
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

220 | P a g e

www.ijacsa.thesai.org

An Enhanced Artificial Bee Colony: Naïve Bayes

Technique for Optimizing Software Testing

Palak
1*

, Preeti Gulia
2
, Nasib Singh Gill

3

Department of Computer Science and Applications

Maharshi Dayanand University, Rohtak, India

Abstract—Software driven technology has become a part of

life and the quality of software largely depends on the extent of

effective testing performed during various phases of

development. A wide range of nature inspired searching

techniques are employed over years to automate the testing

process and provide promising solutions to elude the infeasibility

of exhaustive testing. These techniques use metaheuristics and

work by converting the problem space into search space. A

subset of optimized solutions is searched that reduces overall

time by shortening the testing time. Objective: An enhanced

Artificial Bee Colony- Naïve Bayes optimizer for test case

selection is proposed in this paper. This article also aims to

provide brief insights into the emergence of hybrid swarm-

inspired techniques over the last two decades. Method: The

modified Artificial Bee colony is applied after component

selection and further optimization is achieved using Naïve Bayes

classifier. The proposed technique is implemented and evaluated

taking three benchmark programs into consideration. The

proposed technique is also compared to other competitive swarm

intelligence-based techniques of its class. Results: The

experimental results show that the proposed technique

outperforms other swarm-inspired techniques in terms of

execution time in a given scenario and capable of higher

detection of faults with minimal test case selection. Conclusion:

The proposed approach is an improvement over existing

techniques and helps in huge time and cost saving. It will

contribute to the testing society and enhance the overall quality

of the software.

Keywords—Software testing; artificial bee colony; swarm

intelligence; Naïve Bayes; test case selection

I. INTRODUCTION

Increasing demand in robust software can be seen as a
consequence of rapidly developing hardware industry and
outburst in evolution of technology. Smart devices have
become our part of our surroundings. Software testing is a
very important phase of development of robust software which
involves finding possible faults and errors so that the final
product meets the overall expectation of the customer without
failing. Software testing has always been a hot topic of
research for software industry practitioners and researchers. It
is the procedure of the identification and authentication of the
software services by selecting if it is fulfilling the user's needs.
Despite checking correctness of input and output during
testing there are many other concerns to deal with. Some of
them include dead code, redundant code, faulty components,
exceptions etc. These aspects principally affect the overall
performance and customer satisfaction. Though, specifications
are frequently ignored and there are numerous obstructions to

the execution, including the inadequate design, phase limits,
absence of automatic apparatuses, and so forth. The cost of
testing increases with complexity of the system. More
important aspects to be considered are the continuous updates
in the system and addition of new functionalities. The
configurable architecture of the software now- a- days makes
the testing process more difficult due to the behavioral
changes of components at each configuration (Myra B. Cohen
et al. 2007). Poor testing ultimately leads to system failure and
lowers down the faith of the customer. The significance of
software testing is that it helps the software programmers for
building error-free and acceptable software. A worthy and
quality test suite can catch most of the errors without jumping
time constraints. The process of testing is carried out at
functional (Black Box) as well as structural level (White Box).
Functional testing aims to check correctness of the input and
output only whereas structural testing checks the deep insights
at the root level considering the architectural aspects of the
program.

Optimization of testing processes can be done at several
levels of software testing life cycle. The field of automated
testing is growing day by day due to various underlying
benefits. With the increase in dependence of software and
ever-growing system requirements, manual testing is not
possible at every level of development. Manual testing is time
consuming whereas automated testing is fast and repeatable.
Smaller projects are feasible to be tested manually but this is
not the case for large dynamic projects. The manual testing
time rises exponentially with increase in the length of code but
this is not the case in automated testing. All you need to do is
to write an isolated code called a ―Test Code‖ to test the main
functional code. This code can be executed any number of
times to find errors whenever required. One more important
benefit to mention here is that automated testing permits you
to refactor (―changing the structure without altering the actual
functionality‖) the code without any hustle to manually test
the code every time you refactor the code. From automated
generation of effective test suites to test case selection and
prioritization, research is going on which encompasses meta-
heuristics and artificial intelligence. Automated testing helps
you emphasize more on the quality of the software rather than
memorizing what and how to test. Test automation can be
done at various levels. Unit testing automation involves
testing each independent functional unit without considering
the external dependencies. Optimization of such activities
utilizes various engineering domains like data mining,
artificial intelligence, machine learning, swarm intelligence
and many more. Over years, soft computing has emerged as a

*Corresponding Author

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

221 | P a g e

www.ijacsa.thesai.org

promising solution towards optimization problems that
involves metaheuristics [1]. Various evolutionary algorithms
are also preferred over random search techniques for test suite
generation that attracts researchers in this field [2]. This paper
also aims to utilize a swarm-based approach for optimization
in the testing process.

Rest of the paper is organized as: Section II briefs the
emergence of various swarm inspired techniques according to
the timeline over the past two decades. Section III presents
related work present in different literature over recent years in
the similar domain of hybrid Artificial Bee Colony (ABC)
optimization techniques. The proposed method in the form of
a flowchart is presented in Section IV. Results and evaluation
of the research are reported in Section V. Finally, the overall
conclusion of the paper is given in Section VI along with the
future scope of the article.

II. RELATED WORK

Swarm Intelligence (SI) is a popular field of research that
is motivated by the natural phenomenon of a population
(group) of various living organisms in their natural habitat for
search of food, shelter and security. Over the past few decades
swarm-based optimization techniques are emerging at a very
fast pace due to the inherent flexibility and robustness [3]. SI
refers to collective intelligence that has attracted researchers in
almost every area of industry. The community behavior of real
living organisms dwelling in nature to protect and feed their
community is the real inspiration behind SI. The individuals of
a swarm interact mutually with each other and also locally
with their surroundings in a decentralized way for survival
forming a coherent system that can be modelled into a
functional pattern [4]. SI laid its roots in the early 1990s and
has become an ever-evolving field since then. This section
gives brief glimpses of some important swarm-based
optimization techniques that have emerged till date and
applied in the field of software testing.

In 1999, ―Ant colony optimization (ACO)‖ was proposed
which is inspired by food searching behavior of colonies of
real ants [5]. Ants communicate with each other by secreting a
chemical substance on their path. The concentration of this
chemical increases on the shorter path when the number of
ants taking that path increases over time. This simple but
robust behavior gave the inspiration to build a meta-heuristics
model that can be used in various search optimization
problems. ACO is well utilized in test case generation,
selection and prioritization problems in past few years [6] [7]
[8]. The problem of testing optimization is first converted to
graphical search problem and then ACO is applied [9].
Various hybrid approaches with ACO have also been

proposed with other techniques such as Genetic Algorithm
(GA) which aims to select a minimal test suite for higher fault
coverage [10].

An efficient algorithm inspired from the social behavior of
bees in the search of food was given by Dervis Karaboga et al.
in [11] named as ―Artificial Bee Colony (ABC)‖
Optimization. They considered three types of bees and
converted their behavior to a mathematical model. Initially
half of the bees in the beehive are termed as ―Employed
Bees‖. They search for the food randomly near the hive and
come back to the hive. They dance in front of the second set of
the bees called ―Onlooker Bees‖. This dance serves as the
probability function for comparison and selection of the better
food source. If the food source of any Employed Bee is
exhausted then it becomes the scout and serves as the stopping
criteria for the algorithm.

Due to its lightweight deployment with very small
amounts of controller factors, numerous hard works have been
done to discover ABC research. ABC has gained popularity
since its origin and researchers are more interested in making
hybrid algorithms that provide more diversification in
searching the solution. ABC is inspired from natural behavior
of honeybees in the search of nectar and their community
behavior in maintaining the highest nectar collection. The
success of ABC can be anticipated by vast literature available
under reputed indexing that shows the interest of researchers
in this approach. Originally the ABC technique employs three
types of bees: Employed, Onlooker and Scout bees [11]. The
employed bees are linked to a definite food source. Initially
one employed bee is assigned to a food source. They transmit
vital information such as navigation information, location and
the profitability of the food source and carry the data with the
rest of bees at the beehive. The onlooker bees are accountable
for food source detection exploiting the information delivered
by employed bees. The scout bees dispensed randomly to hunt
the new food source whenever there is no further improved
solution is found by either employed or onlooker bees [D.
Karaboga, 2005]. The assumption is that the employed bees
whose food source is exhausted are transformed into ―scout
bees'' and commence a new exploration for the food source.
The parallel conduct of these three bees speeds up the
generation of feasible independent paths and software test
suite optimization. ABC performs competitively to other
conventional soft computing techniques and has gained
popularity over last decade due to its easy implementation.
Various hybrid and enhanced ABC techniques evolved over
the past decade that are used for optimization problems
especially in the field of software testing. Table I provides a
brief insight into such hybrid ABC techniques:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

222 | P a g e

www.ijacsa.thesai.org

TABLE I. EXISTING HYBRID ARTIFICIAL BEE COLONY BASED OPTIMIZATION TECHNIQUES

Author Year Technique used Application Area

[Lakshminarayana P et al. [12]] 2021 Hybrid Cuckoo Search and Bee Colony Algorithm
Optimization of test cases and generation of

path convergence within

[Hussain, Kashif et al. [13]] 2020 Scoutless ABC Model-driven testing

[Saju Sankar S et al. [14]] 2020
Comprehensive Improved Ant Colony Optimization

(ACIACO)
Automated test case generation

[Ammar K. Alazzawi et al. [15] [16]] 2019, 2020
Hybrid artificial bee colony algorithm and practical
swarm optimization with constraint support

Generation of variable t-way test sets

[Snehlata Sheoran et al. [17]] 2019 Memory based ABC
Data flow testing to find out and prioritize

the definition-use paths

[Hu Peng et al. [18]] 2019 Best Neighbor-guided artificial bee colony Continuous optimization problems

[Sandeep Dalal et al. [19]] 2018 BCO-m-GA Test case selection

[Faten Hamad [20]] 2018 Modified ABC Software structural testing

[Sahoo, Rajesh et al. [21]] 2017 Hybrid PSO and BCA Model-driven testing

Zohreh Karimi Aghdam et al. [22] 2017 Modified Fitness Function in ABC
Generate Test Data

for Software Structural Testing

Xianneng Li et al. [23] 2016 Artificial bee colony algorithm with memory Continuous optimization problems

D. Karaboga et al. [24] 2014
Quick ABC with different functions for employed and

onlooker bees
Numerical Optimization Problems

III. PROPOSED APPROACH (ENHANCED ABC- NAÏVE BAYES

OPTIMIZATION)

In this section, a novel ―Enhanced ABC- Naïve Bayes
Optimization (ABC-NB)‖ is proposed for software test case
selection. Fig. 1 shows the flowchart of proposed
methodology that is inspired from memory-based ABC [17],
[19], [23] along with the Naïve Bayes Classifier to further
enhance the results.

ABC is highly exploited in the field of software testing
that shows the capability of the method. ABC also provides
the inherent advantage of independent and parallel behavior of
three types of honey bees. Also, this is a non- pheromone-
based technique that decreases the computational complexity
up to a great extent [25]. That’s why we prefer ABC over
other swarm-based techniques for optimization of the testing
process. The algorithm starts with the selection of the project.
We are considering Components Based Software (CBS)
development paradigm into account due to the inherent
modularity and capability of handling complex projects.

The proposed approach works as follows: component-
based projects are selected and uploaded to the repository and
their individual components are extracted. Here components
refer to each individual unit of work that has predefined
interfaces and boundaries. Further each component is
subdivided into modules. A component may consist of one of
more modules and other components. ―Enhanced ABC with
memorizing capability‖ is applied for selecting a subset of test
cases in the given fault matrix. The memory element is used to
store the best solution found so far to maintain overall
intensification as well as diversification. Originally ABC has
three phases each related to three different types of bees in the
beehive. This behavior is inspired from real beehives where
nectar collection is a result of highly organized and
collaborated team work. Fig. 1 shows the detailed flowchart of

the proposed technique. The various phases and role of
different type of bees is as follows:

A. Initialization

First of all, we need to initialize the population size i.e.,
no. of candidate solutions (initial number test cases in our
case) that is denoted by TN. Each solution (test case) is related
to D dimensional parameter vector that defines a particular
solution based on fault matrix i.e.

Xi = {
 ,

 , . . .,
 }, i = 1, 2, . . ., TN.

Initially the memory element is kept empty.

For a fault j in fault matrix for ith test case, the initial value

is generated by

=

+ rand(0, 1) × (

−

) (1)

where, i = 1, 2, . . ., TN and j = 1, 2, . . ., D. rand(0, 1) is a
random number whose value belongs to [0, 1], max and min
are the maximum and minimum value in case of each
parameter respectively.

B. Employed Bees

Each employed bee maintains individual solutions so their
number is equal to the total number of test cases, that is, TN.
For each test case i, employed bees generate a new vector Yi.

The neighbor search is performed by modifying jth
parameter of Yi where j ∈ {1, 2, . . ., D} is selected randomly.
The following equation is used for updates done by employed
bees (Karaboga and Basturk 2007):

=

+

×(

−

). (2)

Here k is randomly selected and i ≠ k. Xi will be replaced

by Yi; in the population if Yi is better.

 is for randomness

ranging in [−1, 1].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

223 | P a g e

www.ijacsa.thesai.org

Fig. 1. Flowchart of Proposed Methodology.

Each employed bee also has memory MEi, that stores the
best solution found so far. After every iteration memory is
also updated. During next cycle, MEi is searched first before
randomly selecting neighbor solution.

C. Onlooker Bees

The probability of selecting a test case ―i‖ by an onlooker
bee is denoted by pi, which is calculated by

∑

 (3)

where fiti denotes the fitness value of ith test case, which is
calculated on the basis of probability of a test cases to find
given set of errors. The onlooker bee also generates a new
solution Yi using equation (2) similar to the employed bee.
Each onlooker bee also has memory MOi, that stores the best
solution found so far. After every iteration memory is also
updated. During next cycle, MOi is searched first before
randomly selecting neighbor solution.

D. Scout Bee

When a solution cannot be further improved by either
employed or onlooker bee that solution is considered as poor
performing in the process of evolution as must be removed

from the final solution set. In such a scenario, a scout bee is
generated, it abandons the poor performing test cases and
starts with a whole new random solution. Scout bees maintain
randomness and diversification in the algorithm.

After the application of Enhanced ABC, a solution set of
promising test cases is returned to the system. Here comes the
role of Naïve- Bayes Classifier. It generates the probability
matrix over the solution set that is returned in the previous
stage and further classifies the solution set. Hence a reduced
result set is generated. Naïve Bayes is a family of
classification techniques that assumes all features into
consideration as independent and of equal weight. The
proposed technique is applied on three component-based
student projects and implemented in ten iterations with fault
matrix of size 50*50 in each project. Errors are induced using
mutation to test the efficiency of the proposed method.

IV. RESULTS AND DISCUSSION

The proposed approach is implemented in ―Visual C#
Express 2010‖ using three student’s projects namely: Café
Management (CM), Hospital Management (HM), and Payroll
System (PS). All of them are implemented in C# using
component-based paradigm. The reason for selecting Visual

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

224 | P a g e

www.ijacsa.thesai.org

C# projects is the intrinsic component-based approach that is
offered by this platform. The details of these projects are
given below in Table II:

TABLE II. DETAILS OF STUDENT'S PROJECTS

Project Name kLOC
Number of

Components

Total Number

of Modules

Café Management (CM) 69 6 46

Hospital Management (HM) 78 5 53

Payroll System (PS) 43 3 34

A. No. of Selected Test Cases vs No. of Faults Detected

The experiment is conducted for ten iterations to rule out
any chances of error and for averaging of the results with fault
matrix of size 50*50 in each project. Initially it is assumed
that each test case is capable of finding at least one error.
Errors are induced using mutation to test the efficiency of the
proposed method. Gradually as the algorithm converges, a
smaller fault matrix with a lesser number of selected test
cases, Table III shows the performance of the proposed
technique in terms of percentage of test case selected and
percentage of faults detected.

Fig. 2 shows the results in graphical form. It is depicted
that the proposed ABC-NB technique selects less than 47 % of
test cases to achieve near optimal fault coverage. The size of
the test suite the faster the process is. The results of the
proposed technique prove promising in selecting better and
shorter test suite so that overall execution time can be reduced.

B. Comparison of Execution Time

Being a costly and time-consuming process, software test
execution time plays a very important role. Cost can be greatly
minimized by decreasing the execution time without
compromising with the quality of test suite. On the basis of
fault matrix, the execution time of selected test cases by the
proposed approach is compared with the execution time of
selected test cases by other swarm-based techniques namely
PSO, ACO, ABC and the results are summarized in Table IV.

Fig. 3 shows the comparative graph for the same depicting
the clear time saving that can be achieved using the Enhanced
ABC- Naïve Bayes technique. It can be argued from the
experimental results that the proposed hybrid technique is
capable of providing time saving as compared to other
competitive techniques. As it shortens the execution time in
the given scenario, efforts and cost are automatically reduced.

TABLE III. PERFORMANCE OF ENHANCED ABC- NAIVE BAYES FOR

SELECTION OF TEST CASES AND FAULTS COVERED

P
r
o

je
c
t

n
a

m
e

T
o

ta
l

N
o

.
o

f

T
e
st

 C
a

se
s

T
o

ta
l

N
u

m
b

er

o
f

fa
u

lt
s

N
u

m
b

er
 o

f
te

st

c
a

se
s

se
le

c
te

d

%
 o

f
te

st
 c

a
se

s

se
le

c
te

d

N
o

.
o

f
F

a
u

lt
s

D
e
te

c
te

d

%
 o

f
fa

u
lt

s

d
e
te

c
te

d

CM 50 50 21 42% 49 98%

HM 50 50 19 38% 50 100%

PS 50 50 23 46% 50 100%

Fig. 2. Performance of Enhanced ABC- Naive Bayes.

TABLE IV. EXECUTION TIME OF SELECTED TEST CASES IN MILLISECOND

(MS)

Algorithm/ Project CM HM PS

PSO 165 133 124.3

ACO 160 145.5 120.4

ABC 125.6 143 111.9

Enhanced ABC- Naive Bayes 127.3 129.4 105.4

Fig. 3. Comparison of Execution Time.

V. CONCLUSION AND FUTURE SCOPE

Swarm intelligence always inspired researchers to
optimize the search problems to save time and money. In this
paper, a novel Enhanced ABC – Naïve Bayes algorithm is
proposed that is inspired from the colony of honey bees for
optimization of test case selection. Being a time consuming
and important task, testing always requires optimization. The
proposed technique is applied on three component-based
student projects and implemented in ten iterations with fault
matrix of size 50*50 in each project. Errors are induced using
mutation to test the efficiency of the proposed method. The
results show that the proposed method is able to find near
optimal (i.e.,~ 100%) faults in less than 47 % of total test
cases. Thus, a huge amount of time saving can be achieved.
The proposed method ABC-NB is also compared with other
swarm-based techniques of its class by taking execution time
of the selected test cases as a parameter. The proposed
technique outperforms PSO, ACO and original ABC as
depicted by the results. In future, the proposed method will be
compared and evaluated with other swarm-based techniques
of its class using more parameters to assess the efficiency and
accuracy of the proposed method.

REFERENCES

[1] P. Gulia and P. Palak, ―Nature Inspired Soft Computing Based Software
Testing Techniques For Reusable Software Components,‖ J. Theor.
Appl. Inf. Technol., vol. 95, no. 24, pp. 6996–7004, 2017.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

225 | P a g e

www.ijacsa.thesai.org

[2] J. Campos, Y. Ge, N. Albunian, G. Fraser, M. Eler, and A. Arcuri, ―An
empirical evaluation of evolutionary algorithms for unit test suite
generation,‖ Inf. Softw. Technol., vol. 104, no. August, pp. 207–235,
2018, doi: 10.1016/j.infsof.2018.08.010.

[3] A. Abraham, H. Guo, and H. Liu, ―Swarm Intelligence: Foundations,
Perspectives,‖ Swarm Intell. Syst., vol. 25, pp. 3–25, 2006.

[4] I. Aydogdu, M. P. Saka, and E. Do, ―Analysis of Swarm Intelligence À
Based Algorithms for Constrained Optimization,‖ in Swarm Intelligence
and Bio-Inspired Computation, Elsevier Inc., 2013, pp. 25–48.

[5] M. Dorigo and G. Di Caro, ―Ant Colony Optimization: A New Meta-
Heuristic,‖ in Proceedings of the 1999 congress on evolutionary
computation-CEC 99, 1999, pp. 1470–1477.

[6] B. Suri and S. Singhal, ―Analyzing test case selection & prioritization
using ACO,‖ ACM SIGSOFT Softw. Eng. Notes, vol. 36, no. 6, p. 1,
2011, doi: 10.1145/2047414.2047431.

[7] U. M Diwekar and B. H Gebreslassie, ―Efficient Ant Colony
Optimization (EACO) Algorithm for Deterministic Optimization,‖ Int. J.
Swarm Intell. Evol. Comput., vol. 05, no. 01, 2015, doi: 10.4172/2090-
4908.1000131.

[8] P. Palak and P. Gulia, ―Ant Colony Optimization Based Test Case
Selection for Component Based Software,‖ Int. J. Eng. Technol., vol. 7,
no. 4, pp. 2743–2745, 2018, doi: 10.14419/ijet.v7i4.17565.

[9] S. F. Ahmad, D. K. Singh, and P. Suman, ―Prioritization for Regression
Testing Using Ant Colony Optimization Based on Test Factors,‖ in
Intelligent Communication, Control and Devices, 2018, pp. 1353–1360.

[10] P. Palak and P. Gulia, ―Hybrid swarm and GA based approach for
software test case selection,‖ Int. J. Electr. Comput. Eng., vol. 9, no. 6,
pp. 4898–4903, 2019, doi: 10.11591/ijece.v9i6.pp49898-4903.

[11] D. Karaboga and B. Basturk, ―A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (ABC)
algorithm,‖ J. Glob. Optim. 39, pp. 459–471, 2007, doi:
10.1007/s10898-007-9149-x.

[12] L. P and T. V Suresh Kumar, ―Automatic Generation and Optimization
of Test case using Hybrid Cuckoo Search and Bee Colony Algorithm,‖
J. Intell. Syst., vol. 30(1), pp. 59–72, 2021.

[13] K. Hussain, M. Najib, M. Salleh, S. Cheng, Y. Shi, and R. Naseem,
―Artificial bee colony algorithm: A component-wise analysis using
diversity measurement,‖ J. King Saud Univ. - Comput. Inf. Sci., vol. 32,
no. 7, pp. 794–808, 2020, doi: 10.1016/j.jksuci.2018.09.017.

[14] S. S. S. B and V. C. S. S. B, ―An Ant Colony Optimization Algorithm
Based Automated Generation of Software Test Cases,‖ in the
International Conference on Swarm Intelligence. (ICSI 2020), 2020, vol.
1, pp. 231–239, doi: 10.1007/978-3-030-53956-6.

[15] A. K. Alazzawi, H. Rais, and S. Basri, ―HABC : Hybrid Artificial Bee
Colony For Generating Variable T-Way Test Sets,‖ J. Eng. Sci.
Technol., vol. 15, no. 2, pp. 746–767, 2020.

[16] A. K. Alazzawi, H. Rais, S. Basri, and Y. A. Alsariera, ―PhABC : A
Hybrid Artificial Bee Colony Strategy for Pairwise test suite Generation
with Constraints Support,‖ in IEEE Student Conference on Research and
Development (SCOReD), 2019, no. October, pp. 106–111, doi:
10.1109/SCORED.2019.8896324.

[17] S. Sheoran, N. Mittal, and A. Gelbukh, ―Artificial bee colony algorithm
in data flow testing for optimal test suite generation,‖ Int. J. Syst. Assur.
Eng. Manag., vol. 11, pp. 340–349, 2019, doi: 10.1007/s13198-019-
00862-1.

[18] H. Peng, C. Deng, and Z. Wu, ―Best neighbor-guided artificial bee
colony algorithm for continuous optimization problems,‖ Soft Comput.,
vol. 1, no. 23, pp. 8723–8740, 2019, doi: 10.1007/s00500-018-3473-6.

[19] S. Dalal, ―Performance Analysis of BCO-m-GA Technique for Test
Case Selection,‖ Indian J. Sci. Technol., vol. 11(9), no. March, 2018,
doi: 10.17485/ijst/2018/v11i.

[20] F. Hamad, ―Using Artificial Bee Colony Algorithm for Test Data
Generation and Path Testing Coverage,‖ Mod. Appl. Sci., vol. 12, no. 7,
pp. 99–112, 2018, doi: 10.5539/mas.v12n7p99.

[21] R. Sahoo, S. Nanda, and D. P. Mohapatra, ―Model Driven Test Case
Optimization of UML Combinational Diagrams Using Hybrid Bee
Colony Algorithm,‖ Int. J. Intell. Syst. Appl., no. July, 2017, doi:
10.5815/ijisa.2017.06.05.

[22] Z. K. Aghdam and B. Arasteh, ―An Efficient Method to Generate Test
Data for Software Structural Testing Using Artificial Bee Colony
Optimization Algorithm,‖ Int. J. Softw. Eng. Knowl. Eng., vol. 27, no.
6, pp. 951–966, 2017, doi: 10.1142/S0218194017500358.

[23] X. Li and G. Yang, ―Artificial bee colony algorithm with memory,‖
Appl. Soft Comput., vol. 41, pp. 362–372, 2016, doi:
10.1016/j.asoc.2015.12.046.

[24] D. Karaboga and B. Gorkemli, ―A quick artificial bee colony (qABC)
algorithm and its performance on optimization problems,‖ Appl. Soft
Comput. J., vol. 23, pp. 227–238, 2014, doi:
10.1016/j.asoc.2014.06.035.

[25] S. Sekhara, B. Lam, M. L. H. Prasad, U. K. M, and S. Ch, ―Automated
Generation of Independent Paths and Test Suite Optimization Using
Artificial Bee Colony,‖ in International Conference on Communication
Technology and System Design, 2011, vol. 30, no. 2011, pp. 191–200,
doi: 10.1016/j.proeng.2012.01.851.

