
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

145 | P a g e

www.ijacsa.thesai.org

An Hybrid Approach for Cost Effective Prediction of

Software Defects

Satya Srinivas Maddipati
1

Research Scholar, CSE Department

Koneru Lakshmaiah Education Foundations

Guntur, India

Malladi Srinivas
2

Professor, CSE Department

Koneru Lakshmaiah Education Foundations

Guntur, India

Abstract—Identifying software defects during early stages of

Software Development life cycle reduces the project effort and

cost. Hence there is a lot of research done in finding defective

proneness of a software module using machine learning

approaches. The main problems with software defect data are

cost effective and imbalance. Cost effective problem refers to

predicting defective module as non defective induces high penalty

compared to predicting non defective module as defective. In our

work, we are proposing a hybrid approach to address cost

effective problem in Software defect data. To address cost

effective problem, we used bagging technique with Artificial

Neuro Fuzzy Inference system as base classifier. In addition to

that, we also addressed Class Imbalance & High dimensionality

problems using Artificial Neuro Fuzzy inference system &

principle component analysis respectively. We conducted

experiments on software defect datasets, downloaded from NASA

dataset repository using our proposed approach and compared

with approaches mentioned in literature survey. We observed

Area under ROC curve (AuC) for proposed approach was

improved approximately 15% compared with highly efficient

approach mentioned in literature survey.

Keywords—Cost effective problem; principle component

analysis; adaptive neuro fuzzy inference system; area under ROC

curve

I. INTRODUCTION

Software Development process involves Requirement
specification, Design, Implementation and Testing. During
each phase of software development, reviews will be
conducted to assess the progress and quality of software. The
quality of software depends on defects found in the software.
Defect is a condition that doesn‟t meet user requirement,
specified in requirement specification. If a defect is found
during late stages of software development i.e. during
software maintenance, the penalty is very high. To reduce this
penalty, the defective proneness must be identified in advance
[27].

According to Boehm, the cost of fixing errors increased
gradually as the software development progress. If we
consider cost of fixing error during requirement phase as 1
unit, then the cost of fixing error in design phase will be 3-8
units, implementation phase will be 7 to 16 units, integration
& testing phase will be 21 to 78 units and maintenance phase
will be 29 to more than 1500 units. This motivates application
of machine learning techniques in early stage identification of
software defects [28]. Fig. 1 shows soft escalation of defect

resolving during various phases of software development life
cycle.

A. Machine Learning Techniques

Various Machine learning techniques such as K nearest
neighbours, Support Vector machines, Decision Trees,
Bayesian Networks and etc. are used to identify software
defects.

B. Approaches for Software Defect Prediction (SDP)

1) Decision trees: Decision Trees are used as early

classifier techniques for software defects. In a decision tree,

the attribute with less impurity value is selected as root node.

There are three measures for impurity 1) Entropy 2) Gini

Index 3) Misclassification error. Decision tree will output

whether the module is defective prone or not, based on input

attributes like IO Comments, Cyclometric complexities etc.

Fig. 2 shows Decision Tree constructed on cm1 dataset.

Fig. 1. Cost Escalation for Defect Solving during Phase of Software

Development.

Fig. 2. Decision Tree on CM1 Dataset.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

146 | P a g e

www.ijacsa.thesai.org

2) Bayesian Classifiers: Bayesian classifier uses Baye‟s

theorem to classify unknown sample. It comes under lazy

classifier. According to Bayes theorem, Conditional

probability P(Y=yi/X=xi) is defined as:

There are two types of Bayesian classifiers: 1) Naive
Baye‟s classifier 2) Bayesian Belief Networks.

Naive Baye‟s classifier: In Naive Baye‟s classifier, the
given unknown sample is considered as „X‟. The classifier
finds the posterior probability P (Defect=Yes/X) and P(
Defect=No/X) for given sample „X‟.

If P(Defect=Yes/X) > P(Defect=No/X), then classifier
outputs the sample „X‟ as defective. Otherwise it outputs the
given sample „X‟ as non defective. The drawback with Naive
Baye‟s classifier is, it assumes the target variable (Defect) is
independent on input variables.

Bayesian Belief Networks: In Bayesian Belief Networks,
There are two components: 1) Direct Acyclic Graph (DAG);
2) Probability table DAG encodes the relationship between
attributes into a graph. Probability table comprises of posterior
probabilities dependent on their parent attributes. Fig. 3
represents the DAG, constructed on cm1 dataset.

Fig. 3. Directed Acyclic Graph for Software Defect Prediction.

3) Support vector machines: Support vector machines are

one of the popular classifier technique for regression and

classification problems. Binary Support Vector Machines

solves classification tasks while support vector regression

solves regression tasks. Software defect prediction is a

classification problem and hence Binary Support Vector

Machines are used to classify the module as defective or non-

defective. In support vector machines, there exist a boundary

function that classify sample. There are various types of

boundary functions like Linear, Polynomial, Radial basis,

ANOVA and etc.

Polynomial Support Vector Machine:

Defect = -0.0062 * (normalized) loc+ 0.0043 *
(normalized) iv(g) +0.0044 * (normalized) i+0.012 *
(normalized) IOComment + -0.0021 * (normalized) IOBlank
+ 0.0004 * (normalized) u_op +-0.0054 * (normalized)
U_opnd - 1.0005.

Multi Layer Perceptrons: Multi layer perceptrons are the
neural networks which comprises Processing units, called

neurons, organized in multiple layers. These neurons are
having computing capabilities on inputs, receiving from
previous layers, and propagate output to the next layers. These
neurons are connected by weighted edges. Each neurons
applies activation functions on the inputs along with threshold
and produces output signals. There are various activation
functions like Threshold, sigmoid, Tangible and etc.

Table I illustrates the architecture of multi layer
perceptrons along with nodes, connections and their weights.

Artificial Neuro Fuzzy Inference System:

Artificial Neuro Fuzzy Inference System: ANFIS is a five
layered architecture used for classification tasks. Satya
srinivas et al. [26] proposed Artificial Neuro Fuzzy Inference
System for Software defect prediction.

ANFIS generates Sugeno Fuzzy Inference system as
output for classification task. In ANFIS input attributes are
fuzzified and target attribute is defuzzified. Intially subtractive
clustering method is used to generate Sugeno fuzzy inference
system. The premise and consequent parameters in Sugeno
Fuzzy inference system are trained used training data. Here
training rate parameter must be set to appropriate value.
Setting high training rate parameter converges the ANFIS
model into unstable state. Setting low training rate parameter
creates high complexity model.

4) Cost effective learning: Misclassifying some class

samples results high penalty compared to misclassification of

other classes. For example, in software Defect prediction,

misclassifying defective module as non defective imposes

high penalty compared to misclassifying non defective module

as defective. If a defect was found during later stages of

software development, it imposes high penalty and hence

pronable defective module should not be misclassified as non

defective even though non defective module was misclassified

as defective. This error cost escalation was shown in Fig. 1.

5) Ensemble learning: Ensemble learning is the process

of constructing multiple classifiers and combining them to

improve the accuracy for classification problems. Some of the

ensembling techniques are Simple voting, Average voting,

Bagging, Boosting and etc. In simple voting, each classifier

will vote for an output value. The output, value with high

number of votes, considered as actual output. In average

voting, the average value of output of each classifier is

considered as actual output. This technique is suitable for

regression tasks. In Bagging, the dataset is sampled into equal

size subsets of data and a classifier is constructed with each

subset. Finally each classifier will vote for output value.

Bagging and Boosting techniques improves the performance

of classifiers by constructing multiple classifiers.

In Bagging, classifiers are constructed in sequence. The
samples which are incorrectly classified are given with higher
weight for construction of next classifier. This procedure is
repeated until required accuracy obtained or maximum
numbers of classifiers were constructed.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

147 | P a g e

www.ijacsa.thesai.org

TABLE I. MULTI LAYER PERCEPTRONS NODES, CONNECTIONS AND WEIGHTS

Node Inputs Weights Node Inputs Weights Node Inputs Weights

0 Threshold -3.79506 2 Attrib u_op 4.04982 4 Attrib u_op 3.31857

0 Node 2 4.53581 2 Attrib U_opnd 4.93275 4 Attrib U_opnd 4.17034

0 Node 3 3.66528 3 Threshold -4.9707 5 Threshold -9.06268

0 Node 4 5.20758 3 Attrib loc 2.20562 5 Attrib loc -3.81299

0 Node 5 3.18853 3 Attrib iv(g) -7.07055 5 Attrib iv(g) -1.35707

1 Threshold 3.79522 3 Attrib i -6.27414 5 Attrib i -0.84483

1 Node 2 -4.50871 3 Attrib IOComment -2.75564 5 Attrib IOComment -4.81926

1 Node 3 -3.66711 3 Attrib IOBlank -1.19511 5 Attrib IOBlank 3.59625

1 Node 4 -5.23767 3 Attrib u_op 0.39515 5 Attrib u_op -5.56998

1 Node 5 -3.18676 3 Attrib U_opnd 3.76011 5 Attrib U_opnd -1.61555

2 Threshold -2.83258 4 Threshold -2.79212 Class FALSE

2 Attrib loc 4.66117 4 Attrib loc 4.39579 Input

2 Attrib iv(g) 0.10108 4 Attrib iv(g) 2.53554 Node 0

2 Attrib i -1.00049 4 Attrib i -0.01669 Class TRUE

2 Attrib IOComment -8.27215 4 Attrib IOComment -9.35516 Input

2 Attrib IOBlank 0.286789 4 Attrib IOBlank 0.769326 Node 1

In this paper, we are applying hybrid approach to
overcome cost effective problem in SDP. Section II presents
literature survey on SDP. In Section III, we designed
methodology using hybrid approach for SDP. Section IV
Presents the results by applying proposed methodology on
SDP.

II. LITERATURE SURVEY

Yan Naung Soe et al. proposed Random Forest algorithm
on Software Defect Prediction and compared the performance
of Random forest algorithm with other machine learning
techniques. They concluded that maximum accuracy is 99.59
and minimum accuracy is 85.96[1]. Taek Lee et al. proposed
micro interaction metrics, such as browsing events, file
editing, for prediction of software defects and observed high
accuracy by combining these metrics with existing metrics in
cost effective manner [2]. Fei Wu et al. proposed a cost-
sensitive local collaborative representation (CLCR) approach
for software defect prediction and concluded that accuracy has
been increased with proposed approach [3]. Jinsheng Ren et.al
proposed asymmetric kernel principle component analysis for
solving class imbalance problem in software defect prediction.
They evaluated the validity of their proposed model using F-
measure, Friedman‟s test, and Tukey‟s test [4].

Ayse Tosun et al. proposed decision threshold
optimization on Naive Bayes classifier to find best threshold
that separate defective and non-defective samples in software
defect data [5]. Ming Cheng et al. proposed semi supervised
approach for identification of software defects. Their proposed
model evaluates the confidence probability of unlabelled
sample to predict class labels. They considered different
misclassification cost to improve classifier performance [6].
Igor Ibarguren et al proposed consolidated tree construction
that ensembles weights of misclassification in training of

classifier. They showed that consolidated tree construction
performs better than other rule based classifiers [7]. Yuanxun
Shao et.al proposed weighted associative classification for
addressing imbalance problem in software defect prediction.
They determined weights of features using correlation
analysis. They proved GMean measure has been increased
with their approach [8]. Shuo Feng et al. proposed complexity
based over sampling technique to address data imbalance
problem in identification of software defects [9]. Rakesh Rana
et al. proposed Bayesian Inference method for software defect
prediction to analyse inflow distribution of defects. This
technique has been used for early detection of software defects
in large software projects [10].

Guisheng Fan et.al proposed attention based recurrent
neural networks for software defect prediction. Their
experimental results shows that the proposed model increases
F1 score by 14% and AUC by 7% [11]. Sushant Kumar et al.
proposed Deep representation and ensemble learning for
Software defect prediction. They conducted experiments on 12
NASA Dataset repositories. Among 12 datasets, F Measure
has been increased for 8 datasets, ROC values has been
increased for 6 datasets, PRC values has been increased for 12
datasets and MCC values has been increased for 11
datasets[12]. Rodrigo et al. proposed ensemble of clustering
using Particle Swarm Optimization for prediction of Software
defects and concluded that prediction quality has been
increased [13]. Shamsul Huda et al. proposed ensemble over
sampling algorithm for prediction of software defects [14].
Shanthini. et al. proposed Ensemble SVM approach for
prediction of software defects[15]. Nageswara Rao et.al
proposed Ensemble Bayesian networks for prediction of
Software Defects and proved that their proposed model have
high true positive rate compared to traditional methods [16].
Steven Young et al. proposed deep super learner for Just in
time defect prediction. They used bagging of random forests

https://www.sciencedirect.com/science/article/abs/pii/S0950705120301581#!
https://www.sciencedirect.com/science/article/abs/pii/S0950705120301581#!
https://www.sciencedirect.com/science/article/abs/pii/S0957417419308024#!

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

148 | P a g e

www.ijacsa.thesai.org

and concluded that F1 score was improved for 5 of 6 projects
[17]. Arvinder Kaur et al investigated different ensemble
techniques such as Boosting, Bagging and Rotation forest in
prediction of software defects. They conducted Wilcoxon
signed rank test to prove ensemble techniques outperforms
traditional techniques in generalization of results [18]. Thanh
Tung et al proposed ensemble model by combining sampling
technique with common classification technique to improve
the performance of classifier [19].

Jaroslaw Hryszko et al investigated the effect of Software
defect in modules on Quality assurance of Software. Their
investigation proved that quality assurance cost can be
reduced by 30% with their proposed approach [20]. Kazuya
Tanaka et al focused on usage of auto-sklearn tool that
automatically selects appropriate prediction model for data pre
processing and classification in software defect prediction.
This tool presents random forest is the best model in various
machine learning techniques [21]. Pradeep Singh proposed
stacking based framework, in which he combined class
balancing technique SMOTE with ensemble classifiers to
predict software defects. He concluded that the accuracy of
stacking based model increased compared to traditional
approaches used in their literature survey [22]. Haitao He et al
proposed Ensemble RIPPER classifier for software defect
prediction. In their research, they applied Principle component
analysis for dimensionality reduction, Adaptive Synthetic
sampling for balancing the dataset and RIPPER model for
classification. They concluded that classification error has
been reduced with their proposed model [23]. Zhiqiang Li et
al proposed ensemble multiple kernel correlation alignment
for heterogeneous defect prediction and they concluded
ensemble approach outperforms remaining competing
methods [24]. Xin Xia et al proposed Hybrid model
reconstruction (HYDRA) approach for Software defect
prediction. It consists of two phase‟s Genetic algorithm
followed by Ensemble learning. They concluded that HYDRA
improves F1 score of Zero-R base classifier [25].

In prediction of software defects, some researchers
addressed class imbalance problem and someone addressed
high dimensionality problem. But In this research work, we
are addressing cost effective problem in SDP.

III. METHODOLOGY

In this paper, we are proposing Ensemble approach of
Adaptive Neuro Fuzzy Inference system for prediction of
Software defects for cost effective learning. In step 1, we are
performing Synthetic Minority oversampling technique
(SMOTE) to balance the dataset. In step 2, Dimensionality
reduction will be performed to reduce the dataset. Here, we
are proposing Principle component analysis (PCA) for

dimensionality reduction. In step 3, multiple ANFIS classifiers
will be constructed for ensemble approach. In step 4,
Aggregation will be performed on votes given by multiple
ANFIS classifiers and it produces the actual output.

In our research work, we considered data from NASA
dataset repository. The dataset is neither noisy nor in complete
but imbalanced. To remove imbalance, we are applying
SMOTE technique and to overcome for high dimensionality
problem we are applying PCA. Fig. 4 represents the proposed
methodology for SDP.

Algorithm:

Step 1: Apply Synthetic Minority Over Sampling Technique

for Class Balance.

1.1 Choose a random sample from minority class.

1.2 Identify k-nearest neighbours from chosen sample

1.3 For each neighbour sample

1.3.1 construct a line from chosen sample to

nearest neighbour

1.3.2 Add more number samples by picking

of points on the line

1.4 Repeat steps 1.1 to 1.3 until two classes samples are

equal.

Step 2: Apply Dimensionality reduction using PCA

 2.1 Perform Z score normalization on data.

 Z-score = (xi – μ)/

 2.2 Create a covariance matrix for eigen decomposition.

 2.3 select principle components with high relevance.

Step 3: Construct classifier using Artificial Neuro Fuzzy

 Inference system

 3.1 Fuzzify input variable

 3.2 Apply membership function on input variable

 3.3 Calculate weighted average

 3.4 calculate contribution of each fuzzy rule

 3.5 Output sum of all incoming signals.

Step 4: Repeat steps 1 to Step 3 for multiple times (Possibly

 odd number of times).

Step 5: find number of votes for each class from multiple

 classifiers

Step 6: Output the class variable based on number of

 votes(High number of votes)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

149 | P a g e

www.ijacsa.thesai.org

Fig. 4. Proposed Methodology for Software Defect Prediction.

IV. EXPERIMENTATION AND RESULTS

 In this work, we addressed class imbalance problem using
Synthetic Minority Oversampling Technique. After balancing
the data, we applied principle component analysis for
dimensionality reduction. In Table II, we are projecting few
principle component values constructed on cm1 dataset,
downloaded from NASA dataset repository.

The reduced dataset is used to construct classifier using
Adaptive Neuro Fuzzy Inference System. In this work, we
applied AdaBoost Ensemble learning technique with ANFIS
as base classifier. The performance of a classifier, constructed
from imbalance data, can be measured using AuC (Area under
ROC Curves). Receiver Operating Characteristics curves are
constructed by plotting True positive rate against False

positive rate. Area under this ROC curve is considered as a
performance metric in our research work.

We applied cost sensitive approach to our classifier. In
cost sensitive approach, the cost values are derived from
imbalance nature of data. We found cost sensitive approach
improves the performance of classifier. We applied our
proposed model on various software defect datasets cm1, pc1,
kc1 and jm1. In the Table III, We are comparing the AuC
values of our proposed model with results of methods
proposed in literature survey. Fig. 5 to 16 compares the ROC
curves of various techniques discussed in literature survey
with proposed methodology.

TABLE II. PRINCIPLE COMPONENT VALUES ON SOFTWARE DEFECT PREDICTION

Attribute PC1 PC2 PC3 PC4 PC5

loc 0.246323 0.031239 -0.08786 0.161044 -0.04483

V.g 0.243657 0.057173 0.103265 0.084628 -0.0588

ev.g. 0.205853 0.053904 0.118336 0.050775 -0.11766

iv.g. 0.233961 0.073498 0.029074 0.145675 0.010602

n 0.250283 -0.00128 -0.06655 -0.00328 0.006294

v 0.250585 0.043622 -0.04154 0.067938 0.037045

l -0.09998 0.657384 -0.0066 0.191268 0.294755

d 0.211336 -0.14493 0.234525 -0.34617 -0.30322

i 0.193738 -0.11365 -0.60919 0.121661 0.10463

e 0.219659 0.167325 0.392074 0.132239 -0.0035

b 0.247381 0.132791 -0.07955 -0.00411 -0.01886

t 0.219659 0.167332 0.392072 0.132234 -0.0035

IOCode 0.199326 0.034844 0.132263 -0.30874 0.501051

IOComment 0.209861 0.048167 -0.12006 0.257712 -0.14999

IOBlank 0.188142 -0.05663 -0.02223 -0.46712 0.52168

locCC -0.01344 0.623327 -0.27367 -0.513 -0.40025

u_op 0.218739 -0.21843 0.018721 -0.27123 -0.27324

U_opnd 0.238652 -0.03448 -0.31957 0.088945 0.053283

total_op 0.249928 -0.00192 -0.06993 0.008577 -0.01499

total_opnd 0.248372 0.000253 -0.06084 -0.0222 0.039162

branchCount 0.243334 0.040645 0.048155 0.08437 -0.06212

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

150 | P a g e

www.ijacsa.thesai.org

TABLE III. AUC VALUES OF VARIOUS MODELS WITH AND WITHOUT COST SENSITIVE TECHNIQUES

Dataset CM1 PC1 KC1 JM1

Base Classifier
without Cost

Sentive

With Cost

sensitive

without

Cost Sentive

With Cost

sensitive

without

Cost Sentive

With Cost

sensitive

without

Cost Sentive

With Cost

sensitive

J-48 0.53 0.56 0.49 0.53 0.48 0.54 0.49 0.55

Random Forest 0.53 0.74 0.51 0.71 0.5 0.72 0.51 0.69

SVM 0.49 0.55 0.48 0.53 0.5 0.53 0.51 0.57

K-NN 0.51 0.54 0.5 0.55 0.49 0.56 0.51 0.55

MLP 0.5 0.55 0.49 0.56 0.47 0.58 0.49 0.56

ANFIS 0.69 0.74 0.68 0.73 0.69 0.75 0.71 0.75

ROC Curves

J-48 (Decision Tree)

Fig. 5. ROC Curve using J-48 without Cost Sensitive.

Fig. 6. ROC Curve using J-48 with Cost Sensitive.

Random Forest (RF)

Fig. 7. ROC Curve using RF without Cost Sensitive.

Fig. 8. ROC Curve using RF with Cost Sensitive.

Support Vector Machines (SVM)

Fig. 9. ROC Curve using SVM without Cost Sensitive.

Fig. 10. ROC Curve using SVM with Cost Sensitive.

K Nearest Neighbour (KNN)

Fig. 11. ROC Curve using KNN without Cost Sensitive.

Fig. 12. ROC Curve using KNN with Cost Sensitive.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

151 | P a g e

www.ijacsa.thesai.org

Multi Layer Perceptrons (MLP)

Fig. 13. ROC Curve using MLP without Cost Sensitive.

Fig. 14. ROC Curve using MLP with Cost Sensitive.

Adaptive Neuro Fuzzy Inference System (ANFIS)

Fig. 15. ROC Curve using ANFIS without Cost Sensitive.

Fig. 16. ROC Curve using ANFIS with Cost Sensitive.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed an hybrid approach cost
effective problems in software defect prediction. To reduce
number of dimensions, we applied Principle Component
Analysis. Ensemble ANFIS were constructed for cost effective
learning of software defects. We compared the performance of
proposed models, with algorithms specified in literature
survey, using AuC values. Our proposed model got
approximately 15% high Auc values over all datasets. As a
future work, we can improve the AuC values by addressing
High dimensionality, Class Imbalance, Cost effective
Problems in SDP.

REFERENCES

[1] Yan Naung Soe , Paulus Insap Santosa, Rudy Hartanto, “Software
Defect Prediction Using Random Forest Algorithm”, 2018 12th South
East Asian Technical University Consortium (SEATUC), DOI:
10.1109/SEATUC.2018.8788881.

[2] Taek Lee, Jaechang Nam, Donggyun Han, Sunghun Kim, Hoh Peter In,”
Developer Micro Interaction Metrics for Software Defect Prediction”,
IEEE Transactions on Software Engineering,42(11).

[3] Fei Wu; Xiao-Yuan Jing; Xiwei Dong; Jicheng Cao; Baowen Xu; Shi
Ying “Cost-Sensitive Local Collaborative Representation for Software

Defect Prediction”, 2016 International Conference on Software
Analysis, Testing and Evolution (SATE), DOI: 10.1109/SATE.2016.24.

[4] Jinsheng Ren, Ke Qin, Ying Ma, Guangchun Luo,” On Software Defect
Prediction Using Machine Learning”,Journal of Applied
Mathematics,2014.

[5] Ayse Tosun, Ayse Bener, “Reducing false alarms in software defect
prediction by decision threshold optimization”, 2009 3rd International
Symposium on Empirical Software Engineering and Measurement. DOI:
10.1109/ESEM.2009.5316006.

[6] CHENG Ming, WU Guoqing, YUAN Mengting and WAN Hongyan,
“Semi-supervised Software Defect Prediction Using Task-Driven
Dictionary Learning”, Chinese Journal of Electronics,25(6).

[7] Igor Ibarguren, Jesus M.P´erez ´, Javier Mugerza , Daniel Rodriguez,
Rachel Harrison” , The Consolidated Tree Construction Algorithm in
Imbalanced Defect Prediction Datasets”, 2017 IEEE Congress on
Evolutionary Computation (CEC), DOI: 10.1109/CEC.2017.7969629.

[8] Yuanxun Shao,Bin Liu,Shihai Wang,Guoqi Li,” Software defect
prediction based on correlation weighted class association rule mining”,
Knowledge-Based Systems,196.

[9] Shuo Feng, Jacky Keung, Xiao Yu, Yan Xiao, Kwabena Ebo Bennin,
Md Alamgir Kabir, Miao Zhang, “COSTE: Complexity-based
OverSampling TEchnique to alleviate the class imbalance problem in
software defect prediction”, Information and Software Technology,129.

[10] Rakesh Rana , Miroslaw Staron , Christian Berger , Jorgen Hansson ,
Martin Nilsson , Wilhelm Meding , Analyzing Defect Inflow
Distribution and Applying Bayesian Inference Method for Software
Defect Prediction in Large Software Projects, The Journal of Systems &
Software (2016), doi: 10.1016/j.jss.2016.02.015.

[11] Guisheng Fan, Xuyang Diao, Huiqun Yu, Kang Yang and Liqiong
Chen,”Software Defect Prediction via Attention-Based Recurrent Neural
Network”, Scientific Programming,2019.

[12] Sushant Kumar Pandey, Ravi Bhushan Mishra, Anil Kumar
Tripathi,“BPDET: An effective software bug prediction model using
deep representation and ensemble learning techniques”,Expert Systems
with Applications,144,2020.

[13] Rodrigo A. Coelho; Fabrício dos R.N. Guimarães; Ahmed A.A. Esmin,”
Applying Swarm Ensemble Clustering Technique for Fault Prediction
Using Software Metrics”, 2014 13th International Conference on
Machine Learning and Applications, DOI: 10.1109/ICMLA.2014.63.

[14] Shamsul Huda, Kevin Liu, Mohamed Abdelrazek, Amani Ibrahim,
Sultan Alyahya, Hmood Al-Dossari and Shafiq Ahmad,” An ensemble
Oversampling Model for Class Imbalance Problem in Software Defect
Prediction”, SPECIAL SECTION ON SOFTWARE STANDARDS
AND THEIR IMPACT IN REDUCING SOFTWARE
FAILURES,2018.

[15] Shanthini. A, R M Chandrasekaran, ”Analyzing the Effect of Bagged
Ensemble Approach for Software Fault Prediction in Class Level and
Package Level Metrics”, International Conference on Information
Communication and Embedded Systems (ICICES2014), DOI:
10.1109/ICICES.2014.7033809.

[16] Nageswara Rao Moparthi, Dr. N. Geethanjali,” Design and
implementation of hybrid phase based ensemble technique for defect
discovery using SDLC software metrics”, 2016 2nd International
Conference on Advances in Electrical, Electronics, Information,
Communication and Bio-Informatics (AEEICB), DOI:
10.1109/AEEICB.2016.7538287.

[17] Steven Young; Tamer Abdou; Ayse Bener,” A Replication Study: Just-
in-Time Defect Prediction with Ensemble Learning”, 2018 IEEE/ACM
6th International Workshop on Realizing Artificial Intelligence
Synergies in Software Engineering (RAISE).

[18] Arvinder Kaur and Kamaldeep Kaur,” Performance Analysis of
Ensemble Learning for Predicting Defects in Open Source Software”,
2014 International Conference on Advances in
Computing,Communications and Informatics (ICACCI).

[19] Thanh Tung Khuat, My Hanh Le, “Ensemble learning for software fault
prediction problem with imbalanced data”, International Journal of
Electrical and Computer Engineering (IJECE),9(4),2019.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

152 | P a g e

www.ijacsa.thesai.org

[20] Jaroslaw Hryszko, Lech Madeyski, ” Cost Effectiveness of Software
Defect Prediction in an Industrial Project”, Foundations of Computing
and Decision Sciences,43(1),2018.

[21] Kazuya Tanaka; Akito Monden; Zeynep Yücel,” Prediction of Software
Defects Using Automated Machine Learning”, 2019 20th IEEE/ACIS
International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing
(SNPD),DOI: 10.1109/SNPD.2019.8935839.

[22] Pradeep Singh,” Stacking based approach for prediction of faulty
modules”, 2019 IEEE Conference on Information and Communication
Technology (CICT).

[23] Haitao He, Xu Zhang, Qian Wang, Jiadong Ren, Jiaxin Liu, Xiaolin
Zhao, Yongqiang Cheng,” Ensemble MultiBoost Based on RIPPER
Classifier for Prediction of Imbalanced Software Defect Data”, IEEE
Access,7.

[24] Z. Li, X. Jing, X. Zhu and H. Zhang, "Heterogeneous Defect Prediction
Through Multiple Kernel Learning and Ensemble Learning," 2017 IEEE

International Conference on Software Maintenance and Evolution
(ICSME), Shanghai, 2017, pp. 91-102, doi: 10.1109/ICSME.2017.19.

[25] X. Xia, D. Lo, S. J. Pan, N. Nagappan and X. Wang, "HYDRA:
Massively Compositional Model for Cross-Project Defect Prediction," in
IEEE Transactions on Software Engineering, vol. 42, no. 10, pp. 977-
998, 1 Oct. 2016, doi: 10.1109/TSE.2016.2543218.

[26] Boehm, B. W., Software Engineering Economics, Prentice-Hall,
Englewood Cliffs, NJ, 1981.

[27] Satya Srinivas Maddipati, Dr. G Pradeepini,Dr. A Yesubabu,” Software
Defect Prediction using Adaptive Neuro Fuzzy Inference System”,
International Journal of Applied Engineering Research ,ISSN 0973-4562
,Volume 13, Number 1 (2018) pp. 394-397.

[28] R Anand, Dr. K David, Dr.S. Stanley Sagayaraj,”Identifing the impact
of Defects among the Defect types in Software Development Proects”,
ICSTM, May 2015,pp. 146-152.

