used as the base model. 

VGG-M has a good balance between computational speed 
and accuracy. Hence, it has excellent average performance and 
has been widely used in tasks involving the fields of vision 
such as multi-biometric recognition. The original VGG-M 
consists of nine layers network with five convolutional layers, 
three fully-connected layers and one flatten layer. The five 
convolutional layers have the kernel number of 96 for the first 
convolutional layer, 256 for the second convolutional layer, 
and 512 for the third, fourth, and fifth convolutional layer. 
Jiang et al. [52] proposed the fully-connected layers have a 
kernel size of 128 for the first and second layers, while three 

nodes for the third fully-connected layer to reduce the 
complexity of the training process. Each convolutional and 
full-connected layer is coupled with the ReLu activation 
function except for the last fully-connected layer, which is 
coupled with the Softmax activation function. In [53], LNR is 
applied after the first and second convolutional layers only. A 
maximum pooling layer is applied after each LNR layer and 
also after the fifth convolutional layer to make the model more 
robust and have a better generalization capability [54]. Table II 
shows the summary of the modified VGG-M architecture used 
in this study. 

According to Table II, the primacy change that can be 
observed is the reduction in stride size for the first and second 
maximum pooling (Pool1 and Pool2) from two to one. This is 
because a larger feature map size is needed to insert the Spatial 
Pyramid Pooling (SPP) layer. Note that the size of the input 
image used in this study is 75 x 75. If the original stride size of 
the first and second maximum pooling layer is used, the feature 
map size after going through the second layer will become 3 x 
3 only, which is not enough to embed the multiple average 
pooling processes in the SPP layers. Conversely, if the stride 
size is changed to one, the feature map size will be 13 x 13, 
which is enough to implement the multi-scale average pooling 
in the SPP layer. 

TABLE II.  SUMMARY OF THE MODIFIED VGG-M ARCHITECTURE 

Table 
Head Type of Layer Kernel 

Number Kernel Size Stride Padding Activation Function 

Conv1 Convolution 96 7 x 7 2 x 2 Valid ReLu 

Norm1 LRN - - - - - 

Pool1 Maximum Pooling - 3 x 3 1 x 1 - - 

Conv2 Convolution 256 5 x 5 2 x 2 Valid ReLu 

Norm2 LRN - - - - - 

Pool2 Maximum Pooling - 3 x 3 1 x 1 - - 

Conv3 Convolution 512 3 x 3 1 x 1 Same ReLu 

Conv4 Convolution 512 3 x 3 1 x 1 Same ReLu 

Conv5 Maximum Pooling 512 3 x 3 1 x 1 Same ReLu 

Pool5 Flatten Layer  3 x 3 2 x 2 - - 

Flat1 Full-connected Layer  - - - - 

FC1 Full-connected Layer 128 - - - ReLu 

FC2 Full-connected Layer 128 - - - ReLu 

FC3 Convolution 3 - - - Softmax 
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B. Spatial Pyramid Pooling 
For general SPP, the input will undergo three down-

sampling operations separately which are average pooling, 
batch normalization, and rectified linear unit activation 
function (ReLu). The kernel sizes of average pooling are 
different between the parallel layers. After that, the size of the 
down-sampling output will be adjusted (resized process) 
according to the skip-connection layer size. Then, these outputs 
are combined using a concatenation operator [55] as shown in 
Fig. 9. 

 
Fig. 9. General SPP Layer. 

IV. RESULT AND DISCUSSION 

A. Basic Settings 
Google Colaboratory (Colab) was used as the platform to 

conduct the training and training process of the CNN model for 
micro-expression recognition for detecting a human’s true 
emotion. Colab is a free cloud service developed by Google 
Research that enables the researcher to write and run Python 
code through the internet browser. It is a platform that is well 
suited for machine learning-based research. Another advantage 
of using Colab is it provides free GPU for the user that can be 
used for deep learning training. In this study, the programming 
language used is Python with Tensorflow library 2.4.1 through 
“Python three Google compute Engine Backend (GPU)” with 
Ram size of 12.72 GB and disk size of 68.40 GB. The virtual 
GPU used is Tesla P100-PCIE-16GB. 

B. Hyperparameter 
According to Lisha et al. [56] and Kandel et al. [57], 

hyperparameters can be considered as an input to a CNN 
algorithm which determines the performance of the deep 

learning algorithm towards the new and unseen data. Several 
hyperparameters that will be optimized in this work are 
learning rate, batch size, epochs, and type of optimizer. The 
type of optimizer determines how the weights are renewed by 
decreasing the loss or error [58]. In this study, Adamax 
optimizer is used as the sole optimization algorithm. This is 
because according to the research from [59], [60], Adamax 
produces a stable calculation method to renew the weights that 
ensure the stability of the CNN model. 

Batch size is the number of data used for training of CNN 
model before the weights are updated. Smaller batch size can 
lead to slower convergence, while a larger batch size enables 
the CNN model to reach optimum minima. After performing 
several tests, a batch size of 64 is used throughout the 
experiment which achieves better stability and convergence 
compared to other batch sizes. Learning rate determines the 
rate of updating the weights. We are using 0.0001 as our 
learning rate for the CNN model. Jaya et al. [61] stated that the 
learning rate is not very high because a high value will cause 
the CNN architecture to become very unstable. 

Epoch is defined as the number of iterations for a CNN 
model being trained by the whole datasets. Colab has a 
limitation that requires the user to interact with the system 
without idling by more than 90 minutes, after which it will stop 
the session automatically. Therefore, in [62] states that the 
number of epoch and learning rate need to be selected carefully 
so that the number of epoch can be minimized. This study has 
set the maximum number of epoch to be 120 iterations. Table 
III shows the summary of the other hyper-parameters that have 
been set in this study. 

C. Dataset 
Three ME datasets have been selected for this study, which 

are CASMEII [63], SMIC [64], and SAMM [65]. The first 
dataset, CASME II consists of 247 ME video clips from 26 
subjects. The resolution of all videos is initially set to 640 x 
480 pixels while the cropped image resolution is 340 x 280 
pixels. Only five types of emotions are being considered, 
which are happiness, surprise, disgust, regression, and others 
[66]. The second dataset, SAMM involving 159 ME video 
clips from 29 subjects. The initial resolution of the videos is 
2040 x 1080 pixels, while the cropped video resolution is 400 x 
400 pixels. Rather than five emotion categories, SAMM 
consists of eight emotion classes, which are angry, contempt, 
disgust, fear, happiness, sadness, surprise, and others [67],[68]. 
The last dataset, SMIC comprises of 164 ME video clips from 
16 subjects. The size of every image is 640 x 480 pixels. This 
dataset has three categories of emotion only that include 
positive, negative, and surprise [64], [66]. 

TABLE III.  HYPERPARAMETER SETTING 

Hyperparameter Value 

Learning Rate 0.0001 

Batch Size 64 

Epochs 120 

Optimizer ADAMAX 
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Fig. 10. Samples of Optical Flow between Two Consecutive Frames. 

In this study, all images from all three datasets will be 
resized to 300 x 300 pixels, which will result in the same 
resolution for the respective vertical and horizontal 
components of the optical flow image. After that, the optical 
images will be down-scale again to the CNN input 
requirement, which is 75 x 75 pixels. According to Song and 
Zengfu [69], optical flow is the apparent motion between the 
video frame or image frame. It has a high-level feature in 
analyzing the visual motion information compared to the 
original image sequences, which allows it to have a better and 
more efficient data representation for ME [70]. Fig. 10 shows 
some examples of the calculated optical flow images, whereby 
the black and white color shows the presence of motion 
between the frames, while the grey color indicates that there is 
no motion for that respective pixels 

The proposed system performance was verified by using 
570 videos from 71 subjects that comprise of CASME II, 

SAMM, and SMIC datasets. There is no validation dataset used 
during the training phase. For the training and testing process, 
the dataset is divided according to leave-one-subject-out for 
testing, while the rest subjects will be used as training. This 
means that the model is trained using 70 subjects and 1 subject 
is used for testing. The output of this study will be labeled and 
classified into three classes: positive, negative, and surprise 
emotions. Positive emotion involves happy micro-expression 
which is considered as a “good” human emotion, while 
negative emotion is considered as a “bad” human emotion that 
can be further broken down into disgust, sadness, and fear. The 
third class of emotion, surprise is the emotion that a human 
expresses when he senses any difference between the 
expectation and the reality. Fig. 11, Fig. 12, and Fig. 13 portray 
an example of each type of emotion from different datasets. 

 
Fig. 11. Example of each Emotion from CASMEII. 

 
Fig. 12. Example of each Emotion from SAMM. 
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Fig. 13. Example of each Emotion from SMIC. 

D. Evaluation Metric 
The evaluation metric used in this study is the accuracy of 

micro-expression recognition for detecting a human’s true 
emotion. According to Duygu [71], accuracy is defined as the 
ratio of true classification to total classification (true and false 
classification), which is formulated as in (4), whereby TP is 
defined as true positive, TN is true negative, FP is false 
positive, and FN is false negative. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

                                                   (4) 

E. Experimental Setting 
Several training processes were performed based on the 

modified VGG-M architecture for micro-expression 
recognition to detect human’s authentic emotions. For every 
experiment, the values of other hyperparameters are set to 
constant to make sure that the experiments are conducted in 
fair conditions. After that, the Spatial Pyramid Pooling (SPP) 
layer of various configurations (in terms of the number of 
layers, kernel size of average pooling, and position where SPP 
layers are added) will be embedded into the modified VGG-M 
architecture. The performances for each configuration will be 
compared and evaluated by computing their recognition 
accuracy by using combined datasets of CASMEII, SMIC, and 
SAMM. Fig. 14 shows the summary of the major procedures 
that were performed to extract the performance accuracy. 

There will be eight variants of SPP architectures that will 
be tested as detailed out below: 

• First Variant = two parallel layers, Kernel size: two, 
four, Position: After first Layer of VGG-M. 

• Second Variant = two parallel layers, Kernel size: two, 
four, Position: After second Layer of VGG-M. 

• Third Variant = three parallel layers, Kernel size: two, 
four, six, Position: After first Layer of VGG-M. 

• Fourth Variant = three parallel layers, Kernel size: two, 
four, six, Position: After second Layer of VGG-M. 

• Fifth Variant = four parallel layers, Kernel size: two, 
four, six, Position: After first Layer of VGG-M. 

• Sixth Variant = four parallel layers, Kernel size: two, 
four, six, eight, Position: After second Layer of VGG-
M. 

• Seventh Variant = five parallel layers, Kernel size: two, 
four six, eight, ten, Position: After first Layer of VGG-
M. 

• Eighth Variant = five parallel layers, Kernel size: two, 
four, six, eight, ten, Position: After second Layer of 
VGG-M. 

The SPP layers with the different number of SPP layers and 
kernel size of average pooling will be added in two ways, one 
of the ways is added after the first layer and another way is 
inserted after the second layer of the VGG-M module as shown 
in Fig. 15. 

 
Fig. 14. Summary of the Experimental Procedures. 
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Fig. 15. Placement of the SPP Module. 

F. Dataset Analysis 
Table IV shows the results of modified VGG-M with 

several settings of parallel branches and placement of the SPP 
modules. Besides that, the results of combining both hyper-

parameters are also reported in the same table. Fig. 16 shows 
the graph for training process of the original VGG-M and Fig. 
17 shows the graph of the training results of VGG-M with SPP 
inserted after the second CNN layer. 

TABLE IV.  PERFORMANCE RESULTS OF VARIOUS SPP CONFIGURATIONS 

Types of datasets 

Accuracy (%) 

Original (without 
SPP) 

After first layer After second layer 

2 SPP 3 SPP 4 SPP 5 SPP 2 SPP 3 SPP 4 SPP 5 SPP 

Combined 75.96 74.75 75.21 75.96 75.06 76.42 75.36 76.87 76.27 

CASME II 86.21 84.37 86.67 83.45 86.67 88.05 83.91 86.67 86.67 

SAMM 71.21 70.2 68.18 69.19 69.7 70.02 71.21 69.7 69.7 

SMIC 70.73 69.92 70.73 74.8 69.11 71.14 71.14 73.98 72.36 

 
Fig. 16. The Original VGG-M Training Process. 
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Fig. 17. VGG-M Training Process using SPP after the Second VGG-M Layer. 

By optimizing the network configurations (different SPP 
parallel branches and module placement), the recognition 
accuracy of the proposed deep model has improved the 
recognition performance by four percent to seven percent when 
compared to the original network for the SAMM dataset. 
Meanwhile, for the SMIC dataset, the recognition accuracy of 
the model using the combined dataset has improved from 1% 
to 5%. 

G. SPP Configuration and Placement 
From Table IV, the results show that the recognition 

accuracy of the model using the combined dataset, CASME II 
and SMIC after the addition of the SPP module has improved 
the performance, except for the case of the SAMM dataset, in 
which the performance has become worst. Firstly, based on the 
combined dataset results, the best recognition accuracy is 
obtained with four SPP parallel layers, added after the second 
layer with an accuracy of 76.87%, which is an improvement of 
0.91% compared to the base model. 

For the CASME II dataset analysis, the best recognition 
accuracy is obtained by using two SPP parallel layers inserted 
after the second layer with 88.05% accuracies, which is an 
improvement of 1.84% compared to the base model. Among 
many datasets and configurations, this is the highest 
recognition accuracy obtained. While, for the case of the 
SAMM dataset, the addition of more SPP parallel layers into 
the base model does not increase the recognition accuracy, 
whereby the best number of SPP layers is three that is added 
after the second layer with a recognition accuracy of 71.21%. 

On the other hand, for the SMIC dataset, four SPP parallel 
layers that are embedded after the first layer produced the 
highest recognition accuracy of 74.80% with an improvement 
of 4.07% compared to the base model. This is the greatest 
improvement in terms of recognition accuracy among many 
configurations that have been tested. Hence, the best setup for 
each dataset and the combined datasets are shown in Table V. 

However, among all the configurations, SPP with four 
parallel branches produces the best general performance where 
it produces the best recognition accuracies for the combined 
datasets and SMIC dataset. Besides that, the best overall 
placement of the SPP module is if it is added after the second 
layer of the base model. On average, it produces results with 
higher recognition accuracy. In addition, most of the highest 
recognition accuracy is obtained after adding the SPP right 
after the second layer to the base model. 

H. Improvement of the SPP Configuration 
To further improve the base model performance, a few new 

variants of the SPP is introduced as follow: 

• Ninth Variant = five parallel layers, Kernel size: two, 
three, four, five, six, Position: After first Layer of 
VGG-M 

• Tenth Variant = five parallel layers, Kernel size: two, 
three, four, five, six, Position: After second Layer of 
VGG-M 

TABLE V.  SUMMARY OF THE BEST SETUP IN TERMS OF SPP CONFIGURATION AND PLACEMENT 

Types of datasets 
Best configuration of SPP 

SPP number Position  

combined Four After second layer 

CASME II Two After second layer 

SMIC Three After second layer 

SAMM Four After first layer 
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TABLE VI.  PERFORMANCE BETWEEN DIFFERENT SETS OF KERNEL SIZE 

Types of datasets 

Accuracy (%) 

After first layer After second layer 

first set Kernel second set Kernel first set Kernel second set Kernel 

Combined 75.06 74.91 76.27 76.42 

CASME II 86.67 84.37 86.67 86.21 

SAMM 69.70 71.21 69.70 70.20 

SMIC 69.11 69.51 72.36 72.76 

TABLE VII.  SUMMARY OF THE BEST CONFIGURATION IN TERMS OF THE AVERAGE POOLING KERNEL SIZE FOR DIFFERENT DATASET SETUP 

Table Head Table Column Head 

Combined two, three, four, five and six 

CASME II two, four, six, eight and ten 

SMIC two, three, four, five and six 

SAMM two, three, four, five and six 

The performance difference between the new variants of 
SPP with the earlier variants is due to the kernel sizes of 
average pooling, where the sizes are smaller for the latter 
variants. In short, the ninth and the tenth variants have bigger 
kernel sizes compared to the seventh and the eighth variants. 
Table VI shows the recognition accuracy of the modified 
model with different kernel sizes. 

According to Table V, when adding the SPP layer after the 
first layer to the base model, the first set of kernel sizes 
produce better recognition accuracy compared to the second set 
for the combined datasets and CASME II dataset. On the other 
hand, it is the opposite trend for the SAMM and SMIC 
datasets. Besides that, if the SPP is added after the second 
layer, the second set of kernel sizes produces better accuracy 
compared to the first set for the combined, SAMM and SMIC 
datasets, except for the CASMEII dataset. 

By comparing the overall results, the second set of kernel 
sizes result in higher average recognition accuracy for the test 
done on the combined, SAMM and SMIC dataset (76.42%, 
71.21%, and 72.76% respectively). However, the first set of 
kernel sizes return the best recognition accuracy for the test 
done on the CASME II dataset (86.67 % accuracy). Hence, it 
can be concluded that the second set of average pooling kernel 
sizes is the better alternative compared to the first set as shown 
in Table VII. 

V. CONCLUSION 
This study has managed to improve the recognition 

accuracy of the CNN-based deep learning model by embedding 
SPP to the base model. Various configurations have been 
tested to find the optimal setup. For the combined dataset, the 
best SPP configuration is obtained by adding four parallel 
branches of the SPP after the second layer of the base model. 
This configuration has produced a recognition accuracy of 
76.87%, which is an improvement of 0.91% over the base 
model. For the CASME II dataset, two parallel branches of the 
SPP layers added after the second layer of the base model have 

produced 88.05% recognition accuracy, which is an 
improvement of 1.84%. Meanwhile, the best SPP configuration 
for the SMIC dataset is four parallel branches added after the 
first layer with an improvement of 4.07%. There is not much 
performance improvement that can be observed with the 
addition of the SPP module when the test is done on the 
SAMM dataset. Generally, the overall best SPP configuration 
is by embedding four parallel branches of SPP with average 
pooling kernel sizes of two, three, four, five, and six, added 
after the second layer of the base model. For future works, 
more datasets can be combined to produce a more robust 
micro-expression-based automated emotion recognition 
system. Other than that, the dataset will be resampled using 
data augmentation methods to balance the class distribution 
between the emotion class. Besides that, synthetic data 
augmentation through the generative adversarial method can be 
employed to further increase the training samples. 
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