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Abstract—The process of extraction of software entities such 
as system, use case, and actor from an English natural language 
description of a user’s software requirements is a linguistic and 
semantic process of a natural language processing application. 
Entity extraction is known to be a complicated and challenging 
problem by researchers in the fields of linguistics or 
computation, due to the ambiguities in natural languages. This 
paper presents a named entity recognition method called 
SyAcUcNER (System Actor Use-Case Named Entity Recognizer), 
for extracting the system, actor, and use case entities from 
unstructured English descriptions of user requirements for the 
software. SyAcUcNER uses one of the Machine Learning (ML) 
approaches, that is, the Support Vector Machine (SVM) as an 
effective classifier. Also, SyAcUcNER uses a semantic role 
labeling process to tag the words in the text of user software 
requirements. SyAcUcNER is the first work that defines the 
structure of a requirements engineering specialized NER, the 
first work that uses a specialized NER model as an approach for 
extracting actor and use case entities from English language 
requirements description, and the first time an SVM has been 
used to specify the semantic meanings of words in a certain 
domain of discourse; that is the Software Requirements 
Specification (SRS). The performance of SyAcUcNER, which 
utilizes WEKA’s SVM, is evaluated using a binomial technique, 
and the results gained from running SyAcUcNER on text 
corpora from assorted sources give weighted averages of 76.2% 
for precision, 76% for recall, and 72.1% for the F-measure. 

Keywords—Information extraction; named entity recognition; 
machine learning; support vector machine; software requirement 
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I. INTRODUCTION 
The system, use case, and actor are the main entities of the 

Software Requirements Specification (SRS), which is an 
unformatted Natural Language (NL) text description of a 
system. The extracting of these entities is considered the first 
step in the development of desired information system, as the 
actors are the individuals that use the system like humans, 
external software, etc., in which each actor has certain roles, 
and the use cases are used to (1) identify the functional 
requirements of the developed system that would be used by 
actors, (2) design the system's architecture, (3) control the 
implementation of the system, (4) verify and validate the 
developed system via generating test cases [1]. 

Based on the above, the extracting of the system, actor, and 
use case entities from SRS has been recognized as a key step in 
analyzing software user requirements and it is achieved by 
using systematic definitions of these entities [2]. Usually, a 

manual approach, which was described algorithmically by [3] 
and [4], is used to achieve the process of extracting SRS 
elements. 

Due to the unstructured style of the written SRS, certain 
problems exist that impose a careful linguistic analysis by a 
human to be accomplished properly. As a consequence, the 
manual approach can be error-prone and time-consuming [5] 
[6]. To facilitate and speed up the performing of extracting the 
SRS elements from an unstructured and natural language-
formed user requirement text, a set of solutions have been 
proposed to automate this process. 

The previously proposed solutions for automating the 
extraction of SRS fall into two approaches. The first one is the 
production rules approach, which is, in general, has 
shortcomings like vagueness, inefficiency (time-consuming 
execution, intelligent interpreter, and difficulty to follow the 
execution control), absence of learning ability, and the 
resolution's conflict [7] [8] [9]. The second approach is the 
connectionist approach – or the Artificial Neural Networks 
(ANN), which is (in addition to be computationally expensive) 
has some problems like the poor ability to predict, the 
excessive training required for developing a solution, the long 
time that is required to develop a network, and the 
unexplainable answer (Blackbox) [10] [11]. ANN approach is a 
Machine Learning (ML) method, which has other methods. 
Because of the problems that ANN has, this paper proposes the 
use of another ML method that is the Support Vector Machine 
(SVM) method to automatically extract system, actor, and use 
case entities from unstructured NL requirements text 
documents in English. 

An SVM is used to create a learning model based on a 
supervised learning approach that uses pre-labeled training data 
to train the model to classify these data [12]. SVM is a non-
probabilistic binary classifier that categorizes data into several 
classes. The binary classification SVM achieves classification 
by mapping input data to classes (hyperplanes) in an N-
dimensional space based on a maximal margin, where N  is  the 
number of features of a data point [12]. SVM is a very useful 
classifier of undistributed data and irregularly distributed data, 
which can be of different types like text, images, audio, and 
other types. This is seen in the different and many real-world 
applications where SVM is used such as sentiment analysis, 
handwriting recognition, a cancer diagnosis. 

Although there are many classification algorithms in 
machine learning, yet, SVM has been shown to achieve 
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significantly better and more robust classification than other - 
supervised learned- classification algorithms due to the 
following outstanding properties [12] [13]: 

1) SVM is distinguished in learning by: 

• SVM has no overfitting problem. 

• SVM can apply to semi-supervised learning models 
also. 

• SVM works stably and it generalizes well to data not 
included in the training data set or that data that its 
features would be changed. This is because the SVM 
classification approach is principally reliant on a subset 
of points only in its work to maximize the gap (margin) 
between nearby points of classes. It means that only an 
inliers subset of points is helpful and no need to 
consider outliers points. 

• SVM is a fast-learning algorithm as the kernel function 
of SVM is performed for the classification per training 
sample. Worthy to note that the Polynomial kernel was 
proved as a better factor in SVM. 

• SVM is robust, which is shown by its ability to produce 
a unique solution. 

2) SVM is more efficient in high n-dimensional space, in 
cases where the number of samples is less than the number of 
dimensions and is relatively memory efficient. 

3) SVM delivers accurate results due to the following: 

• The generated hyperplane creates a clear margin to 
separate classes, and as the large margin is as a more 
corrected classification of data would be gained. The 
soft margin is used with non - linearly separable data 
and the hard margin is used with linearly separable 
data. 

• The convex optimization nature of SVM makes the 
answer a global minimum rather than a local minimum, 
which in turn yields more optimality confidence in the 
results. 

4) SVM can be adapted to work with different data types. 
This is because SVM has a built-in kernel function, which is a 
technology that provides the ability to solve any complex 
problem. Note that Kernel is a non-parametric (linear or 
nonlinear) identifiable function that comes with different 
forms depending on the data it operates on. 

5) Generally, the SVM classifier has better computational 
complexity than the other classifiers. SVM has a very little 
execution time than the Artificial Neuron Network (ANN). 
SVM has a faster prediction with better classification accuracy 
than the Naive Bayes classifier. SVM has less time complexity 
than the logistic regression classifier. SVM is more robust 
than the logistic regression, just as there is some bias in the 
training data set. 

6) The availability of library SVM classifiers in many 
programming languages and packages such as MATLAB, 
Weka, and Python makes the work with SVM so easy. 

As shown, the advantages of SVM make it an attractive 
method that can be used instead of ANN. Worth mentioning 
that SVM will underperform and being unsuitable when the 
data sets are large has more noise (overlapped classes) and has 
no clear probabilistic justification to have classification [12]. 
To achieve the goal of automating the extraction of SRS 
elements, our work should answer the following research 
questions: 

• How can SVM be used to extract certain entities from 
an unstructured text, and. 

• What is the performance of a system that utilizes SVM 
for extracting SRS elements? 

Section 2 of this paper illustrates background theoretical 
issues and Section 3 examines related works and approaches. 
Section 4 describes the proposed approach, which is followed 
by a discussion and evaluation of the experimental results in 
Section 5, and finally, the conclusions, findings, and 
recommendations are presented in Section 6. 

II. BACKGROUND 
This paper is about using the SVM machine learning 

classifier as the main part of a Named Entity Recognition 
(NER) system to automate the extraction of SRS elements. 

NER is an ML-based process that is used to find and 
classify names in unstructured or semi-structured texts. These 
goals are achieved by annotating the words in the text words 
with the names of categorized entities in the real world, such as 
locations, places, organizations, companies, persons, 
individuals, etc. Stanford CoreNLP [14] and the Apache 
OpenNLP [15] are two well-known examples of NER that 
extract real-world entities from a text. Also, there are NER 
models for extracting beneficial information from biomedical 
texts, such as mentions of proteins and genes and the 
relationships between them [26]. There are two types of NER 
methods: the first is an ontology-based NER, which strongly 
relies on updates of knowledge to successfully distinguish 
known terms and concepts in unstructured or semi-structured 
texts [16], and the second is a deep learning NER, which aims 
(in addition to recognizing terms and concepts) to cluster 
words by using a word embedding technique that attempts to 
understand both the semantics of a word and the syntactic 
relationship between words [17]. As NER is a central 
subfunction that extracts and classifies certain information 
(names in a text) from either semi-structured or unstructured 
text, it is considered an important sub-task of open information 
extraction (OIE). 

OIE is a process that creates a structured representation of 
information in an unstructured or semi-structured text. The 
resulting structured representation is usually in the form of n-
ary propositions [18]. OIE aims to extract all types of relations 
that may exist in a text, whether these are pre-known relations 
or under discovery. Based on this approach, OIE supports the 
independent extraction of relations from small, large, and 
heterogeneous corpora within a specific domain. Automation 
of the OIE process needs to be efficient, to rely on 
unsupervised extraction strategies, and to consider corpus 
heterogeneity [19]. The OIE process is achieved by using 
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several types of NL processing approaches at the semantic 
level, all of which function to infer the semantics of a word 
from its particular linguistic attributes. These attributes are 
linguistic annotations of a word and are used by a processing 
technique to recognize a word's semantics (or connotation) 
within a specific domain. Annotation, for example with part-
of-speech (POS) tags, is accomplished by using natural 
language processing (NLP) tools such as parse trees, syntactic, 
and dependency parsers [20] [9]. 

NLP is of great importance in creating human-machine 
interfaces, and accordingly has become an attractive research 
field, aiming to find and define algorithms, methods, and 
approaches to give computers the ability to communicate with 
a human via natural language [9]. NLP is dedicated to allowing 
a computer system to perform analysis and comprehension, and 
to specify the meanings of words or even statements that are 
written in NL. NLP is a difficult issue in computer science; this 
is due to the nature of NL, as it naturally suffers from the issues 
of ambiguity and expressiveness, which easily lead to problems 
with misunderstanding [21]. In general, working with NLP has 
moved towards viewing the analysis processing of language as 
being disintegrated into different sub-processes, illustrating the 
theoretical linguistic singularity for each of the lexical, 
syntactic, semantic, and pragmatic levels of NLP [20]. The 
essential view is that the statements are first investigated 
according to their syntax; this gives a structure that is 
increasingly amenable to examination regarding semantics. 
The next stage, which is a pragmatic analysis, aims to specify 
the true meaning of the text or speech in the context. The three 
core subprocesses are syntax, semantic, and pragmatic, all of 
which serve as a starting point in the processing of texts 
formed using NL [20]. The standard analysis stages in NLP are 
[20] [9]: 

1) Tokenization: The process of breaking up a sentence 
into elements called tokens. 

2) Lexical analysis: A process that aims to check whether 
a word belongs to a language and to find the part of speech 
(POS) for the word, or to reveal the class of a word (i.e., verb, 
noun, or preposition). The lexical analysis also includes the 
morphological processing of a word, which aims to isolate the 
stem of the word and its affixes. 

3) Syntactic analysis: This applies the grammar of the 
language (using a parsing algorithm) to identify the legal 
structure of the input statement. 

4) Semantic analysis: This is the process of extracting the 
exact meaning from the text. 

5) Pragmatic analysis: This aims to infer the purpose of 
the use of the word/text in situations and requires knowledge 
about the domain of discourse. It is achieved by reinterpreting 
the text as it really implies. 

In short, the linguistic and semantic analysis of a text is 
carried out either as a semantic analysis of the whole text as a 
single unit or as a semantic analysis of individual words in a 
text. The first approach is used to recognize the intention or 
sentiment of a speaker, and the second is used to extract 
specific information from a text, or in other words to convert 
semi-structured and unstructured text to a structured form. 

Here, NER has a key role in the semantic stage of NLP in 
terms of extracting the meaning of words and sentences in 
addition to their relationships. 

III. RELATED WORKS AND APPROACHES 
Automation of the manual approach to extracting actors 

and use cases from software requirements statements shows 
that several types of NLP tools and approaches have been used 
for extracting certain semantics from software functional 
requirements described in natural language. 

The first approach described here is the use of the 
production rules that govern linguistic properties to extract the 
elements of the software requirements that are required to 
develop each use case diagram and class diagram. This 
approach was utilized by the UMGAR system [22]. A similar 
technique known as a rule-based approach was proposed by 
[23] for automatically extracting use cases and goal models 
from unformatted, NL, and textual documents of requirements. 
This approach combines a number of methods to detect goals 
and the entities of use cases along with their relationships from 
the textual document. The semantic parameterization of textual 
specifications is used to guide the detection process of the 
rules. Worth to report here that the Genetic Algorithm (GA) 
can be utilized as a supporting step – for optimization 
purposes- to select the best set of production rules that should 
be manually created earlier. The approach can be seen in the 
work of [24] to discover the best classification rules for the 
Car, Zoo, and Mushroom classes, and the work of [25] that 
used GA (with treebank) to develop a syntactic analyzer to 
enhance the Parseval score of seed grammar rules. 

Production rules may be supported by an NLP tool to 
facilitate the development of more precise recognition rules. A 
hybrid NLP tool that combines production rules with 
predefined types of use cases and actors is used by [1]. Also, a 
combined NLP and domain ontology approach was used in 
RAPID, a scheme proposed by [26] that takes textual 
requirements in NL form and extracts the primary concepts and 
their relationships to create unified modeling language (UML) 
diagrams. 

An approach using a set of semantic heuristics rules to 
generate the patterns used to extract the use case model, based 
on a general NLP tool, was proposed by [27]. The software 
requirements processed in this work are Arabic natural 
language texts, and the generated patterns depend on the 
sentence structure. The Stanford parser is the NLP tool utilized 
in this approach. This scheme follows the work of [21], which 
uses an open NLP tool called Semantic Business Vocabulary 
and Rules to extract object-oriented models from user software 
requirement specifications (SRS). 

Conversion of the description of requirements from a 
natural language form to structured natural language as a prior 
step in utilizing other NLP analyzing processes is the approach 
used by [28]. The conversion process is facilitated by an 
elicitation process, both of which form part of an expert system 
that elicits requirements from different stakeholders and 
maintains a knowledge base that supports the future extraction 
of certain elements from similar requirement descriptions. A 
very similar approach is used by [29], who proposes an 
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approach that takes requirements in NL form and converts 
them to an intermediate structured representation using 
grammatical knowledge patterns and the dependency analyzing 
of the requirements statements. This intermediate 
representation is used to create a class diagram. 

An approach using POS, pre-processing, and parsing to 
extract certain UML models, called GUEST, is proposed by 
[30]. This is a semi-automated rule-based approach that aims to 
specify models of the goal and use case from unformatted 
textual requirements documents. In this scheme, a number of 
different techniques are utilized to discover and classify the 
goals, use cases, and their relationships from a text, and 
semantic parameterization of the textual specifications is 
carried out. In two selected case studies, GUEST is used to 
process software user requirements described in NL text, and 
producing activity and sequence diagrams. A Recursive Object 
Model (ROM) diagram is utilized to extract semantic 
information from requirements by [31]. This extracted 
semantic information then forms the elements required by 
system modeling language (SysML), which is similar to UML, 
to produce different system models. 

Without denying the achieved results gained by supporting 
the rule-based approach by GA, NLP tools, heuristic style, and 
the modeling approach, the shortcomings of the rule-based 
approach still exist. The general shortcomings of the rule-based 
approach have been reported in the introduction. The best-
reported achievement of the rule-based approach is the one that 
comes from the work of Marinos et al [1], which was 96% of 
precision. 

The alternative approach to the rule-based approach is the 
connectionist approach that uses Artificial Neural Networks 
(ANN) to elicit the SRS’s elements. This is a Machine 
Learning (ML) approach that had been agreed as a good 
solution to the problems accompanied by the rule-based 
approach. ANN, together with Semantic Role Labeling (SRL), 
was suggested by Al-Hroob et al [32] to extract the use case 
and actor SRS entities from NL statements of user 
requirements, as this work is the best-reported achievement 
that is 47.2% of precision. 

IV. PROPOSED SYACUCNER APPROACH 
Examination of the related works and approaches described 

above inspired us to seek a new approach to extract SRS 

semantics, namely the system, actor, and use case. We aimed 
to find an approach that relies on the linguistic (lexical and 
semantic) attributes of a word to discover its true SRS 
semantics. 

In this work, we view NER as a process of extracting a 
structured form (that is, a system, an actor, and a use case 
form) from semi-structured or unstructured text (i.e. a user 
requirements text). Here, NER is applied to the specific domain 
of the user requirements of the software, rather than a real-
world domain. NER is accomplished as a mapping process of 
certain nouns into a predefined system or actor classes of the 
software requirement domain and certain verbs into a 
predefined use case class of the software requirements domain. 
In fact, NER has previously been used in a specific domain by 
[33], who developed a rule-based NER model for knowledge 
extraction of evidence-based dietary recommendations (in the 
biomedical domain). 

In our suggested SyAcUcNER approach, NER is an SVM-
based model that uses certain linguistic attributes of a word to 
recognize the entities of the system, the use case, and the actor 
from a textual description of software requirements. As 
illustrated in Fig. 1, SyAcUcNER is created during the training 
phase and is used for extraction during the testing phase. A 
subprocess involving the linguistic annotation of a statement’s 
tokens is performed in both phases to prepare the data that will 
be used for recognition by the SVM data mining model in the 
training phase and SyAcUcNER in the testing phase. 

A. NL Functional Requirements 
The data set used to train SVM contains 66 English 

language statements with different structures, representing 
software requirements. We collected these statements from 
various sources, such as books and examples in the literature, 
and also from actual software analysis tasks. In each statement, 
the tokens representing a system, an actor, and a use case of 
SRS are manually defined, and their linguistic attributes 
(lexical category, SRL, and dependency relations) are 
automatically extracted and exported to an Excel spreadsheet. 
Due to the exceptional importance of the data set in creating an 
effective classification model, certain properties are considered 
when selecting these 66 NL statements of functional 
requirements. These properties are the numbers and types of 
system, use cases, and actors that exist in an NL functional 
requirements statement. 

 
Fig. 1. The Proposed SyAcUcNER Approach. 
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B. Annotation of the Tokens of the Sentence 
The SRSs are tokenized into words, and each word is given 

linguistic attributes that are used to distinguish the word. The 
tokenization of a statement aims to isolate the words within it, 
as a first step in eliciting the system, actors, and use cases. In 
this paper, we use the following linguistic attributes of a word 
to distinguish its true semantics in an NL functional 
requirement statement (system, actor, and use case): 

• Lexical attribute: This is the linguistic type of a word in 
a language. In English, these include a noun, verb, 
adjective, adverb, conjunction, particle, and adposition 
[20] [9]. This attribute is usually given with the word 
in a dictionary. The realization of the lexical category 
of a word is automatically achieved using 
computerized NLP systems [9]. 

• SRL attribute: This is the thematic role property of a 
noun within a statement (rather than the lexical 
semantics of a word). 

The annotation of semantic roles is an approach in which 
the arguments (nouns) of a predicate (usually a verb) are 
classified based on a predefined set of participant types 
(annotations). These participant types are either the semantic 
relationships between the arguments of the verb or the 
circumstance that is described by the verb. The participant 
types (i.e., the annotations), which are known as semantic or 
thematic roles, are defined by linguistics [34] [35] [36], as 
illustrated by Table I, which lists the known thematic roles of a 
noun. SRL is the process of automatically assigning a semantic 
role to a noun [9]. In SRL, the verb is considered the predicate, 
and the semantic role labels or annotations that label a verb’s 
arguments (nouns) are used to specify the true meaning of the 
verb (predicate) itself. The author in [37] gives an example to 
illustrate the use of the SRL approach to realize the semantics 
of a verb by explaining how to differentiate between break and 
hit verbs: a hit verb has the argument (Agent, Instrument, 
Place) and the verb break has the arguments (Agent, 
Instrument, Object). In practice, the semantics of verbs have 
been used in a number of studies where the verb is the core 
element of a linguistic process, for example, the development 
of an approach for converting pseudocode to C# [38]. 

• Dependency (clausal argument) relations attribute: 
Dependency relations are a set of directed binary 
grammatical relationships that exist among the words 
of a text. These relations are used to encode significant 
hidden information that results from the analysis of a 
complex phrase structure. Dependency grammars are 
the formalisms that use clausal argument relation 
annotations to tag binary grammatical relationships 
between the syntactic words (or lemmas) in a sentence. 
This type of grammar and its parsing scheme is of key 
importance in dealing with morphologically rich 
languages that have a relatively free order of words 
[39] [9]. Fig. 2 illustrates an example of a method 
based on dependency grammars. 

Clausal argument (dependency) relations are defined 
(among other types of dependency) in a universal dependency 
(UD) set, and this annotation method uses a dependency 
parsing process to achieve this task [9]. UD dependency banks 
are available for more than 50 languages. This is due to the fact 
that each language has its own set of dependencies and may or 
may not share these with other languages; in addition, some 
languages have no UDs. This means that a balance must be 
found between universality and meaningful dependencies, and 
with other requirements such as parsing efficiency, ease of 
human annotation, etc. Another challenge is presented by the 
vagueness that limits the identification of all UD classes [8]. 

Although there are continuing efforts to define a cross-
linguistically and computationally useful set of dependency 
relations, it is worth mentioning here a linguistically motivated 
study of UDs that is handled by [41]. Table II shows a subset 
of the clausal argument relations in UD (others are found at 
https://universaldependencies.org/u/dep/). 

TABLE I. LIST OF THEMATIC ROLES 

Thematic Roles Definition 

Agent An action’s doer/instigator, denoted by the predicate 

Patient An action’s ‘undergoer’, denoted by the predicate 

Theme An action’s moved entity, denoted by the predicate 

Experiencer An action’s living-entity practitioner, denoted by the 
predicate 

Goal (direction) An object’s destination, indicated by a transfer event 

Beneficiary The entity that gets the benefit denoted by the predicate 

Source (origin) The location from which something moves  

Instrument The medium used to act, denoted by the predicate 

Locative The situation/location in which the action occurred 

Stimulus Accidental sensory trigger 

Force or natural 
cause The entity that does the action 

Recipient The entity that denotes a change in ownership, 
possession 

Time The time of occurrence of an action 

Manner How an action is accomplished 

Purpose The reason for performing an action 

Cause The reason for the action occurring 

 
Fig. 2. Results of Dependency Parsing of a Sentence [9]. 
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TABLE II. SELECTED DEPENDENCY RELATIONS FROM THE UD SET [40] 

Clausal argument relations Description 

advmod adverbial modifier 

amod  adjectival modifiers 

aux auxiliary 

cc coordinating conjunction 

ccomp clausal complement 

conj conjunct 

dep dependent 

det determiner 

dobj direct object 

iobj indirect object 

To facilitate the process of extracting the SRL and 
dependency relationships between the words in an SRS, we 
used an NLP software tool that can provide these linguistic 
attributes for SRS tokens in English. The LTH (Lunds 
Tekniska Högskola) System for Frame-Semantic Structure 
Extraction (or SRL) software tool is used in this work, as it 
allows for dependency parsing and SRL in addition to other 
NLP processes such as tokenization, POS-tagging, 
lemmatizing, morphological tagging, and graph visualization 
[42]. Fig. 3 illustrates the semantic parsing results yielded by 
the LTH system for an SRS. The LTH system provides a table 

of annotation data for tokens (the second table of parsing 
results) based on a CoNLL-2009 shared task. 

A CoNLL-2008 shared task is used to define the format of 
the data provided in a CoNLL-2009 shared task, with some 
modifications related to enhancing the performance of the 
CoNLL-2009 shared task over the CoNLL-2008 shared task. 
Although they are similar for all-natural languages, they may 
vary in terms of content [43]. The lexical attribute of a token is 
obtained from the predicted part of the speech (PPOS) field 
(coded as NN for the name, VB for the verb, etc.). The 
dependency relation attribute is obtained from the PDEPREL 
field. The semantic roles of the arguments of a predicate are 
obtained by following the hyperlink of the predicate (verb) that 
appears in the parsing table (the first table in Fig. 3). For 
example, the arguments of the predicate (verb) change.01 
shown in Fig. 4, are 'the user' (coded as A0, i.e. an Agent 
semantic role), and ‘the meal date’ (coded as A1, i.e. a Patient 
semantic role). 

It is important to note the differences between the standard 
values of the lexical, SRL, and dependency relations and those 
of CoNLL-2009 (the core of the LHT system used here). The 
latter aims to perform and evaluate SRL using a dependency-
based representation to predict syntactic and semantic relations 
[44]. CoNLL-2009 [45] provides a more complicated model of 
syntactic dependencies, based on a belief that more syntactic 
dependencies lead to more effective semantic processing, 
especially in applications such as IE. 

 
Fig. 3. Semantic Parsing of a Software Requirement Statement using LTH [42]. 
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Fig. 4. SRL for Predicate Change.01 [42]. 

C. Set of Tokens with Annotation 
The linguistic analysis information (lexical, dependency 

relationships, and SRL) resulting from the LTH system 
software tool were manually assigned to an Excel spreadsheet 
of tokens (for a given SRS) with their annotations. We 
considered only tokens that were system, actor, or use case. 

As shown in Fig. 1, there are two versions of the set of 
tokens with annotations. The first, which is used in the training 
phase, contains the tokens and their linguistic annotations 
(lexical, SRL, and dependency relations), which take the form 
of a table with text values. The SRS identity of a word (token) 
is specified manually, forming a training set of data that can be 
used to train the SyAcUcNER (SVM-based), model. The 
textual contents of this table can be converted to a numeric 
form, allowing them to be handled by the SVM in the next 
processing step. The second version of the set of tokens and 
annotations is used in the testing phase and is similar to the 
first except that the SRS’s entity is not manually assigned to 
each token. Instead, SyAcUcNER is responsible for performing 
this assignation or other word recognition of the SRS identity 
of a token. In both versions of the table, the contents are 
numerically coded and saved as a .csv file, conforming with 
the format required by Weka software, in which its SVM was 
used to perform the classification of the tokens. The coding of 
the word (token) was neglected, and coding only the linguistic 
features (lexical, SRL, and dependency relation) with their 
corresponding SRS. 

We developed and implemented an algorithm to code and 
save the table of the set of tokens, as shown. 

Create_Coded_Data_File (Table of tokens with their 
features and annotations) 

Begin 
For all tokens in the table  
− Code the lexical attribute field according to the 

LexicalCodeTable 
− Assign LexicalCodeValue to its column in the 

Coded_Data Table 
− Code the SRL attribute field according to the 

SRLCodeTable 
− Assign SRLCodeValue to its column in the SRLData 

Table. 
− Code the dependency relation attribute field according to 

the DepRelCodeTable 
− Assign DepRelCodeValue to its column in the 

Coded_Data Table 
− Code the SRS Field according to the SRSCodeTable 
− Assign SRSCodeValue (in term of char ‘c’ and a 

sequence) to its column in the Coded_Data Table 
End For 
Save Coded_Data Table in a .csv file. 

End 

We used Excel software to maintain tables of the software 
statements, their tokens, linguistic attributes, and codes. We 
used the VBA function in Excel to implement the 
Create_Coded_Data_File algorithm. In practice, this function 
forms a pre-processing step ensuring that the values of the 
targeted attributes conform to the constraints of Weka, which is 
used in the next processing step. 
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D. SVM Data Mining Model 
Based on our view of the system, use case, and actor 

semantics of SRS as classes, we used SVM to generate and 
optimize combinations of classifications for each of these 
SRS’s semantics. 

In the example shown in Fig. 5, where SVM is used for 
induction purposes, the training data are represented as vectors 
{X1, ..., Xn} in a domain D, where Xi ∈ D and their labels are 
represented as {Y1, …, Yn}. The vectors positioned on one 
side of a hyperplane would be labeled as Yα, and the vectors 
on the other would be labeled as Yε. The support vectors are 
the lying instances that closest to the hyperplane that is the 
decision surface [46]. 

Since we use SVM in this work, the training data vectors 
{X1 ... Xn} are required, where Xi is represented as {x1, x2, 
x3} in English language (El) space X ⊆ El. The labels {Y1, …, 
Yn} are also needed, where Yi ∈ {1,2,3}, representing 
{System, Actor, Use Case}. These training data were prepared 
using the Create_Coded_Data_File function given above. In 
general, SVM projects data in space (X) to a higher-
dimensional feature space (f) using a Mercer kernel operator K. 
A set of classifiers are formed as follows [46]: 

f (x) = ( ∑ α𝑖  𝐾(𝑋𝑖 ,𝑋))𝑛
𝑖=1              (1) 

In the case where K satisfies Mercer’s condition, K(a,b) we 
can be rewritten as [47]: 

K(a,b) = Φ(a)·Φ(b)             (2) 

where Φ: X→F, and “·” symbolizes the inner product 
operation. 

Thus, f in (1) can be rewritten as: 

f (x) = w. Φ(x), where w = ∑ α𝑖  Φ(𝑋𝑖)𝑛
𝑖=1            (3) 

Consequently, the use of K enables us to implicitly project 
the data into space (f), which usually has higher dimensional 
features. SVM can then be used to map the αis, which agrees 
with the maximal margin hyperplane in (f). Changing kernel 
functions would implicitly project the data from space X into 
space f, where their hyperplanes agree with the decision 
boundaries of the more complex features in space X [47] [46]. 
SVM is a supervised learning method, in which a learning 
algorithm utilizes pre-labeled training data to develop a 
classification model that outlines classes and their 
distinguished data values. The resulting trained classification 
model can be used to classify new data. SVM has been 
extended to perform non-linear classification, multi-class 
classification, and regression analysis [13] [48]; therefore, is 
recognized as a robust classifier. 

Weka (Waikato Environment for Knowledge Analysis) is a 
machine learning software technology that offers 
implementation of SVM in addition to other machine learning 
algorithms [49]. It is free software, licensed under the GNU 
General Public License, and was developed at the University of 
Waikato, New Zealand. 

The SVM in Weka can handle numerical input data saved 
in an Excel file with only one worksheet, as a .csv file. The 
Create_Coded_Data_File VBA macro yields the 
Coded_Data.csv file, which contains the coded SRS classes 
and the value of their linguistic attributes as a table. The header 
of this table is the metadata of its fields, which are a1 
(representing the lexical attribute code), a2 (representing the 
SRL attribute code), a3 (representing the dependency relation 
attribute), and a4 (representing the SRS class attribute code), 
where ‘a’ means ‘attribute’. It is important to note that the 
values a4 are nominally in the form of a char c (meaning 
‘class’) along with numbers such as c1, c2. Weka’s SVM is 
referred to as ‘SMO’ in its classifier list. This stands for 
sequential minimal optimization, and it is an efficient 
optimization training algorithm for SVM [13] [49]. 

The training data file was loaded via the Open file 
command button. The attributes of the data set were displayed 
in the Attribute submenu, in addition to other related 
information about the dataset. The classes (i.e. system, actor, 
and use case in this study) appear in different colors in the 
lower right-hand corner of the Weka Explorer interface. 

Weka’s SVM is a Java class with certain properties, and 
these can be displayed by clicking the text box near the Choose 
command button. In this work, the properties of the SMO were 
set using trial and error to obtain the most accurate SVM-based 
NER model. 

The SyAcUcNER model produced in this research is a 
multi-class classification model that maps input data to system, 
actor, or use case classes. To achieve multi-class classification 
with Weka’s SMO (i.e., an SVM), the classification method 
was set to Hastie and Tibshirani's pairwise coupling (also 
known as ‘1-vs-1’). In order to achieve accurate possibility 
estimates, an option is used that fits the calibration models to 
the SVM’s outputs [50] [51]. When the properties are set, the 
SMO is then trained, and this is achieved via the Start 
command button in the Classify tab of the Explorer window in 
Weka. The classifier output (analysis of the classification 
performance) is then displayed in the lower right-hand corner 
of the Weka Explorer window. Fig. 6 shows one of the training 
runs. 

 
Fig. 5. A Simple SVM for Induction [46]. 
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Fig. 6. Running (Training) Phase of Weka’s SMO Function [52]. 

The finalized and trained SMO model is then saved to an 
external file so that it can be loaded later and used to make 
predictions using the testing data. The SyAcUcNER Model 

The final trained SyAcUcNER model is a specialized 
named entity recognition model for software requirements 
engineering based on SVM. This model can then perform the 
classification of testing data (that have been pre-processed) in 
the same way as for the training data. The testing data represent 
the actual problems that a software requirement analyzer needs 
to solve. The saved SyAcUcNER model has first loaded it from 
its file; this is achieved by following the same steps used to 

save the trained model but selecting the option Load model 
instead of the Save model. Predictions are made for the new 
testing data by loading the test and then selecting the Classify 
tab, the Test options pane, and the Supplied test set option. The 
file format of the output predictions is set to .csv, and the 
evaluation metrics utilize each of the elements of the binomial 
approach (TP, FP, Recall, Precision, and F-measure) and the 
number of correct and incorrect predictions. When the Start 
command button is clicked, the predictions for each test 
instance are listed in the Classifier output pane. Fig. 7 
illustrates a testing run for 99 instances of the testing data. 

 
Fig. 7. Using the Trained SyAcUcNER Model on Testing Data [52]. 
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V. RESULTS AND EVALUATION 
The performance of the SyAcUcNER model and the 

selection of distinguishing features (lexical, SRL, and 
dependency relations) were assessed for a given testing data set 
by selecting the Supplied test set option in the Test option pane 
of the Classify tab in the Weka Explorer interface. 

We scored SyAcUcNER’s performance in terms of its 
accuracy, defined as the quality degree of a class achieved by 
the proposed model compared with the true quality degree for 
the same class [22]. Accuracy was quantified by calculating the 
ratio of the number of correctly classified cases to the total 
number of classified cases, and was mathematically described 
using the following formula [53]: 

Accuracy = number of correctly classified cases/total number 
of cases                (4) 

The use of this naïve definition of accuracy to score the 
performance of a classification model overlooks both the real 
threats from the different forms of errors and the ability to be 
free from error depending on the distribution of the classes in a 
dataset while calculating the accuracy. A better analysis of the 
error (in terms of recognizing the types of wrong classification 
results) can be achieved by using a two-dimensional confusion 
matrix. Each row of the confusion matrix contains a 
forecasting class and its recorded incidence number, while each 
column contains the actual class and its recorded incidence 
number. An increase in the number of classes in the 
classification leads to a larger confusion matrix, causing a 
significant problem; this can be solved by classifying the 
results as either positive or negative relative to the target class, 
thus giving four different numbers [54] [55]: 

• True positive (TP) value: The number of correct 
positive classifications. 

• True negative (TN) value: The number of correct 
negative classifications. 

• False-positive (FP) value: The number of incorrect 
positive classifications. 

• False-negative (FN) value: The number of incorrect 
negative classifications. 

As illustrated in Table III, these values are used to calculate 
the set of performance metrics. Finally, we made a number of 
train courses, each with different settings for the properties in 
the SMO object (Weka’s SVM). 

TABLE III. PERFORMANCE METRICS [54] [55] 

Metric Formula 

Percentage of TP value (TP rate) TP / (TP + FN) 
Percentage of FP value (FP rate) FP / (FP + TN) 
Percentage of TN value (TN rate) TN / (TN + FP) 

Percentage of FN value (FN rate) FN / (FN + TP) 
Percentage of TP to all true values (Precision) TP / (TN + TP) 

Percentage of all true results (Accuracy)  TP+TN / (TP+FN+FP+TN) 

Precision & recall harmonic mean (F1 Score) 2*(Precision*Recall) / 
(Precision+ Recall) 

We used a common agreement among the users of Weka, 
which is the trying of a suite of different values of kernels and 
C parameters could lead to the best achievement. Thus, we got 
good accuracy in terms of a weighted average of 76.2 percent 
for precision, 76 percent for recall, and 72.1 percent for the F-
measure. Using this configuration, we obtained the highest F1 
scores of 21.4 percent for the system entity, 82.5 percent for 
the use-case entity, and 76.8 percent for the actor entity. The 
weighted average of F1 was 72.1 percent. 

VI. CONCLUSIONS, FINDINGS, AND RECOMMENDATIONS 
In this work, we have proposed a solution to the problem of 

the automatic extraction of the SRS’s entities: the system, the 
use case, and the actor as a specialized SRS NER that is called 
SyAcUcNER and uses the SVM to extract SRS elements from 
an unstructured English language textual document of user 
requirements. This systematic approach was inspired by the 
Intelligent Computer Aided Software Engineering (I-CASE) 
principle [56] and the known NER’s function, which is the 
extraction of certain entities from an unstructured or semi-
structured text written in NL. 

The SyAcUcNER approach is implemented as software 
that has embedded other readymade free software tools such as 
the LTH system (for the extraction of NLP frame-semantic 
structure) and Weka (that offers SVM). This method facilitates 
and speeds up the development process and makes the work 
more robust. The proposed SyAcUcNER has been evaluated 
using a confusion matrix technique; we believe that this 
method is a realistic one since it gives the evaluation basing on 
a comparison with human achievement, rather than a 
comparison with other systems. The accuracy of SyAcUcNER 
can be described as good, based on a weighted average of 76.2 
percent for precision, 76 percent for recall, and 72.1 percent for 
the F-measure. A comparison of the results from IT4RE [32], 
which extracts only the use case and actor, with those of 
SyAcUcNER, that extracts the system, use case, and actor, 
gives some interesting results. The best F-measure for IT4RE 
was 71 percent, while for SyAcUcNER, this was 72.1 percent. 

The use of a new suite of linguistic properties, i.e., the 
lexical, SRL, and dependency relations, demonstrates the 
effectiveness of SyAcUcNER in reaching such good accuracy. 
We believe that SyAcUcNER can also be used to recognize 
more entities, especially if more effective NLP tools are used 
that can handle the linguistic problems arising from the 
particular text to be processed, as reported by [32]. The well-
structured design of SyAcUcNER also enables it to act as a 
framework for similar future works. Besides, the use of Weka 
may allow another data mining machine to be used in this 
specialized NER rather than SVM. In addition to the 
achievements in terms of accuracy, the contributions made by 
this work include a new definition of an SRS-specialized NER 
and the use of an SVM (i.e., a data mining machine) for NLP-
oriented applications at the semantic level. It should be noted 
that the work of [46] aimed to classify text, rather than 
engaging in deeper NLP tasks like SyAcUcNER, which 
performs semantic analysis in the SRS domain. The main 
contribution of this work is a framework for specialized NER 
applications, and hence, a general NER structure can be 
defined and implemented as an object for various discourses. 
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Last but not the least, we suggest, as future work, to consider 
the problem of revealing the true meaning of an entity as a 
complex ambiguity that may be handled by using the Relative-
Fuzzy approach, as defined and used by [57]. 

REFERENCES 
[1] M. G. Georgiades and A. S. Andreou, "Formalizing and Automating Use 

Case Model Development," The Open Software Engineering Journal, vol. 
6, pp. 21-40, 2012. 

[2] Q. Stiévenart, J. Nicolay, D. M. Wolfgang, and C. D. Roover, "A general 
method for rendering static analyses for diverse concurrency models 
modular," Journal of Systems and Software, vol. 147, pp. 17-45, 2019. 

[3] E. M. Jebril, A. T. Imam and M. Al-Fayuomi, "An Algorithmic Approach 
to Extract Actions and Actors (AAEAA)," in Proceedings of the 
International Conference on Geoinformatics and Data Analysis, Prague, 
Czech, 2018. 

[4] H. A. Nassar, A. Alhroob and A. T. Imam, "An Algorithmic Approach 
for Sketching Sequence Diagram (AASSD)," in Proceedings of the 
International Conference on Advances in Image Processing, Bangkok, 
Thailand, 2017. 

[5] I. Sommerville, Software Engineering, 10th ed., Essex, England: Pearson, 
2015. 

[6] R. S. Pressman and B. R. Maxim, Software Engineering: A Practitioner's 
Approach, 8/e, NY, USA: McGraw-Hill Global Education Holdings, 
LLC, 2015. 

[7] G. F. Luger, Artificial Intelligence: Structures and Strategies for Complex 
Problem Solving, 6th ed., Pearson, 2011. 

[8] A. Copestake, Natural Language Processing: PartII Overview of Natural 
Language Processing (L90): PartIII/ACS, Cambridge, 2017. 

[9] D. Jurafsky and J. H. Martin, Speech and Language Processing, vol. 3, 
London: Pearson London, 2018. 

[10] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, Cambridge, 
MA: MIT Press, 2016. 

[11] A. Oleinik, "What are neural networks not good at? On artificial 
creativity," Big Data & Society, vol. 6, no. 1, pp. 1-13, 2019. 

[12] R. Goswami, Selected Topics in Machine Learning, Michigan, USA: 
Independently published, 2018. 

[13] B. Bayat, C. Krauss, A. Merceron and S. Arbanowski, "Supervised 
Speech Act Classification of Messages in German Online Discussions," 
in The 29th AAAI International Florida AI Research Society Conference, 
Florida, USA, 2016. 

[14] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. 
McClosky, "The Stanford Core NLP Natural Language Processing 
Toolkit," in The 52nd Annual Meeting of the Association for 
Computational Linguistics: System Demonstrations, Baltimore, 
Maryland, USA, 2014. 

[15] T. A. S. Foundation, "Welcome to Apache OpenNLP," 2018. [Online]. 
Available: https://opennlp.apache.org/. 

[16] V. Karkaletsis, P. Fragkou, G. Petasis, and E. Iosif, "Ontology Based 
Information Extraction from Text," in Knowledge-Driven Multimedia 
Information Extraction and Ontology Evolution, Berlin, Heidelberg, 
Springer, 2011, pp. 89-109. 

[17] J. Li, A. Sun, J. Han and C. Li, "A Survey on Deep Learning for Named 
Entity Recognition," IEEE Transactions on Knowledge and Data 
Engineering, p. Early Access Article, 2020. 

[18] P. Groth, M. Lauruhn, A. Scerri and R. D. Jr, "Open Information 
Extraction on Scientific Text: An Evaluation," in The 27th International 
Conference on Computational Linguistics, Santa Fe, New Mexico, USA, 
2018. 

[19] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead and O. Etzioni, 
"Open Information Extraction from the Web," in The 20th international 
joint conference on Artificial intelligence, Hyderabad, India, 2017. 

[20] N. Indurkhya and F. J. Damerau, Handbook of Natural Language 
Processing, London, U.K: Chapman & Hall, 2010. 

[21] M. Mohanan and P. Samuel, "Software Requirement Elicitation Using 
Natural Language Processing," in Innovations in Bio-Inspired Computing 

and Applications. Advances in Intelligent Systems and Computing, vol. 
424, Cham , Springer, 2016, pp. 197-208. 

[22] D. K. Deeptimahanti and M. A. Babar, "An Automated Tool for 
Generating UML Models from Natural Language Requirements," in 
International Conference on Automated Software Engineering, Auckland, 
New Zealand, New Zealand, 2009. 

[23] T. H. Nguyen, J. Grundy, and M. Almorsy, "Rule-Based Extraction of 
Goal-Use Case Models from Text," in 10th Joint Meeting on Foundations 
of Software Engineering, Bergamo, Italy, 2015. 

[24] R. Robu and S. Holban, "A Genetic Algorithm for Classification," in 
International Conference on Computers and computing, Canary Islands, 
Spain, 2011. 

[25] M. Junczys-Dowmunt, "A Genetic Programming Experiment in Natural 
Language Grammar Engineering," in 15th International Conference on 
Text, Speech and Dialogue, Brno, Czech Republic, 2012. 

[26] P. More and R. Phalnikar, "Generating UML Diagrams from Natural 
Language Specifications," International Journal of Applied Information 
Systems, vol. 1, no. 8, pp. 19-23, 2012. 

[27] N. Arman and S. Jabbarin, "Generating Use Case Models from Arabic 
User Requirements in a Semiautomated Approach Using a Natural 
Language Processing Tool," Journal of Intelligent Systems, vol. 24, no. 2, 
pp. 277-286, 2015. 

[28] M. Murtaza, J. H. Shah, A. Azeem, W. Nisar, and M. Masood, 
"Structured Language Requirement Elicitation Using Case Base 
Reasoning," Research Journal of Applied Sciences, Engineering and 
Technology, vol. 6, pp. 4393-4398, 2013. 

[29] R. Sharma, P. K. Srivastava, and K. K. Biswas, "From Natural Language 
Requirements to UMLClass Diagrams," in IEEE Second International 
Workshop on Artificial Intelligence for Requirements Engineering 
(AIRE), Ottawa, ON, Canada, 2015. 

[30] S. Gulia and T. Choudhury, "An Efficient Automated Design to Generate 
UML Diagram from Natural Language Specifications," in 6th 
International Conference - Cloud System and Big Data Engineering 
(Confluence), Noida, India, 2016. 

[31] W. Wan, H. Cheong, W. Li, Y. Zeng, and F. Iorio, "Automated 
Transformation of Design Text ROM Diagram into SysML Models," 
Advanced Engineering Informatics, vol. 30, no. 3, pp. 585-603, 2016. 

[32] A. Al-Hroob, A. T. Imam and R. Al-Heisa, "The Use of Artificial Neural 
Networks for Extracting Actions and Actors from Requirements 
Document," Information and Software Technology, vol. 101, pp. 1-15, 
2018. 

[33] T. Eftimov, B. K. Seljak, and P. Korošec, "A rule-based named-entity 
recognition method for knowledge extraction of evidence-based dietary 
recommendations," PLOS ONE, vol. 12, no. 6, pp. 1-32, 2017. 

[34] L. M. Berk, English Syntax: From Word to Discourse, NY, USA: Oxford 
University Press, 1999, p. 315. 

[35] T. E. Payne, "Summary of Semantic Roles and Grammatical Relations," 
2007. [Online]. Available: https://pages.uoregon.edu/tpayne/EG595/HO-
Srs-and-GRs.pdf. 

[36] V. Punyakanok, D. Roth and W.-t. Yih, "The importance of syntactic 
parsing and inference in semantic role labeling," Computational 
Linguistics, vol. 34, pp. 257--287, 2008. 

[37] C. J. Fillmore, "Types of Lexical Information," in Semantics: an 
interdisciplinary reader in philosophy, linguistics and psychology, 
London, U.K, Cambridge University Press, 1971, pp. 370 - 392. 

[38] A. T. Imam and A. J. Alnsour, "The Use of Natural Language Processing 
Approach for Converting Pseudo Code to C# Code," Journal of 
Intelligent Systems, vol. 28, no. 3, p. 362, 2019. 

[39] T. Osborne and T. Gross, "Constructions are catenae: Construction 
Grammar meets Dependency Grammar," Cognitive Linguistics, vol. 23, 
no. 1, p. 163–214, 2012. 

[40] M.-C. d. Marneffe, T. Dozat, N. Silveira, K. Haverinen, F. Ginter, J. 
Nivre and C. D. Manning, "Universal Stanford dependencies: A cross-
linguistic typology," in Ninth International Conference on Language 
Resources and Evaluation, Reykjavik, Iceland, 2014. 

[41] Universaldependencies.org, "Universal Dependencies," 2017. [Online]. 
Available: https://universaldependencies.org. 

184 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 3, 2021 

[42] D. o. C. S. Lund University, "Try the semantic role labeler," 2019. 
[Online]. Available: http://barbar.cs.lth.se:8081/. 

[43] J. Hajič, M. Ciaramita, R. Johansson, D. Kawahara, M. A. Martí, L. 
Màrquez, A. Meyers, J. Nivre, S. Padó, J. Štěpánek, P. Straňák, M. 
Surdeanu, N. Xue and Y. Zhang, "The CoNLL-2009 Shared Task: 
Syntactic and Semantic Dependencies in Multiple Languages," in CoNLL 
'09 Proceedings of the Thirteenth Conference on Computational Natural 
Language Learning: Shared Task, Boulder, Colorado, 2009. 

[44] K. Hacioglu, "Semantic Role Labeling Using Dependency Trees," in 20th 
international conference on Computational Linguistics, Geneva, 
Switzerland, 2004. 

[45] R. Johansson and P. Nugues, "Extended Constituent-to-Dependency 
Conversion for English," in The 16th Nordic Conference of 
Computational Linguistics (NODALIDA 2007), Tartu, Estonia, 2007. 

[46] S. Tong and D. Koller, "Support Vector Machine Active Learning with 
Applications to Text Classification," Journal of Machine Learning 
Research, vol. 2, no. 1, pp. 45-66, 2001. 

[47] C. J. C. Burges, "A Tutorial on Support Vector Machines for Pattern 
Recognition," Data Mining and Knowledge Discovery, vol. 2, no. 2, p. 
121–167, 1998. 

[48] M. Fern, D. Delgado, E. Cernadas, S. Barro and D. Amorim, "Do we 
Need Hundreds of Classifiers to Solve Real World Classification 
Problems?," Journal of Machine Learning Research, vol. 15, no. 1, pp. 
3133-3181, 2014. 

[49] G. Holmes, A. Donkin and I. H. Witten, "Weka: A machine learning 
workbench," in Second Australia and New Zealand Conference on 
Intelligent Information Systems, Brisbane, Australia, 1994. 

[50] S. Keerthi, S. Shevade, C. Bhattacharyya and K. Murthy, "Improvements 
to Platt's SMO Algorithm for SVM Classifier Design.," Neural 
Computation, vol. 13, no. 3, pp. 637-649, 2001. 

[51] Nabble, "Explanation of SMO Parameters?," 2019. [Online]. Available: 
http://weka.8497.n7.nabble.com/Explanation-of-SMO-Parameters-
td21768.html. 

[52] R. S. R. Boddu and S. Kalyanapu, Waikato Environment for Knowledge 
Analysis: Data Mining Tool, Mauritius: LAP LAMBERT Academic 
Publishing, 2019, pp. 87-112. 

[53] C. W. Ahn and R. Ramakrishna, "A Genetic Algorithm for Shortest Path 
Routing Problem and The Sizing of Populations," IEEE Transactions on 
Evolutionary Computation, vol. 6, pp. 566 - 579, 2002. 

[54] Kohavi and Provost, "The Case Against Accuracy Estimation for 
Comparing Introduction Algorithm," in ICML '98 Proceedings of the 
Fifteenth International Conference on Machine Learning, 1998. 

[55] D. L. Olson and D. Delen, Advanced Data Mining Techniques, 1st ed., 
Springer, 2008, p. 38. 

[56] A. T. Imam, A. J. Al-Nsour and A. Al-Hroob, "The Definition of 
Intelligent Computer Aided Software Engineering (I-CASE) Tools," 
Journal of Information Engineering and Applications, vol. 5, no. 1, pp. 
47-56, 2015. 

[57] A. T. Imam, "Relative-Fuzzy: A Novel Approach for Handling Complex 
Ambiguity for Software Engineering of Data Mining Models," De 
Montfort University, Leicester, UK, 2010. 

 

185 | P a g e  
www.ijacsa.thesai.org 


	I. Introduction
	1) SVM is distinguished in learning by:
	2) SVM is more efficient in high n-dimensional space, in cases where the number of samples is less than the number of dimensions and is relatively memory efficient.
	3) SVM delivers accurate results due to the following:
	4) SVM can be adapted to work with different data types. This is because SVM has a built-in kernel function, which is a technology that provides the ability to solve any complex problem. Note that Kernel is a non-parametric (linear or nonlinear) identifiab�
	5) Generally, the SVM classifier has better computational complexity than the other classifiers. SVM has a very little execution time than the Artificial Neuron Network (ANN). SVM has a faster prediction with better classification accuracy than the Naive B�
	6) The availability of library SVM classifiers in many programming languages and packages such as MATLAB, Weka, and Python makes the work with SVM so easy.

	II. Background
	1) Tokenization: The process of breaking up a sentence into elements called tokens.
	2) Lexical analysis: A process that aims to check whether a word belongs to a language and to find the part of speech (POS) for the word, or to reveal the class of a word (i.e., verb, noun, or preposition). The lexical analysis also includes the morphologi�
	3) Syntactic analysis: This applies the grammar of the language (using a parsing algorithm) to identify the legal structure of the input statement.
	4) Semantic analysis: This is the process of extracting the exact meaning from the text.
	5) Pragmatic analysis: This aims to infer the purpose of the use of the word/text in situations and requires knowledge about the domain of discourse. It is achieved by reinterpreting the text as it really implies.

	III. Related Works and Approaches
	IV. Proposed SyAcUcNER Approach
	A. NL Functional Requirements
	B. Annotation of the Tokens of the Sentence
	C. Set of Tokens with Annotation
	D.  SVM Data Mining Model

	V. Results and Evaluation
	VI. Conclusions, Findings, and Recommendations

