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Abstract—Cloud computing is a vital paradigm of emerging 
technologies. It provides hardware, software, and development 
platforms to end-users as per their demand. Task scheduling is 
an exciting job in the cloud computing environment. Tasks can 
be divided into two categories dependent and independent. 
Independent tasks are not connected to any type of parent-child 
concept. Various meta-heuristic algorithms have come into force 
to schedule the independent tasks. In this, paper a hybrid HC-
CSO algorithm has been simulated using independent tasks. This 
hybrid algorithm has been designed by using the HEFT 
algorithm, Self-Motivated Inertia Weight factor, and standard 
Cat Swarm Optimization algorithm. The Crow Search algorithm 
has been applied to overcome the problem of premature 
convergence and to avoid the H-CSO algorithm getting stuck in 
the local fragment. The simulation was carried out using 500-
1300 random lengths independent tasks and it was found that the 
H-CSO algorithm has beaten PSO, ACO, and CSO algorithms 
whereas the hybrid algorithm HC-CSO is working fine despite 
Cat Swarm Optimization, Particle Swarm Optimization, and H-
CSO algorithm in the name of processing cost and makespan. 
For all scenarios, the HC-CSO algorithm is found overall 4.15% 
and 7.18% efficient than the H-CSO and standard CSO 
respectively in comparison to the makespan and in case of 
computation cost minimization, 9.60% and 14.59% than the H-
CSO and the CSO, respectively. 

Keywords—Crow search algorithm (CSA); cat swarm 
optimization (CSO); H-CSO algorithm; HC-CSO algorithm; heft 
algorithm; SMIW (self-motivated inertia weight); independent 
tasks; particle swarm optimization (PSO); QoS (Quality of Service); 
virtual machines (VMs) 

I. INTRODUCTION 
At present, the IT industries having cloud infrastructure are 

providing on-demand services to their customers [1][2]. These 
services may include hardware storage, memory, software, 
applications development at remote locations [3]. To fulfill 
these services, cloud service providers provide virtual 
machines to the users in order to execute their tasks. It is 
necessary to map all the tasks on each virtual machine carefully 
to optimize the performance of the cloud [4][5]. A service level 
agreement needs to be signed by the user and the service 
provider. According to that agreement various QoS (Quality of 
Service) parameters need to be decided before starting a 
service. These QoS may be budget, deadline of all tasks, 
security, throughput, etc. Quick execution of all tasks is highly 
demanded [5]. Task scheduling always remains a burning topic 
of research in cloud computing due to its NP-Hard properties 
[6][7]. The most critical problem of a cloud is to schedule the 

tasks to the perfect resources [8][9]. The cloud service 
providers apply many techniques to reduce the makespan and 
cost of tasks scheduling. There may be two kinds of scheduling 
techniques: independent scheduling and dependent scheduling. 
In the case of dependent scheduling, the tasks are 
interconnected with each other in the form of a workflow. In 
independent scheduling the tasks are not dependent on each 
other; they are autonomous as per their nature [6]. Further, the 
scheduling policy can be classified into two categories static 
scheduling and dynamic scheduling. In static scheduling, the 
amount of the data is known before execution but in the event 
of dynamic scheduling, the amount of the data is not known 
[10]. Scheduling is an important issue to increase the 
performance of a cloud. Many scheduling meta-heuristic 
methods have entered the Information Technology market. For 
example, Ant Colony Optimization, Genetic Algorithm, 
Particle Swarm Optimization, Gravitation Search Algorithm, 
etc. [11]. In this research, various algorithms have been utilized 
and these are described as: 

1) HEFT – The HEFT algorithm [10] is having two 
phases: setting a task priority and selecting a virtual machine. 
In the priority phase, the HEFT sets the ranks of all the tasks. 
In the virtual machine selection phase, the HEFT calculates the 
earliest finish time of all tasks on the VMs. After this in HEFT, 
the tasks are set in decreasing order of their ranks and assign to 
virtual machines. 

2) Crow Search Algorithm – The CSA algorithm [8] is 
another meta-heuristic technique. This algorithm has been 
developed by considering the real behavior of the Crow bird. 
The Crow is one of the most intelligent birds in this universe. 
Its memory is very sharp and it can easily remember the thing 
for a long time. One of the characteristics of the Crow is to 
steal the food of other birds by chasing them cleverly. Based 
on the above characteristic, the algorithm has been designed by 
A. Askarzadeh in 2016. According to the author [12], there are 
two states of the CSA algorithm, and both states are combined 
in equation 1. 

𝑋𝑖,𝑖𝑡𝑟+1 =

 �𝑋
𝑖,𝑖𝑡𝑟+1 + 𝑟𝑖 ×  𝑓𝑙𝑖,𝑖𝑡𝑟 × (𝑚𝑗,𝑖𝑡𝑟 −  𝑋𝑖,𝑖𝑡𝑟)  𝑟𝑗 ≥  𝐴𝑃𝑗,𝑖𝑡𝑟

𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛               𝑒𝑙𝑠𝑒
     (1) 

Where 𝑟𝑖  and 𝑟𝑗  are random variables between [0 – 1], fl 
denotes the flight length of the Crowi, and 𝐴𝑃𝑗,𝑖𝑡𝑟  is the 
awareness probability of the Crowj at the itr iteration. 
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 In the first state, the local searching is taking place 
whereas in the second state the global searching (random 
searching). If the awareness probability is less than or equal to 
the rj variable then the global searching will be done otherwise 
local searching will be executed. The searching also depends 
on flight length (fl), a small value of fl will lead to local search. 
In above equation 1, it is also assumed that the Crowi will 
follow the victim Crowj and steal its food. 

3) Cat Swarm Optimization – The CSO algorithm was 
designed by Chu and Tasi in the year 2006 based on two 
properties of a real cat, i.e. resting and hunting modes [13]. In 
the seeking mode, the cat moves freely in a random manner 
and remains alert. In the case of tracing mode, the cat has full 
of energy and moves towards the prey with high eagerness. 
Both the modes are described in detail in [14]. The pseudo-
code [26] of the Cat Swarm Optimization is given in Fig. 1. 

Cat Swarm Optimization Algorithm 

1. Randomly initialize Cats of Size N 
2. While Termination Condition Do 
3. Distribute Cats into Tracing Mode and Seeking Mode as per 

MR Flag 
4.     For K = 1 to N  
5.         Evaluation Cat Fitness 
6.         If CatK is in Seeking Mode Then 
7.             Execute Seeking Mode 
8.        Else 
9.             Execute Tracing Mode 
10.        End If                                                                   
11.     End For 
12. End While 

Fig. 1. Pseudo-Code of Standard Cat Swarm Optimization. 

4) H-CSO Algorithm – This algorithm was formulated by 
using the HEFT algorithm original Cat Swarm Optimization, 
and the SMIW method. The SMIW method is given in the 
methodology adopted section in detail. 

 The flaws of the H-CSO algorithm are observed and the 
work has been done to overcome those limitations by inserting 
a local searching part of the standard Crow Search Algorithm 
[25]. Basically, the H-CSO algorithm is a hybrid of standard 
CSO, HEFT algorithm, and SMIW method. Some drawbacks 
of the H-CSO are described as: 

• The H-CSO algorithm has poor local searching 
capacity. Although, the outrange drawback of the 
velocity formula of the tracing mode of the standard 
CSO has been removed in the H-CSO using the SMIW 
method. 

• Due to the resting of Cats for a maximum time in the 
seeking mode of the H-CSO, it gets frozen in the local 
fragment. 

The objective of this research is to simulate the HC-CSO 
[25] algorithm for independent tasks and make comparisons 
with H-CSO and other existing standard algorithms. The 
remaining information is specified in the methodology adopted 
section. 

The remaining of the paper is organized as: In Section II 
related work has been presented. Section III is describing the 
methodology adopted and the simulation setup is explained in 
Section IV. Simulation results are discussed in Section V. Final 
Section VI is representing the conclusion and future scope of 
this research. 

II. RELATED WORK 
In this section, a study of various scientists is described. A 

hybrid CSO algorithm using the Simulated Annealing and 
Orthogonal Taguchi was designed by the scientists in [3]. The 
result analysis highlighted that the proposed method performs 
efficiently than MGA, MOACO, and MPSO for various QoS 
parameters. A task mapping approach using the PSO and Eagle 
Strategy was designed in [4]. The simulation results indicate 
that the proposed procedure is improved than the original PSO 
and other existing methods like RALBA, NMT-FOLS, etc. A 
joint task scheduling and resource placement policy was 
designed in the paper [5]. The makespan, degree of imbalance, 
resource utilization, and cost are improved using the newly 
designed policy as compared to existing GSO and GA 
methods. A new method named MHO was designed for task 
scheduling and load balancing in [6]. The proposed method 
having two phases MHOS-S and MHO-D were found better 
after results analysis as compared to other meta-heuristic 
methods. A new model for task allocation to virtual machines 
has been proposed in [8]. The experimental results summarized 
that the proposed ICSA algorithm reduced the makespan, 
waiting time, response time, and flow time as compared to 
FCFS and PSO methods. A Binary PSOGSA method was 
developed for the load balancing and task scheduling in the 
cloud in paper [11]. It is a bio-inspired load balancing 
algorithm used to manage the virtual machines for the load 
balancing issue. The outcome analysis demonstrated that the 
proposed method is efficient than originally developed Bin-
LB-PSO and other techniques. An Average-Inertia Weight 
CSO algorithm (AICSO) was proposed in [14]. The simulation 
demonstrated that the AICSO is having a good convergence 
rate as compared to the standard CSO and ICSO algorithms. 
The authors proposed a cloud scheduling strategy named 
Genetic Algorithm-Chaos Ant Colony Optimization [15]. The 
proposed algorithm is optimal as compared to the ACO. A task 
scheduling strategy was designed using the PSO algorithm in 
the research paper [16]. The proposed method is a combination 
of Dynamic PSO and Cuckoo Search. It was identified by the 
results that the proposed algorithm worked fine than the 
original PSO. An adaptive cost-based method was developed in 
[17]. The proposed method was proved better by the simulation 
results in terms of various resources utilization like memory, 
bandwidth, CPU utilization, etc. A PSO-oriented load 
balancing method was proposed in [19]. The proposed method 
was designed by using a load balancing technique and was 
analyzed with traditional Round-Robin, the present PSO and 
load management method. The results were discussed by the 
authors and the new introduced technique was found efficient 
for balancing the cloud load. The paper [20] described that an 
improved PSO was developed using a discrete position 
updating strategy and the Gaussian Mutation operation. The 
proposed algorithm outperformed the existing algorithms. The 
researchers modified the PSO in [21] to overcome the problem 
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of slow convergence. The proposed PSO having dynamic 
inertia weight worked fine for cost reduction as compared to 
the existing IPSO, PSO-ACO, and standard ACO algorithms. 
An IPSO algorithm was proposed for task mapping on virtual 
machines in [22]. The process was achieved by splitting the 
coming tasks into many batches. The author in experiments 
summarized that the Improve PSO was efficient than existing 
Round-Robin, Honey Bee, and Ant Colony algorithms. A 
multi-objective CSO technique was framed in paper [23]. It 
was observed by the analysis of the results that the proposed 
MOCSO is very effective than MOPSO for better makespan, 
cost, etc. A CSO algorithm based on heuristic scheduling was 
introduced in the paper [24]. The results of this paper depicted 
that the proposed Cat Swarm Optimization worked better than 
the existing PSO. 

From the above study, the main key points are found as 
follows: 

1) The ACO algorithm is having a poor global search 
characteristic, due to that the convergence of the ACO is poor. 
The standard CSO jumps out from the search space due to the 
unbalanced tracing mode’s velocity formula. 

2) The PSO algorithm is famous for global searching and 
superior to the ACO for scheduling purposes. 

3) The CSO algorithm is superior to the PSO due to its 
better convergence than PSO, but it gets trapped in local 
optima due to the resting behaviour of numerous cats in 
seeking mode. 

4) H-CSO algorithm improved than the CSO but it may 
get trapped in the local search or in tracing mode while 
increasing the number of iterations. 

III. METHODOLOGY ADOPTED 
To overcome the research gaps of the H-CSO described in 

the literature review section, a new algorithm has been 
designed named HC-CSO [25]. In the H-CSO, a local search 
portion of the CSA technique has been fused with the CSO. 
This technique balances the seeking and tracing modes which 
improve the searching capacity of the HC-CSO algorithm. The 
pseudo-code of the HC-CSO algorithm is given in Fig. 2. 

As said earlier the HC-CSO method is a hybridization of 
the H-CSO and the Crow Search Algorithm’s local searching 
portion. It has also been told earlier that the H-CSO is a 
combination of HEFT (described in the introduction section) 
and Self-Motivated Inertia Weight. The SMIW method is 
shown in equation 2. 

𝛾 =  𝛾𝑚𝑎𝑥 × exp �−𝑐 × � 𝑖𝑡𝑟
𝑖𝑡𝑟𝑚𝑎𝑥 

�
𝑐
�            (2) 

Where, 𝛾 is a weight factor inserted in tracing mode of the 
CSO whereas𝛾𝑚𝑎𝑥 , and 𝑐 are constant factors greater than 1 
i.e. 2.0. 

As can be seen in Fig. 2 the local search portion of the CSA 
technique has been joined into the HC-CSO procedure. The 
functioning of the HC-CSO method is well-defined step by 
step as follows: 

1) All the parameters are initialized at the beginning of the 
algorithm. 

Some parameters used in the pseudo-code of the HC-CSO 
algorithm are: fl, rK, VK, c, 𝛾𝑚𝑎𝑥, c1, MR flag, and number of 
iterations. The flight length of the crow is represented by the 
symbol fl. The Local and Global searching of the Crow Search 
Algorithm may be decided by the flight length. Flight length 
(fl) less than 1 is used for local searching, so, it has been set to 
0.5. rK and r1 are random numbers between [0, 1]. VK is the 
initialized velocities of the cats. c and 𝛾𝑚𝑎𝑥 are constant values 
that are set to 2. MR flag (Mixing Ratio) is set randomly [0.2-
0.3] which means 20-30% of the cats are distributed in the 
tracing mode and rests are distributed in the seeking mode. 

After this, the HEFT will calculate the rank based on the 
average execution time of all independent tasks and will 
arrange them as per their ranks. 

2) If the solution is optimized at the beginning then, the 
algorithm will be terminated immediately and returned the 
solution else the population produced by the HEFT algorithm 
will be given for local searching via the CSA algorithm (as 
shown in line number 17 of pseudo-code). 

3) The population generated by the CSA local search 
method will be handed over to the H-CSO algorithm for local 
as well as global searching via seeking and tracing modes. The 
cats are distributed in the seeking and tracing modes as per the 
Mixing Ratio (MR) parameter as described above. If the 
present CatK is caught in the seeking mode then, the seeking 
mode will be executed otherwise the tracing mode will be 
processed. 

4) In seeking mode, the S number of copies of the cats will 
be generated. Here, all cats are evaluated by the fitness 
function and the best cat is picked up randomly among various 
copies. After this, the current CatK will be replaced by the best 
cat. 

5) In tracing mode, the velocity of the current CatK is 
updated by the modified velocity equation using the SMIW 
method (given in line number 28 in pseudo-code). Then, the 
position of the current CatK is updated. Now, the evaluation of 
the Cats is taken place and the best cat is found out. 

6) The best cat is saved in the memory. 
7) This practice is sustained until the criterion is not met. 

In the end, the optimum solution is returned from the memory 
in the shape of the optimum result (Best Cat). 

  

209 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 7, 2021 

       HC-CSO Algorithm 

       Input (Tasks (T1, T2, T3 … Tn), Virtual Machines (VM1, VM2, VM3 … VMm) 
       Output (Optimal Makespan and Cost of n Tasks on m VMs) // Mapping of tasks 
        
       BEGIN PROCEDURE 

1.  Initialize fl (flight length), rK, (velocity factor) VK, c, 𝛾𝑚𝑎𝑥, Coefficient c1, r1, MR flag, and no. of iterations 
 /* Calculate Rank of independent tasks using HEFT Algorithm */ 

2.  Feed the tasks in HEFT 
3.  For Each Task in List Do 
4.      Calculate average execution time of all VMs 

         5.           If Task t i  is the last Task Then 
         6.               Rank value of t i  = its average execution time 
         7.           Else 
         8.               ranku (t i) = WAvgi + Max tj  ͼ succ (t i ) (CAvgi j   + ranku (t j)) 
                           Where WAvgi is average execution cost 
                           Succ (t i) is set of immediate successor of task t i  
                           CAvgi,j  is average communication cost 
         9.           End If      
        10.      End For 
        11.      Assign Tasks to VMs according to HEFT Rank 
        12.      If Solution not Optimized Then 
        13.            Generate a set of Crows by the Population generated by HEFT of Size N 
        14.            While No. of Iterations not Exceeded Do 
        15.               For K=1 to N 
        16.                 Update the positions by the following equation :      //  Do local search 
        17.                      𝑋𝐾,𝐷 =  𝑋𝐾,𝐷 + 𝑟𝐾 × 𝑓𝑙𝐾,𝐷 × �𝑀𝐿,𝐷 −  𝑋𝐾,𝐷� 
                                   Where, 𝑋𝐾,𝐷 is current position of CrowK, 𝑟𝐾 is uniformly distributed random number [0, 1] 
                                   𝑓𝑙𝐾,𝐷 is flight length (less than 1 i.e. 0.5) of the CrowK at current iteration 
                                   𝑀𝐿,𝐷 is present best location of CrowK in Dimension D 
        18.                 Feed the population generated by Local CSA in H-CSO     // Do local and global search 
        19.                 Assign the velocity VK to each Cat 
        20.                 According to Mixing Ratio (MR) flag Distribute Cats to Seeking and Tracing Modes 
        21.                 If current CatK  is in Seeking Mode Then 
        22.                     Generate S (SMP) Copies of CatK and Spread them in D Dimensions where each Cat has a velocity (VK, D) 
        23.                     Evaluate the Fitness value of all Copies and Discover Best Cats (XBEST, D) 
        24.                     Replace Original CatK with the Copy of Best Cats (XBEST, D) 
        25.                 Else If current CatK is in Tracing Mode Then 
        26.                     Compute and Update CatK velocity by following equations: 

        27.                          𝛾 =  𝛾𝑚𝑎𝑥 × exp �−𝑐 × � 𝑖𝑡𝑟
𝑖𝑡𝑟𝑚𝑎𝑥 

�
𝑐
� 

                                       Where, 𝛾 is a weight factor calculated by Self-Motivated Inertia Weight method 
                                       𝛾𝑚𝑎𝑥 and 𝑐 are constant factors greater than 1, both are set as 2.0 
        28.                          𝑉𝐾,𝐷 =   γ × 𝑉𝐾,𝐷 + �𝑐1 × 𝑟1 × � 𝑋𝐵𝐸𝑆𝑇,𝐷 −   𝑋𝐾,𝐷�� 

                     Where, D = 1, 2, 3, …, M. 
                     c1 is acceleration coefficient, r1 is random number in the range of [0, 1] 

        29.                     Update the position of every dimension of CatK by using following equation: 
        30.                          𝑋𝐾,𝐷 =  𝑋𝐾,𝐷 + 𝑉𝐾,𝐷 
        31.                     Evaluate Fitness of all Cats and find out Best Cats (𝑋𝐵𝐸𝑆𝑇,𝐷) having Best Fitness 
        32.                 End If 
        33.                 Update Best Cats (XBEST, D) in Memory 
        34.               End For 
        35.            End While 
        36.      End If 
        37.     return (Optimal Solution) 
       END PROCEDURE 

Fig. 2. Pseudo-code of Meta-Heuristic HC-CSO Algorithm.
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IV. SIMULATION SETUP 
 For simulations of the independent tasks a computing 

machine was opted to have the configurations as Processor – 
Intel ® Core ™ i3-5005U 2.0 GHz speed, RAM – 4 GB, Hard 
Disk Drive – 1 TB, and Machine OS – Windows 10. 

A. Parameters 
For experimental tests, a PowerDatacenter was generated 

having the formation as number of Hosts - 1, RAM – 25 GB, 
Each VM MIPS – 1000, Storage – 1 TB, and Bandwidth – 
5000 bps. The cloud nature is heterogeneous and all details are 
displayed in Table I. 

B. Cost Plan 
The cost plan for independent task scheduling is 

summarized in Table II. These charges will be applicable to the 
customer for using the datacenter services [27]. 

TABLE I. SIMULATION PARAMETERS 

PowerDatacenter 

Parameters Values 

Number of Hosts 1 

System Architecture x86 

VMM Xen 

OS Linux 
Number of Cloudlets 
Cloudlets Length Type 

500-1300 Independent 
Random Length (300-700) 

Numbers of VMs 3, 5 and 8 

CPU (PEs Number) 1 

RAM per VM 512-1024 MB 

Bandwidth 500-1000 bps 

Processing Elements per VM 500 – 1000 MIPS 

Image Size 10000 MB 

Policy Type Time Shared 

PSO 

No. of Particles 100 

Max. Iterations 300 

Weights C1 and C2 1.5 

Standard CSO and H-CSO 

No. of Cats 100 

Max. Iterations 300 

Weights (C1) 1.5 

r1and rk (Random Variables) [0, 1] 

Mixed Ratio Percentage Random Range [0, 1] 

HC-CSO 

No. of Cats 100 

Max. Iterations 300 

Weights (C1) 1.5 

r1(Random Variable) [0, 1] 

Mixing Ratio (MR) Percentage Random Range [0, 1] i.e. 0.2-0.3 

fl (Flight Length) 0.5 

TABLE II. COST PLAN (IN INDIAN RUPEES) 

Resource Processor RAM Storage Bandwidth 

Size 500-1000 MIPS 512 MB Unlimited 1000 bps 

Cost Rs. 3.00 per 
processor 

Rs. 0.05 per 
MB Rs. 0.1 Rs. 0.10 

per MB 

C. Dataset Used 
In the simulation studies, a group of 500, 800, and 1300 

independent tasks having random lengths were opted and 
submitted to the VMs for execution. 

D. Performance Metrics 
The performance metrics taken for this research are 

described below: 

1) Makespan: The makespan [18] is stated as the 
maximum finished time occupied for the accomplishment of 
the last task in a set. It is the utmost generally used and very 
important parameter to map the performance of any algorithm 
in task scheduling. The makespan is calculated by the formula 
specified in equation 3. 

Makespan = max (CTi) ti∈tasks            (3) 

Where, CTi is the completion time of taski 

2) Computation cost: The computation cost should be as 
less as possible; this is not only the demand of customers but; 
the industries also want the same to stay in the competitive IT 
market. The computation cost can be computed by equation 4. 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝑀𝐹+𝐶𝐹
2

             (4) 

Where, MF is Movement Factor and CF is the Cost Factor 

𝑀𝐹 = 1
𝑁𝑜.  𝑜𝑓 𝐻𝑜𝑠𝑡𝑠/𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟𝑠 

�∑ �𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑈𝑠𝑒𝑑 𝑉𝑀

�𝑉𝑀𝑥
𝑥=1 �      (5) 

𝐶𝐹 = ∑ �𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 × 𝑀𝑒𝑚𝑜𝑟𝑦 𝑜𝑓 𝑇𝑎𝑠𝑘𝑠
𝑉𝑀 × 𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟

�𝑉𝑀𝑥
𝑥=1           (6) 

Equations 5 and 6 are utilized for the scheming of the total 
computation cost which is represented in equation 4. 

3) Fitness function: Equation 7 is displaying how to 
calculate a fitness function that has been used in this research 
paper. It is used to check the optimization at various levels as 
shown in Fig. 2. 

𝐹𝑋 =  1
𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟 × 𝑉𝑀𝑗

 �∑ ∑ 1
𝑉𝑀

 𝐶𝑃𝑈 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑
𝐶𝑃𝑈𝑖𝑗

𝑉𝑀𝑗
𝑗=1

𝐷𝐶𝑖
𝑖=1 +

𝑀𝑒𝑚𝑜𝑟𝑦 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑
𝑀𝑒𝑚𝑜𝑟𝑦𝑖𝑗

+ 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑
𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑖𝑗

+ 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖𝑗

�         (7) 

V. SIMULATION RESULTS AND DISCUSSION 
 Previously, the HC-CSO algorithm was tested with 

scientific workflows [25]. Now, a set of three scenarios with 
500-1300 independent tasks and a flock of 3, 5, and 8 VMs 
have been set in the CloudSim tool for the results analysis. The 
HC-CSO is compared with the PSO, CSO, and H-CSO 
algorithms. The simulation results in terms of makespan are 
shown in Table III. All algorithms were executed many times 
and the average results are displayed in the form of the 
makespan for each algorithm. 
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TABLE III. MAKESPAN ESTIMATION (IN SEC) 

Scenarios VMs PSO CSO H-CSO HC-CSO 

Scenario - 1 
500 Tasks 

3 240.13 231.42 224.74 213.02 

5 225.29 213.27 203.89 195.24 

8 181.09 174.18 165.27 151.23 

Scenario – 2 
800 Tasks 

3 425.35 417.21 401.93 387.54 

5 310.17 301.07 287.35 281.75 

8 279.85 263.17 255.03 243.29 

Scenario – 3 
1300 Tasks 

3 722.13 712.28 697.13 681.08 

5 580.43 553.89 530.87 513.13 

8 452.24 437.23 433.11 400.39 

Fig. 3, 4, and 5 are representing the virtual machines at the 
x-axis and makespan at the y-axis. 

Fig. 3 is representing that for 500 independent tasks the 
HC-CSO algorithm is performing better than standard PSO, 
CSO, and H-CSO algorithms on all 3, 5, and 8 VMs. This is 
because the convergence of the HC-CSO method has been 
improved due to better local searching and a balanced velocity 
factor by inserting the SMIW method. 

In Fig. 4, it can be seen that the makespan is improved in 
the case of the HC-CSO method. In the case of 800 
independent tasks, the HC-CSO method performs better than 
the PSO, CSO, and H-CSO algorithms due to a better 
exploration and exploitation rate and it is possible due to the 
integration of the CSA algorithm in H-CSO. 

 
Fig. 3. Makespan Assessments for 500 Independent Tasks. 

 
Fig. 4. Makespan Assessments for 800 Independent Tasks. 

 
Fig. 5. Makespan Assessments for 1300 Independent Tasks. 

Fig. 5 is justifying that the HC-CSO outperforms the PSO, 
H-CSO, and CSO with all flocks of VMs for 1300 independent 
tasks. The makespan is reduced due to better convergence of 
HC-CSO and a decent stability between seeking and tracing 
mode due to the collaboration of the CSA. 

Table IV is briefing the cost consumptions for the 
execution of each algorithm with each scenario. 

It can be seen that the virtual machines and cost are 
depicted at the x-axis and y-axis separately in Fig. 6, 7, and 8. 

Fig. 6 is demonstrating that the cost is reduced by the HC-
CSO algorithm with respect to all sets of VMs in the case of 
500 tasks. Here, the HC-CSO is outperforming other 
algorithms depicted in Fig. 6 due to choosing of the best VM 
among all at a right time while mapping the independent tasks. 

TABLE IV. COST CONSUMPTIONS (IN INDIAN RUPEES) 

Scenarios VMs PSO CSO H-CSO HC-CSO 

Scenario - 1 
500 Tasks 

3 23.89 22.21 21.03 19.05 

5 30.23 28.20 27.52 28.29 

8 37.29 36.09 35.47 34.27 

Scenario – 2 
800 Tasks 

3 41.13 38.33 37.08 33.51 

5 50.88 47.29 44.13 40.11 

8 65.58 62.13 59.15 54.01 

Scenario – 3 
1300 Tasks 

3 70.03 67.51 64.53 59.24 

5 93.08 87.87 82.35 75.17 

8 117.13 113.25 103.89 85.87 

 
Fig. 6. Cost Assessments for 500 Independent Tasks. 
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Fig. 7. Cost Assessments for 800 Independent Tasks. 

 
Fig. 8. Cost Assessments for 1300 Independent Tasks. 

In Fig. 7, the performance comparison is done with 800 
independent tasks on a flock of 3, 5, and 8 VMs. The HC-CSO 
algorithm won the race for reducing the cost as compared to 
the PSO, CSO, and H-CSO methods. It is due to the 
improvement of tracing mode by Self-Motivated Inertia 
Weight. The CSA gives the capacity of load adjustment to the 
HC-CSO algorithm in a better way by picking the best 
available virtual machine. 

The HC-CSO algorithm is again working fine with 1300 
tasks and a group of 3, 5, and 8 VMs. This can be observed in 
Fig. 8. The Cost is optimized here due to the good rate of task 
migration between under-loaded and over-loaded virtual 
machines. This happens because the HC-CSO algorithm is 
keeping a better global seeking property and local searching is 
improved by the CSA procedure. The outranged issue of the 
traditional Cat Swarm Optimization has been removed in the 
HC-CSO as well. 

In the end, it is stated that the HC-CSO method has beaten 
all other techniques like PSO, H-CSO, and the traditional CSO 
concerning the makespan and computation cost due to better 
convergence, and the improved tracing mode. The Cats do not 
come out of the search space after inserting the SMIW method. 
The Self-Motivated Inertia Weight controls the velocity 
formula in tracing mode. So, it doesn’t matter whether the 
search space is small or large. The CSA algorithm improves 
the exploration and exploitation of the H-CSO algorithm. 

VI. CONCLUSION AND FUTURE SCOPE 
The cloud computing area is a burning topic of research 

nowadays. Many scientists have worked with GA, ACO, PSO, 
and CSO. It was seen that the CSO worked well in the name of 
makespan and processing cost. The scientists worked with 
dependent as well as independent tasks. The related work 
showed that the Cat Swarm Optimization worked better in 

many areas of cloud computing. In this research, a new 
algorithm named HC-CSO was utilized for experiments. This 
algorithm is a hybridization of three algorithms: HEFT, CSA, 
and H-CSO. The H-CSO was developed by the HEFT and 
SMIW formula. 

After simulation, it was observed that the HC-CSO method 
outperformed the other techniques like the H-CSO, PSO, and 
CSO. The hybrid algorithm HC-CSO worked better with three 
scenarios having 500, 800, and 1300 independent tasks on 3, 5, 
and 8 virtual machines. After inclusion of all scenarios, it 
showed an overall 4.15% efficacy for makespan with 
minimization of 9.6% cost in comparison to the H-CSO and 
9.60% efficacy with makespan for minimization of 14.59% 
cost than the CSO. The reason behind this good performance is 
the integration of the CSA algorithm in H-CSO. Also, the 
SMIW method controls the tracing mode velocity factor. This 
makes a check over the cats to escape out of the search space. 
It saves time as there is no need to initialize the velocity of the 
cats again and again. 

This study proves that the HC-CSO technique is a 
generalized one as it has been tested on a different set of 
independent tasks. In the upcoming time, the HC-CSO 
algorithm can be tried for other objectives like energy 
consumption, resource utilization, load balancing, etc. Also, it 
can be applied in other areas of technology. 
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