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Abstract—Software driven technology has become a part of 

life and the quality of software largely depends on the extent of 

effective testing performed during various phases of 

development. A wide range of nature inspired searching 

techniques are employed over years to automate the testing 

process and provide promising solutions to elude the infeasibility 

of exhaustive testing. These techniques use metaheuristics and 

work by converting the problem space into search space. A 

subset of optimized solutions is searched that reduces overall 

time by shortening the testing time. Objective: An enhanced 

Artificial Bee Colony- Naïve Bayes optimizer for test case 

selection is proposed in this paper. This article also aims to 

provide brief insights into the emergence of hybrid swarm-

inspired techniques over the last two decades. Method: The 

modified Artificial Bee colony is applied after component 

selection and further optimization is achieved using Naïve Bayes 

classifier. The proposed technique is implemented and evaluated 

taking three benchmark programs into consideration. The 

proposed technique is also compared to other competitive swarm 

intelligence-based techniques of its class. Results: The 

experimental results show that the proposed technique 

outperforms other swarm-inspired techniques in terms of 

execution time in a given scenario and capable of higher 

detection of faults with minimal test case selection. Conclusion: 

The proposed approach is an improvement over existing 

techniques and helps in huge time and cost saving. It will 

contribute to the testing society and enhance the overall quality 

of the software. 

Keywords—Software testing; artificial bee colony; swarm 

intelligence; Naïve Bayes; test case selection 

I. INTRODUCTION 

Increasing demand in robust software can be seen as a 
consequence of rapidly developing hardware industry and 
outburst in evolution of technology. Smart devices have 
become our part of our surroundings. Software testing is a 
very important phase of development of robust software which 
involves finding possible faults and errors so that the final 
product meets the overall expectation of the customer without 
failing. Software testing has always been a hot topic of 
research for software industry practitioners and researchers. It 
is the procedure of the identification and authentication of the 
software services by selecting if it is fulfilling the user's needs. 
Despite checking correctness of input and output during 
testing there are many other concerns to deal with. Some of 
them include dead code, redundant code, faulty components, 
exceptions etc. These aspects principally affect the overall 
performance and customer satisfaction. Though, specifications 
are frequently ignored and there are numerous obstructions to 

the execution, including the inadequate design, phase limits, 
absence of automatic apparatuses, and so forth. The cost of 
testing increases with complexity of the system. More 
important aspects to be considered are the continuous updates 
in the system and addition of new functionalities. The 
configurable architecture of the software now- a- days makes 
the testing process more difficult due to the behavioral 
changes of components at each configuration (Myra B. Cohen 
et al. 2007). Poor testing ultimately leads to system failure and 
lowers down the faith of the customer. The significance of 
software testing is that it helps the software programmers for 
building error-free and acceptable software. A worthy and 
quality test suite can catch most of the errors without jumping 
time constraints. The process of testing is carried out at 
functional (Black Box) as well as structural level (White Box). 
Functional testing aims to check correctness of the input and 
output only whereas structural testing checks the deep insights 
at the root level considering the architectural aspects of the 
program. 

Optimization of testing processes can be done at several 
levels of software testing life cycle. The field of automated 
testing is growing day by day due to various underlying 
benefits. With the increase in dependence of software and 
ever-growing system requirements, manual testing is not 
possible at every level of development. Manual testing is time 
consuming whereas automated testing is fast and repeatable. 
Smaller projects are feasible to be tested manually but this is 
not the case for large dynamic projects. The manual testing 
time rises exponentially with increase in the length of code but 
this is not the case in automated testing. All you need to do is 
to write an isolated code called a ―Test Code‖ to test the main 
functional code. This code can be executed any number of 
times to find errors whenever required. One more important 
benefit to mention here is that automated testing permits you 
to refactor (―changing the structure without altering the actual 
functionality‖) the code without any hustle to manually test 
the code every time you refactor the code. From automated 
generation of effective test suites to test case selection and 
prioritization, research is going on which encompasses meta-
heuristics and artificial intelligence. Automated testing helps 
you emphasize more on the quality of the software rather than 
memorizing what and how to test. Test automation can be 
done at various levels. Unit testing automation involves 
testing each independent functional unit without considering 
the external dependencies. Optimization of such activities 
utilizes various engineering domains like data mining, 
artificial intelligence, machine learning, swarm intelligence 
and many more. Over years, soft computing has emerged as a 
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promising solution towards optimization problems that 
involves metaheuristics [1]. Various evolutionary algorithms 
are also preferred over random search techniques for test suite 
generation that attracts researchers in this field [2]. This paper 
also aims to utilize a swarm-based approach for optimization 
in the testing process. 

Rest of the paper is organized as: Section II briefs the 
emergence of various swarm inspired techniques according to 
the timeline over the past two decades. Section III presents 
related work present in different literature over recent years in 
the similar domain of hybrid Artificial Bee Colony (ABC) 
optimization techniques. The proposed method in the form of 
a flowchart is presented in Section IV. Results and evaluation 
of the research are reported in Section V. Finally, the overall 
conclusion of the paper is given in Section VI along with the 
future scope of the article. 

II. RELATED WORK 

Swarm Intelligence (SI) is a popular field of research that 
is motivated by the natural phenomenon of a population 
(group) of various living organisms in their natural habitat for 
search of food, shelter and security. Over the past few decades 
swarm-based optimization techniques are emerging at a very 
fast pace due to the inherent flexibility and robustness [3]. SI 
refers to collective intelligence that has attracted researchers in 
almost every area of industry. The community behavior of real 
living organisms dwelling in nature to protect and feed their 
community is the real inspiration behind SI. The individuals of 
a swarm interact mutually with each other and also locally 
with their surroundings in a decentralized way for survival 
forming a coherent system that can be modelled into a 
functional pattern [4]. SI laid its roots in the early 1990s and 
has become an ever-evolving field since then. This section 
gives brief glimpses of some important swarm-based 
optimization techniques that have emerged till date and 
applied in the field of software testing. 

In 1999, ―Ant colony optimization (ACO)‖ was proposed 
which is inspired by food searching behavior of colonies of 
real ants [5]. Ants communicate with each other by secreting a 
chemical substance on their path. The concentration of this 
chemical increases on the shorter path when the number of 
ants taking that path increases over time. This simple but 
robust behavior gave the inspiration to build a meta-heuristics 
model that can be used in various search optimization 
problems. ACO is well utilized in test case generation, 
selection and prioritization problems in past few years [6] [7] 
[8]. The problem of testing optimization is first converted to 
graphical search problem and then ACO is applied [9]. 
Various hybrid approaches with ACO have also been 

proposed with other techniques such as Genetic Algorithm 
(GA) which aims to select a minimal test suite for higher fault 
coverage [10]. 

An efficient algorithm inspired from the social behavior of 
bees in the search of food was given by Dervis Karaboga et al. 
in [11] named as ―Artificial Bee Colony (ABC)‖ 
Optimization. They considered three types of bees and 
converted their behavior to a mathematical model. Initially 
half of the bees in the beehive are termed as ―Employed 
Bees‖. They search for the food randomly near the hive and 
come back to the hive. They dance in front of the second set of 
the bees called ―Onlooker Bees‖. This dance serves as the 
probability function for comparison and selection of the better 
food source. If the food source of any Employed Bee is 
exhausted then it becomes the scout and serves as the stopping 
criteria for the algorithm. 

Due to its lightweight deployment with very small 
amounts of controller factors, numerous hard works have been 
done to discover ABC research. ABC has gained popularity 
since its origin and researchers are more interested in making 
hybrid algorithms that provide more diversification in 
searching the solution. ABC is inspired from natural behavior 
of honeybees in the search of nectar and their community 
behavior in maintaining the highest nectar collection. The 
success of ABC can be anticipated by vast literature available 
under reputed indexing that shows the interest of researchers 
in this approach. Originally the ABC technique employs three 
types of bees: Employed, Onlooker and Scout bees [11]. The 
employed bees are linked to a definite food source. Initially 
one employed bee is assigned to a food source. They transmit 
vital information such as navigation information, location and 
the profitability of the food source and carry the data with the 
rest of bees at the beehive. The onlooker bees are accountable 
for food source detection exploiting the information delivered 
by employed bees. The scout bees dispensed randomly to hunt 
the new food source whenever there is no further improved 
solution is found by either employed or onlooker bees [D. 
Karaboga, 2005]. The assumption is that the employed bees 
whose food source is exhausted are transformed into ―scout 
bees'' and commence a new exploration for the food source. 
The parallel conduct of these three bees speeds up the 
generation of feasible independent paths and software test 
suite optimization. ABC performs competitively to other 
conventional soft computing techniques and has gained 
popularity over last decade due to its easy implementation. 
Various hybrid and enhanced ABC techniques evolved over 
the past decade that are used for optimization problems 
especially in the field of software testing. Table I provides a 
brief insight into such hybrid ABC techniques: 
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TABLE I. EXISTING HYBRID ARTIFICIAL BEE COLONY BASED OPTIMIZATION TECHNIQUES 

Author Year Technique used Application Area 

[Lakshminarayana P et al. [12]] 2021 Hybrid Cuckoo Search and Bee Colony Algorithm 
Optimization of test cases and generation of 

path convergence within 

[Hussain, Kashif et al. [13]] 2020 Scoutless ABC Model-driven testing 

[Saju Sankar S et al. [14]] 2020 
Comprehensive Improved Ant Colony Optimization 

(ACIACO) 
Automated test case generation 

[Ammar K. Alazzawi et al. [15] [16] ] 2019, 2020 
Hybrid artificial bee colony algorithm and practical 
swarm optimization with constraint support 

Generation of variable t-way test sets 

[Snehlata Sheoran et al. [17]] 2019 Memory based ABC 
Data flow testing to find out and prioritize 

the definition-use paths 

[Hu Peng et al. [18]] 2019 Best Neighbor-guided artificial bee colony Continuous optimization problems 

[Sandeep Dalal et al. [19]] 2018 BCO-m-GA Test case selection 

[Faten Hamad [20]] 2018 Modified ABC Software structural testing 

[Sahoo, Rajesh et al. [21]] 2017 Hybrid PSO and BCA Model-driven testing 

Zohreh Karimi Aghdam et al. [22] 2017 Modified Fitness Function in ABC 
Generate Test Data 

for Software Structural Testing 

Xianneng Li et al. [23] 2016 Artificial bee colony algorithm with memory Continuous optimization problems 

D. Karaboga et al. [24] 2014 
Quick ABC with different functions for employed and 

onlooker bees 
Numerical Optimization Problems 

III. PROPOSED APPROACH (ENHANCED ABC- NAÏVE BAYES 

OPTIMIZATION) 

In this section, a novel ―Enhanced ABC- Naïve Bayes 
Optimization (ABC-NB)‖ is proposed for software test case 
selection. Fig. 1 shows the flowchart of proposed 
methodology that is inspired from memory-based ABC [17], 
[19], [23] along with the Naïve Bayes Classifier to further 
enhance the results. 

ABC is highly exploited in the field of software testing 
that shows the capability of the method. ABC also provides 
the inherent advantage of independent and parallel behavior of 
three types of honey bees. Also, this is a non- pheromone-
based technique that decreases the computational complexity 
up to a great extent [25]. That’s why we prefer ABC over 
other swarm-based techniques for optimization of the testing 
process. The algorithm starts with the selection of the project. 
We are considering Components Based Software (CBS) 
development paradigm into account due to the inherent 
modularity and capability of handling complex projects. 

The proposed approach works as follows: component-
based projects are selected and uploaded to the repository and 
their individual components are extracted. Here components 
refer to each individual unit of work that has predefined 
interfaces and boundaries. Further each component is 
subdivided into modules. A component may consist of one of 
more modules and other components. ―Enhanced ABC with 
memorizing capability‖ is applied for selecting a subset of test 
cases in the given fault matrix. The memory element is used to 
store the best solution found so far to maintain overall 
intensification as well as diversification. Originally ABC has 
three phases each related to three different types of bees in the 
beehive. This behavior is inspired from real beehives where 
nectar collection is a result of highly organized and 
collaborated team work. Fig. 1 shows the detailed flowchart of 

the proposed technique. The various phases and role of 
different type of bees is as follows: 

A. Initialization 

First of all, we need to initialize the population size i.e., 
no. of candidate solutions (initial number test cases in our 
case) that is denoted by TN. Each solution (test case) is related 
to D dimensional parameter vector that defines a particular 
solution based on fault matrix i.e. 

Xi = {  
 ,   

  , . . .,   
 }, i = 1, 2, . . ., TN. 

Initially the memory element is kept empty. 

For a fault j in fault matrix for ith test case, the initial value 

  
 
is generated by 

  
 
=     

 
+ rand(0, 1) × (    

 
−     

 
)           (1) 

where, i = 1, 2, . . ., TN and j = 1, 2, . . ., D. rand(0, 1) is a 
random number whose value belongs to [0, 1], max and min 
are the maximum and minimum value in case of each 
parameter respectively. 

B. Employed Bees 

Each employed bee maintains individual solutions so their 
number is equal to the total number of test cases, that is, TN. 
For each test case i, employed bees generate a new vector Yi. 

The neighbor search is performed by modifying jth 
parameter of Yi where j ∈ {1, 2, . . ., D} is selected randomly. 
The following equation is used for updates done by employed 
bees (Karaboga and Basturk 2007): 

  
 
=   

 
+   

 
×(   

 
−   

 
).             (2) 

Here k is randomly selected and i ≠ k. Xi will be replaced 

by Yi; in the population if Yi is better.   
 
 is for randomness 

ranging in [−1, 1]. 
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Fig. 1. Flowchart of Proposed Methodology. 

Each employed bee also has memory MEi, that stores the 
best solution found so far. After every iteration memory is 
also updated. During next cycle, MEi is searched first before 
randomly selecting neighbor solution. 

C. Onlooker Bees 

The probability of selecting a test case ―i‖ by an onlooker 
bee is denoted by pi, which is calculated by 

    
    

∑     
  
   

               (3) 

where fiti denotes the fitness value of ith test case, which is 
calculated on the basis of probability of a test cases to find 
given set of errors. The onlooker bee also generates a new 
solution Yi using equation (2) similar to the employed bee. 
Each onlooker bee also has memory MOi, that stores the best 
solution found so far. After every iteration memory is also 
updated. During next cycle, MOi is searched first before 
randomly selecting neighbor solution. 

D. Scout Bee 

When a solution cannot be further improved by either 
employed or onlooker bee that solution is considered as poor 
performing in the process of evolution as must be removed 

from the final solution set. In such a scenario, a scout bee is 
generated, it abandons the poor performing test cases and 
starts with a whole new random solution. Scout bees maintain 
randomness and diversification in the algorithm. 

After the application of Enhanced ABC, a solution set of 
promising test cases is returned to the system. Here comes the 
role of Naïve- Bayes Classifier. It generates the probability 
matrix over the solution set that is returned in the previous 
stage and further classifies the solution set. Hence a reduced 
result set is generated. Naïve Bayes is a family of 
classification techniques that assumes all features into 
consideration as independent and of equal weight. The 
proposed technique is applied on three component-based 
student projects and implemented in ten iterations with fault 
matrix of size 50*50 in each project. Errors are induced using 
mutation to test the efficiency of the proposed method. 

IV. RESULTS AND DISCUSSION 

The proposed approach is implemented in ―Visual C# 
Express 2010‖ using three student’s projects namely: Café 
Management (CM), Hospital Management (HM), and Payroll 
System (PS). All of them are implemented in C# using 
component-based paradigm. The reason for selecting Visual 
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C# projects is the intrinsic component-based approach that is 
offered by this platform. The details of these projects are 
given below in Table II: 

TABLE II. DETAILS OF STUDENT'S PROJECTS 

Project Name kLOC 
Number of 

Components 

Total Number 

of Modules 

Café Management (CM) 69 6 46 

Hospital Management (HM) 78 5 53 

Payroll System (PS) 43 3 34 

A. No. of Selected Test Cases vs No. of Faults Detected 

The experiment is conducted for ten iterations to rule out 
any chances of error and for averaging of the results with fault 
matrix of size 50*50 in each project. Initially it is assumed 
that each test case is capable of finding at least one error. 
Errors are induced using mutation to test the efficiency of the 
proposed method. Gradually as the algorithm converges, a 
smaller fault matrix with a lesser number of selected test 
cases, Table III shows the performance of the proposed 
technique in terms of percentage of test case selected and 
percentage of faults detected. 

Fig. 2 shows the results in graphical form. It is depicted 
that the proposed ABC-NB technique selects less than 47 % of 
test cases to achieve near optimal fault coverage. The size of 
the test suite the faster the process is. The results of the 
proposed technique prove promising in selecting better and 
shorter test suite so that overall execution time can be reduced. 

B. Comparison of Execution Time 

Being a costly and time-consuming process, software test 
execution time plays a very important role. Cost can be greatly 
minimized by decreasing the execution time without 
compromising with the quality of test suite. On the basis of 
fault matrix, the execution time of selected test cases by the 
proposed approach is compared with the execution time of 
selected test cases by other swarm-based techniques namely 
PSO, ACO, ABC and the results are summarized in Table IV. 

Fig. 3 shows the comparative graph for the same depicting 
the clear time saving that can be achieved using the Enhanced 
ABC- Naïve Bayes technique. It can be argued from the 
experimental results that the proposed hybrid technique is 
capable of providing time saving as compared to other 
competitive techniques. As it shortens the execution time in 
the given scenario, efforts and cost are automatically reduced. 

TABLE III. PERFORMANCE OF ENHANCED ABC- NAIVE BAYES FOR 

SELECTION OF TEST CASES AND FAULTS COVERED 
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CM 50 50 21 42% 49 98% 

HM 50 50 19 38% 50 100% 

PS 50 50 23 46% 50 100% 

 

Fig. 2. Performance of Enhanced ABC- Naive Bayes. 

TABLE IV. EXECUTION TIME OF SELECTED TEST CASES IN MILLISECOND 

(MS) 

Algorithm/ Project CM HM PS 

PSO 165 133 124.3 

ACO 160 145.5 120.4 

ABC 125.6 143 111.9 

Enhanced ABC- Naive Bayes 127.3 129.4 105.4 

 

Fig. 3. Comparison of Execution Time. 

V. CONCLUSION AND FUTURE SCOPE 

Swarm intelligence always inspired researchers to 
optimize the search problems to save time and money. In this 
paper, a novel Enhanced ABC – Naïve Bayes algorithm is 
proposed that is inspired from the colony of honey bees for 
optimization of test case selection. Being a time consuming 
and important task, testing always requires optimization. The 
proposed technique is applied on three component-based 
student projects and implemented in ten iterations with fault 
matrix of size 50*50 in each project. Errors are induced using 
mutation to test the efficiency of the proposed method. The 
results show that the proposed method is able to find near 
optimal (i.e.,~ 100%) faults in less than 47 % of total test 
cases. Thus, a huge amount of time saving can be achieved. 
The proposed method ABC-NB is also compared with other 
swarm-based techniques of its class by taking execution time 
of the selected test cases as a parameter. The proposed 
technique outperforms PSO, ACO and original ABC as 
depicted by the results. In future, the proposed method will be 
compared and evaluated with other swarm-based techniques 
of its class using more parameters to assess the efficiency and 
accuracy of the proposed method. 
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