
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

407 | P a g e

www.ijacsa.thesai.org

Speeding up Natural Language Text Search using

Compression

Majed AbuSafiya

Software Engineering Department

Al-Ahliyya Amman University

Amman, Jordan

Abstract—Text search is a well-known problem in computer

science where the valid shifts of a pattern P in a text string T are

found. This paper shows how to speed up text search by

searching for P in a compressed version of T. A fast compression

algorithm was designed for this aim. This algorithm is based on

the assumption that T is restricted to the letters of a single

natural language. Relying on this assumption, a letter, in T or P,

is encoded into a single byte instead of the two-byte unicode

which shortens the string on which a text search algorithm

works. The main disadvantage of this approach is the restriction

of the alphabet of T to be from a single natural language.

However, wide range of text documents complies to this

assumption. Another issue is the overhead that is required to

compress P and T, but it was found that the proposed

compression algorithm is so fast such that its run-time can be

paid for and still save text search time. Different approaches to

store compressed T are also explored. The conducted

experimental study showed that this approach does actually

reduce the text search time.

Keywords—Text compression; text search; unicode

I. INTRODUCTION

A lot of research was directed towards searching in
compressed text. A survey of the approaches to search in
compressed text without decompression can be found in [1]. In
[2], text search was applied on a directory-based compressed
text. In [3], the characters are encoded as a variable-length
sequences of base symbols of fixed number of bits. In [4], the
input text is already compressed with Lempel-Ziv. In [5], a
compression and decompression techniques for natural
language text are proposed. The compression scheme that is
used is based on semi-static word-based model and Huffman
encoding where the coded alphabet is byte oriented rather than
bit-oriented. In [6], an approximate search on the compressed
search using local decompression is proposed. In [7] the input
text is assumed to be Ziv-Lempel Compressed Text. In [8], the
text search in compressed text is done using periodicity
analysis, with sublinear run time with the size of compressed
text. In [9], a directory based compression is used on natural
language text.

The main observation that can be noticed in the previous
research regarding this problem is that: the primary motivation
was to do text search in an input string that is already
compressed using known compression algorithms without
decompressing it first. This means that compression was not
originally done to speed text search. This is the main point that
contrasts this work from others work. In this paper,

compression is done to speed up the text search first and to
save space as a second gain. The compression that was
considered in literature is based on known compression
algorithms which are known to be complex and time-
consuming. On the other hand, the proposed compression is
very fast and simple. A similar approach to our approach was
found in [10]. However this work differs from our work in
many ways: (1) T is assumed to be in ASCII while our work is
based on unicode encoding, (2) our compression approach is
much faster and simpler, (3) the shifts that are found in the
compressed T can easily be translated to shifts in the original
uncoded version of T.

The proposed work in this paper is based on the fact that T
is encoded in unicode [11]. Unicode is an international
standard for encoding alphabets of natural languages, two bytes
for a letter. Alphabets of different natural languages are
encoded in ranges. One observation about unicode is that the
alphabet of the same natural language share the same upper
byte value. For example, Arabic alphabet unicodes range
between 0x0600 up to 0x6FF with the same upper byte code
0x60. This fact will be utilized to compress T and P to reduce
their length to half by excluding the upper byte. For example,

the Arabic word (هو) is composed of two letters (Fig. 1). The

unicode of letter (هـ) is 0x0647, the upper byte is 0x06 and the

lower byte is 0x47. The unicode of the second letter (و) is
0x0648 with upper byte is 0x06 and lower byte is 0x48. The
proposed compression is based on using only the lower byte as
a code for the letter. This will compress T into half size. Note
that this compression works only under the assumption that T
contains only text letters of the same alphabet. Moreover, the

code of the first letter (هـ) is placed in the upper byte in the
compressed unicode. This is because Arabic script is written
from right to left and hence it assures that the encoded letters
will be stored in the same order that they have within the
original text.

Word هـــــــــــــــــــــــــو

unicode 0x0648 0x0647

Compressed code 0x4748

Fig. 1. Compression of Two Letters into One Letter.

II. COMPRESSION ALGORITHM

A. COMPRESS Algorithm

COMPRESS algorithm (Fig. 2) returns a compressed string
(Scompressed) for an input unicode string S. S could be T or P.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

408 | P a g e

www.ijacsa.thesai.org

Scompressed will be half the length of S. S is a string, where

each letter is encoded with two-byte unicode. S
compressed

is

generated by reducing the two-byte unicode code of every

letter in S into a single byte in S
compressed

 (Fig. 1). To show

how this algorithm works for the example in Fig. 1, let S be the

string (هو) with two letters S0 = (هـ) and S1=(و). The algorithm
will do a left-shift on S0 by eight bits to generate S'0 (0x4700).
Next, a bit-wise and operation is applied between S1 and
0x00FF to generate S'1 (0x0048). Finally, a bit-wise or
operation is applied between S'0 and S'1 which will result in one
letter unicode (i.e. 0x4748) that will be appended to

S
compressed

. The loop will iterate for the letters of S in pairs

until S
compressed

 is complete. In case of S is of odd length, a

space will be appended to make its length even.

Fig. 2. COMPRESS Algorithm.

B. Saving T
compressed

 to a file

Saving T
compressed

 into a file has two advantages: (1)

saving disk space, if it replaces the original T's text file since
the compressed version is half the size of the T's text file, (2)
allowing immediate application of the text search on the
compressed version of T saves the time to compress T every
time a text search is required. It is important to point here that
the experimental study showed reduction is search time even if
T is input in its native uncompressed format and compression
is done as part of the text search. To save T in a compressed
form, the text file of T is read and COMPRESS algorithm is

called to build T
compressed

. Remember that T
compressed

 is an

array of bytes, one byte encodes one letter in T. There are two

approaches to write T
compressed

 : as a unicode text file or as a

binary file.

One way to store T
compressed

 is through storing it in a text

file using unicode. In this case, every pair of bytes of

T
compressed

 is interpreted as a single unicode code character

and the corresponding character of this unicode is written to the
file. So, the size of this file will be half the size of the original
T's file. In addition to compression, it will be encrypted. For

example, T= ― الرحيم الرحمن الله بسم ‖, which is composed of
twenty two characters (letters and spaces), will be encoded into

eleven unicode characters. Fig. 3 shows how T
compressed

looks like when its file is opened in a text editor.

Fig. 3. T
compressed

 as Unicode Text.

T
compressed

 may also be stored as binary file (Fig. 4). The

letters of T
compressed

 are written into a binary file a byte by byte

without building unicode letters from pairs of bytes. In this
case, the letter is represented as ASCII code. For example, for

T=― الرحيم الرحمن الله بسم ‖, each character is represented by one
byte. This byte corresponds to the lower byte of the unicode of
that character. For example the first byte is '(' which has the

hex value 0x28 is the code of the first letter (بـ) . Note that the

unicode for letter (بـ) is 0x0628.

(3E 'DDG 'D1-EF 'D1-JE
Fig. 4. T

compressed

 Stored as Binary.

III. SPEEDING TEXT SEARCH WITH COMPRESSION

The compressed text search algorithm is shown in Fig. 5. It
takes as input P and T, compresses them using COMPRESS
algorithm and then calls any known string matching algorithm
to search for P

compressed

 within T
compressed

. Although

T
compressed

has half the size of T, the length of T
compressed

equals to the length of T. This is because T
compressed

 is viewed

as an array of bytes (on byte for each letter) and T is viewed as
an array of unicodes. This is also true for P and P

compressed

.

The equality comparisons within the selected string matching
algorithm will be byte-wise comparisons and not unicodes
comparisons. So, the calculated valid shifts that are found by
the this reused string matching algorithm will be the valid
shifts of P within T.

Fig. 5. Compressed Text Search Algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

409 | P a g e

www.ijacsa.thesai.org

IV. EXPERIMENTAL STUDY

The compressed text search algorithm was implemented in
Java, where T is chosen to be the text of the Holy Quran, which
is composed only of Arabic letters, with size of 411,082 letters.
The selected string matching algorithm was the known Knuth–
Morris–Pratt (KMP) algorithm [12]. To show the reduction in
text search time, the search time that is needed to search for P
in T using the compressed text search algorithm is compared
with the time that is needed to search for P in T without
compression (Fig. 6). P was randomly chosen as a substring of
a given length from T. This experiment was repeated for
varying sizes of P. Note that the time to compress P and T was
included in calculating the search time for the compressed text
search algorithm. To raise the confidence in the results, this
process was repeated 1000 times for each length of P and the
average time was recorded for both algorithms. It is obvious
that when KMP is applied on compressed input, it resulted in
significant reduction in search time. The saving in time
happened because an equality comparison between two
unicode characters, in Java, is actually implemented through a
couple of byte-wise equality comparisons. On the other hand,
when searching in T

compressed

, the equality comparison is done

by a single byte-wise comparison.

Fig. 6. Comparison between KMP Time with/without Compression of P and

T.

V. CONCLUSIONS

In this paper, the natural language text was compressed to
speed up text search. By excluding the upper byte of the
unicode of letters, we could reduce the size of both P and T
into half and hence have a faster text search. This approach
assumes that letters of the text belong to the alphabet of the
same natural language. One important result from this research
is that exploiting the specifics and constraints of natural
languages may open the door for improvements on string

algorithms in general. Although these improvements are not
generic, they may be useful under certain contexts. One
interesting issue to explore is how to do text search when
T

compressed

 and P
compressed

 are viewed as arrays of unicodes

rather than arrays of bytes. The challenge here is to explore
how to compress P such that the odd valid shifts of P within T
are also found.

ACKNOWLEDGMENT

All praise and gratitude be to Allah, all mighty, for guiding
me and giving me the knowledge and strength to accomplish
this work.

REFERENCES

[1] D. Adjeroh, T. Bell, and A. Mukherjee, Pattern Matching in Compressed
Texts and Images. Now Publishers Inc., Hanover, MA, 2013.

[2] K. Fredriksson and S. Grabowski, ―A general compression algorithm
that supports fast searching,‖ Information Processing Letters, vol. 100,
2006, pp.226-232.

[3] J. Rautio, J. Tanninen and J. Tarhio, "String matching with stopper
compression," Proceedings DCC 2002, Data Compression Conference,
Snowbird, UT, USA, 2002, pp. 469-476.

[4] M. Farach-Colton and M, Thorup, ―String Matching in Lempel—Ziv
Compressed Strings,‖ Algorithmica, vol.20 , 1998, pp. 388-404.

[5] E. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates, ―Fast and
flexible word searching on compressed text,‖ ACM Trans. Inf. Syst.
Vol. 18, 2000, pp. 113–139.

[6] G. Navarro, T. Kida, M. Takeda, A. Shinohara and S. Arikawa, "Faster
approximate string matching over compressed text," Proceedings DCC
2001. Data Compression Conference, Snowbird, UT, USA, 2001, pp.
459-468.

[7] G. Navarro and J. Tarhio, ―Boyer-Moore String Matching over Ziv-
Lempel Compressed Text,‖ Proceedings of the 11th Annual Symposium
on Combinatorial Pattern Matching (COM '00). Springer-Verlag, Berlin,
Heidelberg, pp. 166–180, 2000.

[8] A. Amir and G. Benson, ―Two-dimensional periodicity and its
applications,‖ In Proceedings of the third annual ACM-SIAM
symposium on Discrete algorithms (SODA '92). Society for Industrial
and Applied Mathematics, USA, 1992, pp. 440–452.

[9] K. Fredriksson and F. Nikitin, ―Simple Compression Code Supporting
Random Access and Fast String Matching,‖ In: Demetrescu C. (eds)
Experimental Algorithms. WEA 2007. Lecture Notes in Computer
Science, vol 4525. Springer, Berlin, Heidelberg.

[10] Udi Manber, ―A text compression scheme that allows fast searching
directly in the compressed file,‖ ACM Trans. Inf. Syst. 15, pp. 124–136,
1997.[12] D. Knuth; J. Morris, V. Pratt, ―Fast pattern matching in
strings,‖ SIAM Journal on Computing vol.6, 1977, pp. 323-350.

[11] Unicode home, http://home.unicode.org.

[12] D. Knuth; J. Morris, V. Pratt, ―Fast pattern matching in strings,‖ SIAM
Journal on Computing vol.6, 1977, pp. 323-350.

http://home.unicode.org/

