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Abstract—Identifying software defects during early stages of 

Software Development life cycle reduces the project effort and 

cost. Hence there is a lot of research done in finding defective 

proneness of a software module using machine learning 

approaches. The main problems with software defect data are 

cost effective and imbalance. Cost effective problem refers to 

predicting defective module as non defective induces high penalty 

compared to predicting non defective module as defective. In our 

work, we are proposing a hybrid approach to address cost 

effective problem in Software defect data. To address cost 

effective problem, we used bagging technique with Artificial 

Neuro Fuzzy Inference system as base classifier. In addition to 

that, we also addressed Class Imbalance & High dimensionality 

problems using Artificial Neuro Fuzzy inference system & 

principle component analysis respectively. We conducted 

experiments on software defect datasets, downloaded from NASA 

dataset repository using our proposed approach and compared 

with approaches mentioned in literature survey. We observed 

Area under ROC curve (AuC) for proposed approach was 

improved approximately 15% compared with highly efficient 

approach mentioned in literature survey. 

Keywords—Cost effective problem; principle component 

analysis; adaptive neuro fuzzy inference system; area under ROC 

curve 

I. INTRODUCTION  

Software Development process involves Requirement 
specification, Design, Implementation and Testing. During 
each phase of software development, reviews will be 
conducted to assess the progress and quality of software. The 
quality of software depends on defects found in the software. 
Defect is a condition that doesn‟t meet user requirement, 
specified in requirement specification. If a defect is found 
during late stages of software development i.e. during 
software maintenance, the penalty is very high. To reduce this 
penalty, the defective proneness must be identified in advance 
[27]. 

According to Boehm, the cost of fixing errors increased 
gradually as the software development progress. If we 
consider cost of fixing error during requirement phase as 1 
unit, then the cost of fixing error in design phase will be 3-8 
units, implementation phase will be 7 to 16 units, integration 
& testing phase will be 21 to 78 units and maintenance phase 
will be 29 to more than 1500 units. This motivates application 
of machine learning techniques in early stage identification of 
software defects [28]. Fig. 1 shows soft escalation of defect 

resolving during various phases of software development life 
cycle. 

A. Machine Learning Techniques 

Various Machine learning techniques such as K nearest 
neighbours, Support Vector machines, Decision Trees, 
Bayesian Networks and etc. are used to identify software 
defects.  

B. Approaches for Software Defect Prediction (SDP) 

1) Decision trees: Decision Trees are used as early 

classifier techniques for software defects. In a decision tree, 

the attribute with less impurity value is selected as root node. 

There are three measures for impurity 1) Entropy 2) Gini 

Index 3) Misclassification error. Decision tree will output 

whether the module is defective prone or not, based on input 

attributes like IO Comments, Cyclometric complexities etc. 

Fig. 2 shows Decision Tree constructed on cm1 dataset. 

 

Fig. 1. Cost Escalation for Defect Solving during Phase of Software 

Development. 

 

Fig. 2. Decision Tree on CM1 Dataset. 
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2) Bayesian Classifiers: Bayesian classifier uses Baye‟s 

theorem to classify unknown sample. It comes under lazy 

classifier. According to Bayes theorem, Conditional 

probability P(Y=yi/X=xi) is defined as: 

               
                      

       
 

There are two types of Bayesian classifiers: 1) Naive 
Baye‟s classifier 2) Bayesian Belief Networks. 

Naive Baye‟s classifier: In Naive Baye‟s classifier, the 
given unknown sample is considered as „X‟. The classifier 
finds the posterior probability P (Defect=Yes/X) and P( 
Defect=No/X) for given sample „X‟. 

If P( Defect=Yes/X) > P(Defect=No/X), then classifier 
outputs the sample „X‟ as defective. Otherwise it outputs the 
given sample „X‟ as non defective. The drawback with Naive 
Baye‟s classifier is, it assumes the target variable (Defect) is 
independent on input variables. 

Bayesian Belief Networks: In Bayesian Belief Networks, 
There are two components: 1) Direct Acyclic Graph (DAG); 
2) Probability table DAG encodes the relationship between 
attributes into a graph. Probability table comprises of posterior 
probabilities dependent on their parent attributes. Fig. 3 
represents the DAG, constructed on cm1 dataset. 

 

Fig. 3. Directed Acyclic Graph for Software Defect Prediction. 

3) Support vector machines: Support vector machines are 

one of the popular classifier technique for regression and 

classification problems. Binary Support Vector Machines 

solves classification tasks while support vector regression 

solves regression tasks. Software defect prediction is a 

classification problem and hence Binary Support Vector 

Machines are used to classify the module as defective or non-

defective. In support vector machines, there exist a boundary 

function that classify sample. There are various types of 

boundary functions like Linear, Polynomial, Radial basis, 

ANOVA and etc. 

Polynomial Support Vector Machine: 

Defect = -0.0062 * (normalized) loc+ 0.0043 * 
(normalized) iv(g) +0.0044 * (normalized) i+0.012 * 
(normalized) IOComment + -0.0021 * (normalized) IOBlank 
+ 0.0004 * (normalized) u_op +-0.0054 * (normalized) 
U_opnd - 1.0005. 

Multi Layer Perceptrons: Multi layer perceptrons are the 
neural networks which comprises Processing units, called 

neurons, organized in multiple layers. These neurons are 
having computing capabilities on inputs, receiving from 
previous layers, and propagate output to the next layers. These 
neurons are connected by weighted edges. Each neurons 
applies activation functions on the inputs along with threshold 
and produces output signals. There are various activation 
functions like Threshold, sigmoid, Tangible and etc. 

Table I illustrates the architecture of multi layer 
perceptrons along with nodes, connections and their weights. 

Artificial Neuro Fuzzy Inference System: 

Artificial Neuro Fuzzy Inference System: ANFIS is a five 
layered architecture used for classification tasks. Satya 
srinivas et al. [26] proposed Artificial Neuro Fuzzy Inference 
System for Software defect prediction. 

ANFIS generates Sugeno Fuzzy Inference system as 
output for classification task. In ANFIS input attributes are 
fuzzified and target attribute is defuzzified. Intially subtractive 
clustering method is used to generate Sugeno fuzzy inference 
system. The premise and consequent parameters in Sugeno 
Fuzzy inference system are trained used training data. Here 
training rate parameter must be set to appropriate value. 
Setting high training rate parameter converges the ANFIS 
model into unstable state. Setting low training rate parameter 
creates high complexity model. 

4) Cost effective learning: Misclassifying some class 

samples results high penalty compared to misclassification of 

other classes. For example, in software Defect prediction, 

misclassifying defective module as non defective imposes 

high penalty compared to misclassifying non defective module 

as defective. If a defect was found during later stages of 

software development, it imposes high penalty and hence 

pronable defective module should not be misclassified as non 

defective even though non defective module was misclassified 

as defective. This error cost escalation was shown in Fig. 1. 

5)  Ensemble learning: Ensemble learning is the process 

of constructing multiple classifiers and combining them to 

improve the accuracy for classification problems. Some of the 

ensembling techniques are Simple voting, Average voting, 

Bagging, Boosting and etc. In simple voting, each classifier 

will vote for an output value. The output, value with high 

number of votes, considered as actual output. In average 

voting, the average value of output of each classifier is 

considered as actual output. This technique is suitable for 

regression tasks. In Bagging, the dataset is sampled into equal 

size subsets of data and a classifier is constructed with each 

subset. Finally each classifier will vote for output value. 

Bagging and Boosting techniques improves the performance 

of classifiers by constructing multiple classifiers. 

In Bagging, classifiers are constructed in sequence. The 
samples which are incorrectly classified are given with higher 
weight for construction of next classifier. This procedure is 
repeated until required accuracy obtained or maximum 
numbers of classifiers were constructed. 
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TABLE I. MULTI LAYER PERCEPTRONS NODES, CONNECTIONS AND WEIGHTS 

Node Inputs Weights Node Inputs Weights Node Inputs Weights 

0 Threshold  -3.79506 2 Attrib u_op  4.04982 4 Attrib u_op  3.31857 

0 Node 2  4.53581 2 Attrib U_opnd  4.93275 4 Attrib U_opnd  4.17034 

0 Node 3  3.66528 3  Threshold  -4.9707 5 Threshold  -9.06268 

0 Node 4  5.20758 3  Attrib loc  2.20562 5 Attrib loc  -3.81299 

0 Node 5  3.18853 3 Attrib iv(g)  -7.07055 5 Attrib iv(g)  -1.35707 

1 Threshold  3.79522 3 Attrib i  -6.27414 5 Attrib i  -0.84483 

1 Node 2  -4.50871 3 Attrib IOComment  -2.75564 5 Attrib IOComment  -4.81926 

1 Node 3  -3.66711 3 Attrib IOBlank  -1.19511 5 Attrib IOBlank  3.59625 

1 Node 4  -5.23767 3 Attrib u_op  0.39515 5 Attrib u_op  -5.56998 

1 Node 5  -3.18676 3 Attrib U_opnd  3.76011 5 Attrib U_opnd  -1.61555 

2 Threshold  -2.83258 4 Threshold  -2.79212   Class FALSE   

2 Attrib loc  4.66117 4 Attrib loc  4.39579    Input   

2  Attrib iv(g)  0.10108 4 Attrib iv(g)  2.53554    Node 0   

2 Attrib i  -1.00049 4 Attrib i  -0.01669   Class TRUE   

2 Attrib IOComment  -8.27215 4 Attrib IOComment  -9.35516    Input   

2 Attrib IOBlank  0.286789 4 Attrib IOBlank  0.769326    Node 1   

In this paper, we are applying hybrid approach to 
overcome cost effective problem in SDP. Section II presents 
literature survey on SDP. In Section III, we designed 
methodology using hybrid approach for SDP. Section IV 
Presents the results by applying proposed methodology on 
SDP. 

II. LITERATURE SURVEY 

Yan Naung Soe et al. proposed Random Forest algorithm 
on Software Defect Prediction and compared the performance 
of Random forest algorithm with other machine learning 
techniques. They concluded that maximum accuracy is 99.59 
and minimum accuracy is 85.96[1]. Taek Lee et al. proposed 
micro interaction metrics, such as browsing events, file 
editing, for prediction of software defects and observed high 
accuracy by combining these metrics with existing metrics in 
cost effective manner [2]. Fei Wu et al. proposed a cost-
sensitive local collaborative representation (CLCR) approach 
for software defect prediction and concluded that accuracy has 
been increased with proposed approach [3]. Jinsheng Ren et.al 
proposed asymmetric kernel principle component analysis for 
solving class imbalance problem in software defect prediction. 
They evaluated the validity of their proposed model using F-
measure, Friedman‟s test, and Tukey‟s test [4]. 

Ayse Tosun et al. proposed decision threshold 
optimization on Naive Bayes classifier to find best threshold 
that separate defective and non-defective samples in software 
defect data [5]. Ming Cheng et al. proposed semi supervised 
approach for identification of software defects. Their proposed 
model evaluates the confidence probability of unlabelled 
sample to predict class labels. They considered different 
misclassification cost to improve classifier performance [6]. 
Igor Ibarguren et al proposed consolidated tree construction 
that ensembles weights of misclassification in training of 

classifier. They showed that consolidated tree construction 
performs better than other rule based classifiers [7]. Yuanxun 
Shao et.al proposed weighted associative classification for 
addressing imbalance problem in software defect prediction. 
They determined weights of features using correlation 
analysis. They proved GMean measure has been increased 
with their approach [8]. Shuo Feng et al. proposed complexity 
based over sampling technique to address data imbalance 
problem in identification of software defects [9]. Rakesh Rana 
et al. proposed Bayesian Inference method for software defect 
prediction to analyse inflow distribution of defects. This 
technique has been used for early detection of software defects 
in large software projects [10]. 

Guisheng Fan et.al proposed attention based recurrent 
neural networks for software defect prediction. Their 
experimental results shows that the proposed model increases 
F1 score by 14% and AUC by 7% [11]. Sushant Kumar et al. 
proposed Deep representation and ensemble learning for 
Software defect prediction. They conducted experiments on 12 
NASA Dataset repositories. Among 12 datasets, F Measure 
has been increased for 8 datasets, ROC values has been 
increased for 6 datasets, PRC values has been increased for 12 
datasets and MCC values has been increased for 11 
datasets[12]. Rodrigo et al. proposed ensemble of clustering 
using Particle Swarm Optimization for prediction of Software 
defects and concluded that prediction quality has been 
increased [13]. Shamsul Huda et al. proposed ensemble over 
sampling algorithm for prediction of software defects [14]. 
Shanthini. et al. proposed Ensemble SVM approach for 
prediction of software defects[15]. Nageswara Rao et.al 
proposed Ensemble Bayesian networks for prediction of 
Software Defects and proved that their proposed model have 
high true positive rate compared to traditional methods [16]. 
Steven Young et al. proposed deep super learner for Just in 
time defect prediction. They used bagging of random forests 

https://www.sciencedirect.com/science/article/abs/pii/S0950705120301581#!
https://www.sciencedirect.com/science/article/abs/pii/S0950705120301581#!
https://www.sciencedirect.com/science/article/abs/pii/S0957417419308024#!
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and concluded that F1 score was improved for 5 of 6 projects 
[17]. Arvinder Kaur et al investigated different ensemble 
techniques such as Boosting, Bagging and Rotation forest in 
prediction of software defects. They conducted Wilcoxon 
signed rank test to prove ensemble techniques outperforms 
traditional techniques in generalization of results [18]. Thanh 
Tung et al proposed ensemble model by combining sampling 
technique with common classification technique to improve 
the performance of classifier [19]. 

Jaroslaw Hryszko et al investigated the effect of Software 
defect in modules on Quality assurance of Software. Their 
investigation proved that quality assurance cost can be 
reduced by 30% with their proposed approach [20]. Kazuya 
Tanaka et al focused on usage of auto-sklearn tool that 
automatically selects appropriate prediction model for data pre 
processing and classification in software defect prediction. 
This tool presents random forest is the best model in various 
machine learning techniques [21]. Pradeep Singh proposed 
stacking based framework, in which he combined class 
balancing technique SMOTE with ensemble classifiers to 
predict software defects. He concluded that the accuracy of 
stacking based model increased compared to traditional 
approaches used in their literature survey [22]. Haitao He et al 
proposed Ensemble RIPPER classifier for software defect 
prediction. In their research, they applied Principle component 
analysis for dimensionality reduction, Adaptive Synthetic 
sampling for balancing the dataset and RIPPER model for 
classification. They concluded that classification error has 
been reduced with their proposed model [23]. Zhiqiang Li et 
al proposed ensemble multiple kernel correlation alignment 
for heterogeneous defect prediction and they concluded 
ensemble approach outperforms remaining competing 
methods [24]. Xin Xia et al proposed Hybrid model 
reconstruction (HYDRA) approach for Software defect 
prediction. It consists of two phase‟s Genetic algorithm 
followed by Ensemble learning. They concluded that HYDRA 
improves F1 score of Zero-R base classifier [25]. 

In prediction of software defects, some researchers 
addressed class imbalance problem and someone addressed 
high dimensionality problem. But In this research work, we 
are addressing cost effective problem in SDP. 

III. METHODOLOGY 

In this paper, we are proposing Ensemble approach of 
Adaptive Neuro Fuzzy Inference system for prediction of 
Software defects for cost effective learning. In step 1, we are 
performing Synthetic Minority oversampling technique 
(SMOTE) to balance the dataset. In step 2, Dimensionality 
reduction will be performed to reduce the dataset. Here, we 
are proposing Principle component analysis (PCA) for 

dimensionality reduction. In step 3, multiple ANFIS classifiers 
will be constructed for ensemble approach. In step 4, 
Aggregation will be performed on votes given by multiple 
ANFIS classifiers and it produces the actual output. 

In our research work, we considered data from NASA 
dataset repository. The dataset is neither noisy nor in complete 
but imbalanced. To remove imbalance, we are applying 
SMOTE technique and to overcome for high dimensionality 
problem we are applying PCA. Fig. 4 represents the proposed 
methodology for SDP. 

Algorithm: 

Step 1: Apply Synthetic Minority Over Sampling Technique 

for Class Balance. 

1.1 Choose a random sample from minority class. 

1.2 Identify k-nearest neighbours from chosen sample 

1.3 For each neighbour sample 

1.3.1 construct a line from chosen sample to 

nearest neighbour 

1.3.2 Add more number samples by picking 

of points on the line 

1.4 Repeat steps 1.1 to 1.3 until two classes samples are 

equal. 

Step 2: Apply Dimensionality reduction using PCA 

 2.1 Perform Z score normalization on data.  

 Z-score = (xi – μ)/ 

 2.2 Create a covariance matrix for eigen decomposition. 

 2.3 select principle components with high relevance. 

Step 3: Construct classifier using Artificial Neuro Fuzzy  

 Inference system 

 3.1 Fuzzify input variable 

 3.2 Apply membership function on input variable 

 3.3 Calculate weighted average 

 3.4 calculate contribution of each fuzzy rule 

 3.5 Output sum of all incoming signals. 

Step 4: Repeat steps 1 to Step 3 for multiple times (Possibly  

 odd number of times). 

Step 5: find number of votes for each class from multiple  

 classifiers 

Step 6: Output the class variable based on number of  

 votes(High number of votes) 
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Fig. 4. Proposed Methodology for Software Defect Prediction. 

IV. EXPERIMENTATION AND RESULTS 

 In this work, we addressed class imbalance problem using 
Synthetic Minority Oversampling Technique. After balancing 
the data, we applied principle component analysis for 
dimensionality reduction. In Table II, we are projecting few 
principle component values constructed on cm1 dataset, 
downloaded from NASA dataset repository. 

The reduced dataset is used to construct classifier using 
Adaptive Neuro Fuzzy Inference System. In this work, we 
applied AdaBoost Ensemble learning technique with ANFIS 
as base classifier. The performance of a classifier, constructed 
from imbalance data, can be measured using AuC (Area under 
ROC Curves). Receiver Operating Characteristics curves are 
constructed by plotting True positive rate against False 

positive rate. Area under this ROC curve is considered as a 
performance metric in our research work. 

We applied cost sensitive approach to our classifier. In 
cost sensitive approach, the cost values are derived from 
imbalance nature of data. We found cost sensitive approach 
improves the performance of classifier. We applied our 
proposed model on various software defect datasets cm1, pc1, 
kc1 and jm1. In the Table III, We are comparing the AuC 
values of our proposed model with results of methods 
proposed in literature survey. Fig. 5 to 16 compares the ROC 
curves of various techniques discussed in literature survey 
with proposed methodology. 

TABLE II. PRINCIPLE COMPONENT VALUES ON SOFTWARE DEFECT PREDICTION 

Attribute PC1 PC2 PC3 PC4 PC5 

loc 0.246323 0.031239 -0.08786 0.161044 -0.04483 

V.g 0.243657 0.057173 0.103265 0.084628 -0.0588 

ev.g. 0.205853 0.053904 0.118336 0.050775 -0.11766 

iv.g. 0.233961 0.073498 0.029074 0.145675 0.010602 

n 0.250283 -0.00128 -0.06655 -0.00328 0.006294 

v 0.250585 0.043622 -0.04154 0.067938 0.037045 

l -0.09998 0.657384 -0.0066 0.191268 0.294755 

d 0.211336 -0.14493 0.234525 -0.34617 -0.30322 

i 0.193738 -0.11365 -0.60919 0.121661 0.10463 

e 0.219659 0.167325 0.392074 0.132239 -0.0035 

b 0.247381 0.132791 -0.07955 -0.00411 -0.01886 

t 0.219659 0.167332 0.392072 0.132234 -0.0035 

IOCode 0.199326 0.034844 0.132263 -0.30874 0.501051 

IOComment 0.209861 0.048167 -0.12006 0.257712 -0.14999 

IOBlank 0.188142 -0.05663 -0.02223 -0.46712 0.52168 

locCC -0.01344 0.623327 -0.27367 -0.513 -0.40025 

u_op 0.218739 -0.21843 0.018721 -0.27123 -0.27324 

U_opnd 0.238652 -0.03448 -0.31957 0.088945 0.053283 

total_op 0.249928 -0.00192 -0.06993 0.008577 -0.01499 

total_opnd 0.248372 0.000253 -0.06084 -0.0222 0.039162 

branchCount 0.243334 0.040645 0.048155 0.08437 -0.06212 
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TABLE III. AUC VALUES OF VARIOUS MODELS WITH AND WITHOUT COST SENSITIVE TECHNIQUES 

Dataset CM1 PC1 KC1 JM1 

Base Classifier 
without Cost 

Sentive 

With Cost 

sensitive 

without 

Cost Sentive 

With Cost 

sensitive 

without 

Cost Sentive 

With Cost 

sensitive 

without 

Cost Sentive 

With Cost 

sensitive 

J-48 0.53 0.56 0.49 0.53 0.48 0.54 0.49 0.55 

Random Forest 0.53 0.74 0.51 0.71 0.5 0.72 0.51 0.69 

SVM 0.49 0.55 0.48 0.53 0.5 0.53 0.51 0.57 

K-NN 0.51 0.54 0.5 0.55 0.49 0.56 0.51 0.55 

MLP 0.5 0.55 0.49 0.56 0.47 0.58 0.49 0.56 

ANFIS 0.69 0.74 0.68 0.73 0.69 0.75 0.71 0.75 

ROC Curves 

J-48 ( Decision Tree) 

 

Fig. 5. ROC Curve using J-48 without Cost Sensitive. 

 

Fig. 6. ROC Curve using J-48 with Cost Sensitive. 

Random Forest (RF) 

 

Fig. 7. ROC Curve using RF without Cost Sensitive. 

 

Fig. 8. ROC Curve using RF with Cost Sensitive. 

Support Vector Machines (SVM) 

 

Fig. 9. ROC Curve using SVM without Cost Sensitive. 

 

Fig. 10. ROC Curve using SVM with Cost Sensitive. 

K Nearest Neighbour (KNN) 

 

Fig. 11. ROC Curve using KNN without Cost Sensitive. 

 

Fig. 12. ROC Curve using KNN with Cost Sensitive. 
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Multi Layer Perceptrons (MLP) 

 

Fig. 13. ROC Curve using MLP without Cost Sensitive. 

 

Fig. 14. ROC Curve using MLP with Cost Sensitive. 

Adaptive Neuro Fuzzy Inference System (ANFIS) 

 

Fig. 15. ROC Curve using ANFIS without Cost Sensitive. 

 

Fig. 16. ROC Curve using ANFIS with Cost Sensitive. 

V. CONCLUSION AND FUTURE WORK 

In this work, we proposed an hybrid approach cost 
effective problems in software defect prediction. To reduce 
number of dimensions, we applied Principle Component 
Analysis. Ensemble ANFIS were constructed for cost effective 
learning of software defects. We compared the performance of 
proposed models, with algorithms specified in literature 
survey, using AuC values. Our proposed model got 
approximately 15% high Auc values over all datasets. As a 
future work, we can improve the AuC values by addressing 
High dimensionality, Class Imbalance, Cost effective 
Problems in SDP. 
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