
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

Empirical Analysis Measuring the Performance of
Multi-threading in Parallel Merge Sort

Muhyidean Altarawneh1, Umur Inan2
Department of Computer Science

Maharishi International University, Fairfield, Iowa, USA

Basima Elshqeirat3
Department of Computer Science

University of Jordan, Amman, Jordan

Abstract—Sorting is one of the most frequent concerns in
Computer Science, various sorting algorithms were invented for
specific requirements. As these requirements and capabilities
grow, sequential processing becomes inefficient. Therefore,
algorithms are being enhanced to run in parallel to achieve better
performance. Performing algorithms in parallel differ depending
on the degree of multi-threading. This study determines the
optimal number of threads to use in parallel merge sort.
Furthermore, it provides a comparative analysis of various
degrees of multithreading. The implementation in this empirical
experiment takes a group of devices with various specifications.
For each device, it takes fixed-sized data set and executes merge
sort for sequential and parallel algorithms. For each device, the
lowest average runtime is used to measure the efficiency of the
experiment. In all experiments, single-threaded is more efficient
when the data size is less than 105 since it claimed 53% of the
lowest runtime than the multithreaded executions. The overall
average of the experiments shows either four or eight threads,
with 72% and 28%, respectively, are most efficient when data
sizes exceed 105.

Keywords—Parallel merge sort; sort; multithread; degree of
multithreading

I. INTRODUCTION
Merge sort is a divide and conquer algorithm that was

invented by John von Neumann in 1945, it is an efficient,
general-purpose, comparison-based sorting algorithm [1]. Most
implementations produce a stable sort, which means that the
implementation preserves the input order of equal elements in
the sorted output. A detailed description and analysis of
bottom-up merge sort appeared in a report by Goldstine and
Neumann as early as 1948 [2]. Such divide and conquer
algorithm recursively break down a problem into sub-
problems, making it simple to be solved easily, then combine
the solutions of the sub-problems until the original problem is
solved. In sorting n objects (list of array elements), merge sort
is an efficient algorithm that has an average and worst-case
performance of O(nlogn) [2].

If the running time of merge sort for a list of length n is
T(n), then the recurrence T(n) = 2T(n/2) + n follows from the
definition of the algorithm (apply the algorithm to two lists of
half the size of the original list and add the n steps taken to
merge the resulting two lists). In the worst case, the number of
comparisons merge sort makes is equal to or slightly smaller
than (nlogn − 2log n + 1), which is between (nlogn − n + 1)
and (nlogn + n + O(logn)) [3]. In the section below, a pseudo-

code of merge sort is illustrated, followed by an example in
Fig. 1, using a simple data set of {38,27,43,3,9,82,10} [4].

Fig. 1 illustrates how the algorithm divides all items one by
one then combines them recursively. This approach indicates
the possibility of applying the algorithm in parallel. Hence,
parallel merge sort reduces the complexity to O(nlogn/t), where
t is the number of threads, by using multi-threaded operations
where the data is divided into equal portions and each portion
is assigned to a specific thread. The complexity is reduced to
O(n) but could vary according to the number of threads used
[5].

Merge sort is suitable when the data structure is a linked list
because it is a sequential access structure. Implementing a
linked list hinders the performance of other algorithms such as
quicksort and heapsort [6,7]. Moreover, parallel merge sort is
frequently used in various domains, including; sorting NoSql
databases [8], high-performance computing environments [9],
and massively parallel architectures [10,11].

Algorithm 1 Merge Sort
1: procedure Mergesort
2: var list left ,right , result
3: if length(m) ≤ 1 then return m
4: else
5: var middle = length(m) / 2
6: for each x in m up to middle do
7: add x to left
8: end for
9: for each x in m after middle do

10: add x to right
11: end for
12: left ← mergesort(left)
13: right ← mergesort(right)
14:
15:

result ← merge(left, right) return result

When it comes to executing algorithms in parallel, most
studies show results of the performance on several processors
[12-15]. These results will mainly rely on the specifications of
the device and the behavior of the execution in terms of
multithreading. The question that led to this research is, what is
the suitable degree of multi-threading required for parallel
merge sort? This study conducts an empirical experiment and
highlights several factors that influence multithreading
performance. First, the number of cores that affect
multithreading performance and second, the given data size
that demands multithreading when a single-threaded
performance degrades.

72 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

Fig. 1. Merge Sort Algorithm.

The contribution of this paper is to determine the optimal
number of threads to use in parallel merge sort. Furthermore, it
provides a comparative analysis of various degrees of
multithreading. Each data size is examined among a
determined number of threads, starting from one thread
(sequential), two, four, eight, and sixteen threads (parallel).

In Section 2, related studies were taken to see how parallel
merge sort was implemented and what the results were.
Section 3 explains and walks through how the experiment was
conducted. The results are illustrated in Section 4 and
elucidated in the discussion. Finally, Section 5 presents the
conclusion of this study.

II. RELATED WORK
There have been several papers that conducted various

researches on parallel merge sort, and they have come up with
the following.

Jeon [13] improved parallel merge sort by distributing and
computing the approximately equal number of keys in all
processors throughout the merging phases. Using the histogram
information, keys can be divided equally regardless of their
distribution, which evaluated the speedup showing a better
performance by applying parallel merge sort on two different
parallel machines: a Cray T3E and a Pentium III PC cluster on
maximum data size of 106 × 4.

The tested algorithm on loosely coupled parallel machines
and the performance of the algorithm has been observed. It has
been found that the computational time of the algorithm varies
logarithmically for a varying number of processors scenario
[14].

Uyar [5] experimented with applying parallel merge sort
using multi-threads similar to this experiment. It stated that two
threads could perform one merge operation simultaneously.
One thread generates the first half of the sorted values that start
from the minimums of the two sorted subsets. The other thread
generates the second half of the sorted values starting from the
maximums of the two sorted subsets. It also compared it with
double merging by using four threads implementing it on Java.
The comparison focused on array sizes from 10 million up to

50 million. In this study, the array size starts from 5000 up to
50 million to detect when executing in parallel is more efficient
than sequential.

A study was conducted on three parallel sorting algorithms
(Odd-even transposition sort, Parallel rank sort, and Parallel
merge sort) on a number of processors 2, 4, 6, 8, 10, and 12 on
10000 integers [15]. The results proved that parallel merge sort
was the fastest, yet the study was comparing only one input
size and may differ when the data size increases.

These previous studies show that merge sort could be
conducted in parallel in several ways, giving better results than
sequential as the array size increases [5,13-15]. Yet, these
studies were concerned with enhancing the performance of
merge sort without comparing the degree of multi-threading.
Only [5] compared different array sizes that were only applied
up to four threads on a specific range of sizes, from 106 to 106
×5. This study experiments parallel merge sort on four
different degrees of multi-threading in a broader range of array
sizes from 105 to 107, which is explained in Section 3
maintaining the integrity of the specifications.

III. EXPERIMENT

A. Requirements
This experiment was implemented on Java SE8. It was

conducted on five devices to ensure diversity in the
environment of implementation. Moreover, to verify the results
are not dependent on the specifications of a particular device.
The specifications of the devices used in this experiment are
shown in Table I.

B. Implementation
This experiment takes a specific data set and executes it in

two approaches: 1) Sequential (one thread), 2) Parallel (two,
four, eight, and sixteen threads). The source code is available
on https://github.com/muhyidean/ParallelMergeSort.git.

The implementation in this experiment takes a data set and
applies merge sort for sequential and parallel algorithms. For
sequential, it executes Algorithm 1. As for parallel, it executes
Algorithm 2 based on the following:

1) Data formation: The array sizes for the data sets begin
from 103×5, 104, 104×5, 105, ... up to 107. Based on the array
size, ten different random data sets are initiated to be
implemented in both execution approaches. Each data set will
be placed in a separate array and executed in each approach.
The average runtime of ten executions for each array size is
taken in milliseconds.

TABLE I. DEVICE SPECIFICATIONS

 OS Processor # Cores RAM

Device 1 Windows Intel i5 4 16

Device 2 Windows Intel i7 8 16

Device 3 macOS Intel i5 4 8

Device 4 macOS Intel i7 8 16

Device 5 Ubuntu Intel i5 4 4

73 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

2) Partition process: The partitioning will be in five
categories, one in sequential and four degrees of multi-
threading 2, 4, 8, 16. The original data set is considered the
first partition, so it will be directly executed (sequentially).
Then the same data set is taken and split in half making two
data sets, each partition is assigned to a thread to run parallel.
The process goes on for the other partitions with respect to the
number of threads to be implemented which are two, four,
eight, and sixteen.

3) Thread management: The implementation for the
parallel merge sort divides the array into sub-arrays to be
sorted by the number of threads. The threads sort their
assigned sub-arrays independently. Two consecutive sorted
sub-arrays are combined by one thread. Each merging thread
merges two sorted arrays. The merge operation follows this
approach. Whenever the arrays are sorted, the number of
arrays is decreased by half. During the last iteration, two
sorted arrays are merged to produce a sorted array. This
implementation did not use any third-party
libraries/frameworks, it was implemented with the java thread
package in JDK (Java Development Kit).

Fig. 2 illustrates the partitioning process and the merging
mechanism. Each elliptical shape is considered a thread; the
shapes labeled with D represent the partition of the original
array sorted by merge sort. The shapes labeled with M merge
the results from the previous threads until it merges the whole
array. To be better illustrated, sixteen threads are not shown
Fig. 2 because it follows similar partitioning.

C. Data Analysis
Tables III to VII shows the average runtime for different

array sizes on each. Furthermore, they also show how each
device performs on different execution approaches (sequential
and parallel). For example, the average execution time is
calculated by running the algorithm ten times, then the average
of times is taken. Table II is one of the execution results for
device 4 on array size 105. For instance, the result shows that
(Th-4) was the most efficient for this case. However, it may
differ as the size increases and is subject to the device
specifications. For each device, on each data size, it will have a
table like Table II.

Fig. 2. Parallel Merge Sort using Three Degrees of Multi-threading (2,4,8).

Algorithm 2 Parallel Merge Sort

1: procedure PMergesort
2: var val ← (v) // v: the number of values here
3: // x: the number of threads
4: var list arr test 1[], arr test 2[], ...arr test x[] // Defining main arrays
5: var list arr 2[] ... arr x[] // Defining sub arrays
6: // Defining threads to execute merge sort for each array
7: threads t1(mergesort(arr 1)), t2(mergesort(arr 2))... t x(mergesort(arr x))
8: // Assign random integers to main arrays, to give each same set of random values
9: for i ← 0 to val do
10: n ← random value in range of (1 − x)
11: arr test1[],arr test 2[]...arr test x[] ← n
12: end for
13: // Partition data set and add into x sub arrays for each set of threads
14: var mid ← (length of arr test x/x) // Get mid points for each partition
15: ∗ repeat code in line 14 for x partitions
16: // Calculate the time taken for each set of threads
17: var ts ← take current time
18: execute t1 , t2 ... tx // Execute threads
19: var te ← take current time
20: ∗ repeat codes in lines (17 − 19) for each set of threads (2,4, 8 ... x)
21: var tr ← ts − te // to calculate the time taken in parallel mergesort (x threads)
22: file ← export results(tr1,tr2...trx) // to take results (time taken in milliseconds)
23: end procedure=0

74 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

TABLE II. DEVICE 1 – RUNTIME ON SIZE 105 (MS)

Execution # Th-16 Th-8 Th-4 Th-2 Th-1

Execution 1 159 14 18 17 46

Execution 2 33 21 37 50 27

Execution 3 37 22 31 36 36

Execution 4 23 26 30 24 44

Execution 5 32 32 16 32 49

Execution 6 38 48 38 32 32

Execution 7 17 16 32 81 44

Execution 8 31 48 32 33 32

Execution 9 35 33 16 49 34

Execution 10 14 16 25 97 16

Average 41.9 27.6 27.5 45.1 36.0

IV. RESULTS AND DISCUSSION
This section highlights and points out the main findings of

the empirical experiment. To measure the efficiency of the
experiment, the lowest average execution time (ms) is taken for
each data size on each device.

A. Results
In Tables III to VII, it shows the average of 10 executions

for each degree of multi-threading. Each column is a different
size starting from 103 × 5 up to 107. The rows show the
performance of each thread for a specific data size. For
example, (Th-1) is one thread, (Th-2) is two threads and goes
on. As shown in Tables III to VII, for data size 103 × 5, all
devices perform efficiently in terms of runtime in a single-
threaded execution. As for the sizes 104 and 104 × 5, it varies
from one to eight threads depending on the number of cores in
the device. With data sizes of 105 and larger, each device
performs better with a certain number of threads, depending on
the number of cores. All results are illustrated in Fig. 3 to 7.

Fig. 3 to 7 illustrates the performance graphs according to
different data sizes and the number of threads used.
Multithreading is clearly more efficient when the data size
increases. The appropriate number of threads will generally be
visible when the data size exceeds 105.

B. Findings
There were two main findings from these results. First,

multithreading does not always have the most efficient runtime
as it depends on the data size. Second, even when the data size
increases, a specific number of threads will determine the
optimized performance based on the device specifications. In
other words, implementing as many threads as possible will not
lead to higher runtime performance.

Tables VIII and IX were presented to highlight the findings
of the results, one below 105 and the other greater 105.
Table VIII shows the overall average for each device with data
sizes below 105. For example, in Device 1, the sequential
runtime performance was most efficient. By taking the overall
average,

single-threaded was more efficient since it claimed 53% of the
lowest runtime than the multithreaded executions. Table IX
shows the overall average for each device with data sizes
above 105. As shown in Table IX, multi-threaded
implementation with either four or eight threads provided
better performance with 72% and 28%. Fig. 8 and 9 visualize
which threads performed better in the overall average for
different data sizes. A higher percentage indicates that using a
specific number of threads is more efficient on a particular data
size.

Based on the experiment results, all devices that have four
cores achieved efficient runtime performance with four
threads. Moreover, all devices with eight cores achieved
efficient runtime performance with eight threads. Evidently,
the selection of the number of threads is mainly determined by
the number of the cores.

C. Discussion
The main question of this study is, what is the optimal

number of threads for parallel merge sort considering two main
factors: data size and number of cores?

TABLE III. DEVICE 1 - RESULTS - AVERAGE RUNTIME (MS)

Th(x) =
number
of threads

Array Size

103
x 5 104 104

x 5 105 105 x
5 106 106 x

5 107

Th-16 18 17 25 42 94 165 678 1303

Th-8 10 18 34 28 90 131 588 1173

Th-4 8 13 26 28 83 130 585 1142

Th-2 8 11 38 45 104 179 818 1724

Th-1 2 4 23 36 145 261 1342 2751

TABLE IV. DEVICE 2 - RESULTS - AVERAGE RUNTIME (MS)

Th(x) =
numbe
r of
threads

Array Size

103 x
5 104 104 x 5 105 105 x 5 106 106 x 5 107

Th-16 3 3 5 9 30 51 228 523

Th-8 3 4 8 20 36 44 201 415

Th-4 4 3 7 19 34 47 251 523

Th-2 7 1 9 20 43 69 371 778

Th-1 1 2 9 34 69 134 693 1442

TABLE V. DEVICE 3 - RESULTS - AVERAGE RUNTIME (MS)

Th(x) =
number
of
threads

Array Size

103 x 5 104 104 x 5 105 105 x 5 106 106
x 5 107

Th-16 4 5 10 23 57 97 501 1011

Th-8 11 5 16 13 45 86 431 943

Th-4 4 3 9 10 43 85 420 859

Th-2 2 3 7 13 62 130 665 1356

Th-1 1 3 13 27 114 206 1100 2258

75 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

TABLE VI. DEVICE 4 - RESULTS - AVERAGE RUNTIME (MS)

Th(x) =
numbe
r of
threads

Array Size

103 x
5 104 104 x 5 105 105 x 5 106 106 x 5 107

Th-16 3 3 7 13 27 47 371 671

Th-8 2 3 4 10 23 37 184 474

Th-4 2 2 5 8 32 45 259 604

Th-2 1 2 7 13 44 75 387 801

Th-1 2 2 11 23 93 160 832 1660

TABLE VII. DEVICE 5 - RESULTS - AVERAGE RUNTIME (MS)

Th(x) =
number
of
threads

Array Size

103 x 5 104 104 x 5 105 105 x 5 106 106 x 5 107

Th-16 6 15 24 29 63 108 446 1198

Th-8 7 15 22 27 88 120 440 1064

Th-4 9 11 21 25 63 104 421 931

Th-2 8 12 20 32 87 120 654 1492

Th-1 2 4 23 36 149 261 1336 2200

Fig. 3. Device 1 - Results - Average Runtime (MS).

The results of this study had shown that having as many
threads as possible will not lead to the best runtime
performance. To achieve the best runtime performance, the
number of cores present is crucial in determining the optimal
number of threads. The cruciallity is due to how multiple
threads are executed by the operating system. Correspondingly,
the data size determines whether multiple threads are required.
In small data sets, the use of multiple threads is unnecessary
since one thread can perform more efficiently.

The conclusion is that if the data size is under 105, single-
threaded will be more efficient. In contrast, having multiple
threads will perform better for data sizes that exceed 105. In
addition, it should not spawn threads more than the number of
cores (excluding merging threads).

Fig. 4. Device 2 - Results - Average Runtime (MS).

Fig. 5. Device 3 - Results - Average Runtime (MS).

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

10³ x 5 10⁴ 10⁴ x 5 10⁵ 10⁵ x 5 10⁶ 10⁶ x 5 10⁷

m
s

Array Size

Th-16 Th-8 Th-4

Th-2 Th-1

0.00

500.00

1000.00

1500.00

2000.00

10³ x
5

10⁴ 10⁴ x
5

10⁵ 10⁵ x
5

10⁶ 10⁶ x
5

10⁷

m
s

Array Size

Th-16 Th-8 Th-4

Th-2 Th-1

0.00

500.00

1000.00

1500.00

2000.00

2500.00

10³ x 5 10⁴ 10⁴ x 5 10⁵ 10⁵ x 5 10⁶ 10⁶ x 5 10⁷

m
s

Array Size

Th-16 Th-8 Th-4

Th-2 Th-1

76 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

Fig. 6. Device 4 - Results - Average Runtime (MS).

Fig. 7. Device 5 - Results - Average Runtime (MS).

TABLE VIII. MULTITHREADING EFFICIENCY PERCENTAGE (< 50000)

Device
Th(x)= number of threads

Th-1 Th-2 Th-4 Th-8 Th-16

Device 1 1.00 0 0 0 0

Device 2 0.33 0.33 0.33 0 0

Device 3 0.33 0.66 0 0 0

Device 4 0 0.66 0 0.33 0

Device 5 1.00 0 0 0 0

Average 0.53 0.33 0.06 0.06 0

TABLE IX. MULTITHREADING EFFICIENCY PERCENTAGE (> 50000)

Device
Th(x)= number of threads

Th-1 Th-2 Th-4 Th-8 Th-16

Device 1 0 0 1.00 0 0

Device 2 0 0 0.40 0.60 0

Device 3 0 0 1.00 0 0

Device 4 0 0 0.20 0.80 0

Device 5 0 0 1.00 0 0

Average 0 0 0.72 0.28 0

Fig. 8. Multithreading Efficiency Percentage (< 50000).

Fig. 9. Multithreading Efficiency Percentage (> 50000).

V. CONCLUSION
This study conducts an empirical experiment to determine

the optimal number of threads to use in parallel merge sort.
Several factors are discussed in this study to answer this
question. First is the number of cores that impact
multithreading performance. Second is the given data size that
requires the use of multiple cores.

The implementation in this experiment takes a group of
devices with various specifications. For each device, it takes
fixed-sized data set and applies merge sort for sequential and
parallel algorithms. For each device, the lowest average
execution time (ms) is used to measure the efficiency of the
experiment. Taking the average for all experiments, single-
threaded is more efficient when the data size is less than 105
since it claimed 53%. Whereas, for data sizes exceeding 105,
multi-threaded implementation has better performance. The
overall average of the experiments shows either four or eight
threads are most efficient, with 72% and 28% respectively.

0.00

500.00

1000.00

1500.00

2000.00

10³ x
5

10⁴ 10⁴ x
5

10⁵ 10⁵ x
5

10⁶ 10⁶ x
5

10⁷

m
s

Array Size

Th-16 Th-8 Th-4

Th-2 Th-1

0

500

1000

1500

2000

2500

10³ x 5 10⁴ 10⁴ x 5 10⁵ 10⁵ x 5 10⁶ 10⁶ x 5 10⁷

m
s

Array Size

Th-16 Th-8 Th-4

Th-2 Th-1

0.000

0.200

0.400

0.600

Th-1 Th-2 Th-4 Th-8 Th-16

%

Th(x)= number of threads

0.000

0.200

0.400

0.600

0.800

Th-1 Th-2 Th-4 Th-8 Th-16

%

Th(x)= number of threads

77 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 1, 2022

There were two main findings from these results. First,
multithreading does not always have the most efficient runtime
as it depends on the data size. Second, even when the data size
increases, a specific number of threads will determine the
optimized performance based on the device specifications. In
other words, implementing as many threads as possible will not
lead to higher runtime performance.

The conclusion is that if the data size is under 105, single-
threaded will be more efficient. In contrast, having multiple
threads will perform better for data sizes that exceed 105. In
addition, the number of threads spawned should not exceed the
number of cores (excluding merging threads).

REFERENCES
[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. “Introduction

to algorithms,” MIT press, 2009.
[2] J. Katajainen, T. Pasanen, and J. Teuhola. “Practical in-place

mergesort,” Nord. J. Comput., 3(1):27–40, 1996.
[3] M. Saadeh, H. Saadeh, and M. Qatawneh, “Performance evaluation of

parallel sorting algorithms on iman1 supercomputer,” International
Journal of Advanced Science and Technology, 95:57–72, 2016.

[4] Merge Sort, howpublished = https://www.geeksforgeeks.org/merge-
sort/, note = Accessed: 2021-12-01.

[5] A. Uyar. “Parallel merge sort with double merging,” In 2014 IEEE 8th
International Conference on Application of Information and
Communication Technologies (AICT), pages 1–5. IEEE, 2014.

[6] N. Parlante. “Linked list problems,” Stanford CS Education Library,
1:33, 2002.

[7] A. Abu Dalhoum, T. Kobbay, A. Sleit, M. Alfonseca, and A. Ortega.
“Enhancing quicksort algorithm using a dynamic pivot selection
technique,” WULFENIA Journal, Austria, 19(10), 2012.

[8] Z. Marszałek. "Parallelization of modified merge sort
algorithm." Symmetry 9.9 : 176, 2017.

[9] J. Holke, et al. "Data-adapted Parallel Merge Sort." European
Conference on Parallel Processing. Springer, Cham, 2019.

[10] D. P. Singh, Dhirendra Pratap, I. Joshi, and J. Choudhary. "Survey of
GPU based sorting algorithms." International Journal of Parallel
Programming 46. : 1017-1034, 2018.

[11] K. Raju, N. N. Chiplunkar, and K. Rajanikanth. "A CPU-GPU
Cooperative Sorting Approach." 2019 Innovations in Power and
Advanced Computing Technologies (i-PACT). Vol. 1. IEEE, 2019.

[12] S. W. Hijazi, and M. Qatawneh. "Study of Performance Evaluation of
Binary Search on Merge Sorted Array Using Different
Strategies." International Journal of Modern Education and Computer
Science 9.12:1, 2017.

[13] M. Jeon and D. Kim. “Parallel merge sort with load balancing,”
International Journal of Parallel Programming, 31(1):21–33, 2003.

[14] K. B. Manwade. “Analysis of parallel merge sort algorithm,”
International Journal of Computer Applications, 1(19):66–69, 2010.

[15] H. Rashid and K. Qureshi. “A practical performance comparison of
parallel sorting algorithms on homogeneous network of workstations,”
WSEAS Transactions on Computers, 5(7):1606–1610, 2006.

78 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Work
	III. Experiment
	A. Requirements
	B. Implementation
	1) Data formation: The array sizes for the data sets begin from 103×5, 104, 104×5, 105, ... up to 107. Based on the array size, ten different random data sets are initiated to be implemented in both execution approaches. Each data set will be placed in a s�
	2) Partition process: The partitioning will be in five categories, one in sequential and four degrees of multi-threading 2, 4, 8, 16. The original data set is considered the first partition, so it will be directly executed (sequentially). Then the same dat�
	3) Thread management: The implementation for the parallel merge sort divides the array into sub-arrays to be sorted by the number of threads. The threads sort their assigned sub-arrays independently. Two consecutive sorted sub-arrays are combined by one th�

	C. Data Analysis

	IV. Results and Discussion
	A. Results
	B. Findings
	C. Discussion

	V. Conclusion
	References

