
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 1, 2022 

A New Priority Rule for Initial Ordering of Jobs in 
Permutation Flowshop Scheduling Problems 

B. Dhanasakkaravarthi1 
Research Scholar, School of Mechanical Engineering 

Sathyabama Institute of Science and Technology, India 

A. Krishnamoorthy2 
Professor, School of Mechanical Engineering 

Sathyabama Institute of Science and Technology, India 
 
 

Abstract—Scheduling in a permutation flowshop refers to 
processing of jobs in a set of available machines in the same 
order. Among the several possible performance characteristics of 
a flowshop, makespan remains one of the highest preferred 
metrics by researchers in the past six decades. The constructive 
heuristic proposed by Nawaz-Enscore-Ham (NEH) is one of the 
best for makespan minimization. The performance essentially 
depends on the initial ordering jobs according to a particular 
priority rule (PR). The popular priority rules are non-increasing 
order of the jobs' total processing time, the sum of average 
processing time and standard deviation and, the sum of average 
processing time, standard deviation and absolute skewness 
among others. The objective of this paper is to propose and 
analyse a new job priority rule for the permutation flowshop. 
The popular priority rules available in the literature are studied 
and, one of the best priority rules; the sum of average processing 
time and standard deviation is slightly modified, by replacing the 
standard deviation by mean absolute deviation (MAD). To assess 
the performance of the new rule, four benchmark datasets are 
used. The computational results and statistical analyses 
demonstrate the better performance of the new rule. 

Keywords—Priority rule; flowshop scheduling; makespan; 
NEH algorithm 

I. INTRODUCTION 
 Permutation flowshop scheduling problems (PFSSP) 

remain one of the most studied domains in operations research 
in the past six decades. PFSSP refers to scheduling ‘n’ number 
of jobs for processing in ‘m’ number of machines in the same 
order. According to Rinnooy Kan [1], PFSSP is proved to be 
NP-hard when the number of machines is greater than three. 
Since the PFSSP is np-hard, the computation time grows 
exponentially for larger problems and hence, exact solution 
becomes impossible or expensive. As a result, several 
dispatching rules, heuristics and metaheuristics have been 
proposed over the decades. Efficient heuristics report solutions 
with acceptable accuracy levels in a reasonable time. Priority 
rules or dispatching rules are some form of heuristics and have 
been studied in both academia and industry domains 
extensively for decades (Tay and Ho 2008)[2]. A few simple 
dispatching rules that are being extensively used in jobs’ 
scheduling are: Shortest Processing Time (SPT) rule, Longest 
Processing Time (LPT) rule, Earliest Due Date (EDD) rule, 
First Come First Serve (FCFS) rule. 

The optimization parameters for the PFSSP are generally; 
flow time, idle time or makespan (Liu et al., 2016) [3] to 
satisfy different production line requirements. They find 

numerous real-time applications and could be combined with 
Internet of Things (IOT) for specific applications (Salis, 2021) 
[4].Among the many parameters that are being optimised, 
makespan minimization is widely considered by researchers 
over the years. Johnson’s [5] algorithm proposed in 1954 
yields an optimum solution for two machines and 'n’ jobs 
PFSSPs which was extended to three machines cases. 

As the problem is NP-hard, the exact solution becomes 
impossible for larger problems and the computation time 
grows exponentially with the problem size. Earlier 
approximate heuristics could not yield the expected accuracy 
and the breakthrough came in 1983 when Nawaz-Enscore-
Ham (NEH) [6] algorithm was proposed. NEH algorithm 
which has a complexity of O(n3.m) uses the largest processing 
time (LPT) dispatching rule and is considered as one of the 
best constructive heuristics for makespan minimization even 
today. Many improvements and extensions have been 
proposed by many authors over the years. NEH essentially 
consists of three phases: 

• Pre-arranging the jobs according to the non-increasing 
order of their total processing times (Priority Rule). 

• Selecting the first two jobs from the processed 
sequence as the initial partial sequence (Initial 
Sequence). 

• Inserting other jobs one by one at a suitable place that 
minimises the partial makespan (Insertion Phase). 

Ribas et al. (2010) [7] tested four priority rules combined 
with the powerful insertion technique of NEH including rules 
from NEHKK1 (Kalczynski and Kamburowski 2008) [8], 
N&M (Nagano and Moccellin 2002) [9], LPT, and a random 
job sequence. Baskar and Xavior (2015) [10] analysed the job 
insertion technique for different initial sequences. 

The authors improved the solution quality of NEH by 
suitably modifying the first and third phases. Several priority 
rules for NEH are proposed and available in the literature and 
the ones proposed by Dong et al. [11] and Liu et al.[12] yield 
better results. 

Framinan et al. [13] analysed 177 initial sequences for the 
NEH heuristic and concluded that SUM PIJ / DECR (i.e. 
original NEH) is ranked 1 among all for the makespan 
minimisation. 

During the insertion phase, we come across several 
occasions when the partial makespan remains the same for 
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more than one partial sequence. NEH breaks such ties 
randomly. Several effective tie-breaking rules are proposed 
and analysed for the solution quality. The tie-breaking rules 
proposed by Fernandez and Framinan [14], Lie et al. [12], 
Benavides [15] and the ones recently by Baskar and Xavior 
[16] are a few to mention. 

This paper considers the sum of the average processing 
times and means absolute deviation (MAD) for the initial 
ordering of jobs (Priority Rule) and analyses its impact using 
well-known benchmark datasets. 

The structure of this paper is as follows: the new priority 
rule is presented in Section 2 followed by the benchmark and 
performance metrics used for the assessment in Section 3. The 
results and statistical analyses are detailed in Section 4 and 
Section 5 discusses about the conclusion, limitations and 
future work. 

II. NEW PRIORITY RULE 
The initial ordering of jobs or priority rule does affect the 

solution quality of the NEH heuristic. The priority rule 
considered by the original NEH is non-increasing order of the 
jobs' total processing times. Total processing time (TPT) for a 
particular job, j can be represented as, 

TPTj =� 𝑝𝑖𝑗
m
𝑖=1               (1) 

m – Number of machines in the schedule. pij denotes the 
processing time of job ‘j' in the machine 'i’. 

Dong et al. [11] added the standard deviation of the 
processing times with the average total processing time, AVGj 
for a job and reported improved results. Mathematically, 
standard deviation, 

SDj = � 1
(m−1)

� (𝑝𝑖𝑗 −  𝐴𝑉𝐺𝑗
m
𝑖=1 )2             (2) 

Another priority rule proposed recently by Liu et al. [12] 
adds the absolute skewness with the priority rule of Dong et 
al. [11] and the rule improves the solution further. Skewness 
(SKE) for a job, j is defined as, 

SKEj =(1
m
� (𝑝𝑖𝑗 −  𝐴𝑉𝐺𝑗

m
𝑖=1 )3)/ 

[� 1
(m−1)

� (𝑝𝑖𝑗 −  𝐴𝑉𝐺𝑗
m
𝑖=1 )2] 3             (3) 

In this paper, the standard deviation is replaced by another 
similar metric, the Mean Absolute Deviation (MAD) which is 
the average of the absolute deviations from the mean value. 

For a job ‘j’, 

MAD j = 1
m
� |(𝑝𝑖𝑗 −  𝐴𝑉𝐺𝑗

m
𝑖=1 )|             (4) 

MAD was used as the variation measure in the tie-
breaking rule of Liu et al. [12].Another metric, the median 
absolute deviation (MAD1) is also used instead of mean 
absolute deviation during the process; that is, descending 
order of average processing time + median absolute deviation 
as a priority rule. However, the results are not encouraging in 
this case. 

For a job ‘j’, 

MAD1 j = Median (|(𝑝𝑖𝑗 −  𝐴𝑉𝐺𝑗|)             (5) 

The benchmarks and analyses results using different 
combinations are presented and discussed in the coming 
sections. 

III. BENCHMARK AND PERFROMANCE MATRIC USED 
For comparing the performance of similar heuristic 

algorithms in flowshop scheduling, several benchmark 
problem sets are available in the literature. One of the earlier 
benchmarks proposed for permutation flowshop is the one 
proposed by Carlier in 1978 [17] with varying jobs and 
machines combination. The instances have high processing 
times, up to 999-time units. DUM dataset proposed in 1998 by 
Demirkol et.al. [18] has a combination of jobs {20, 30, 40, 
50} and machines {15, 20} resulting in 40 instances of 5 in 
each set. The processing time is randomly fixed between {0, 
200} time units. The Taillard [19] instances proposed in 1993 
are available under 12 groups of 10 instances each. The 
processing times in 5, 10 and 20 machines vary from 0 to 99 
for 20, 50, 100, 200 and 500 numbers of jobs. The known 
upper bounds for all the 120 problems are available online 
[20] and are accessible for researchers. 

Recently, Vallada et al. [21] proposed new hard 
benchmarks which are 480 in numbers. They are categorized 
into small and large problem sets. The small instances, termed 
as VFR (Small) are 240 in numbers with a combination of 
{10, 20, 30, 40, 50, 60} jobs and {5, 10, 15, 20} machines. 
Similarly, the larger instances have a combination of {100, 
200, 300, 400, 500, 600, 700, 800} jobs and {20, 40, 60} 
machines, totaling 240 in numbers. The instances are grouped 
under 48 sets of 10 instances each. In line with Taillard’s, 
these benchmarks do have processing times from 0 to 99. The 
known upper bounds are provided by the authors themselves. 

The parameter used for the comparison of the performance 
of different heuristics is the Percentage Relative Deviation 
(PRD) which is defined as: 

Percentage Relative Deviation, PRD = 

BoundKnownUpper
XBoundKnownUpperMakespan 100)( −             (6) 

IV. COMPUTATIONAL RESULTS AND DISCUSSION 
 Different priority rules (initial ordering of jobs) 

considered are summarized below: 

• PR-NEH: Descending order of their total processing 
times. 

• PR-D: Descending order of the sum of their average 
processing time and standard deviation. 

• PR-LJP: Descending order of the sum of their average 
processing time, standard deviation and absolute 
(skewness). 

• PR-DB: Descending order of the sum of their average 
processing time and mean absolute deviation. 
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• “No PR” refers to no initial ordering of jobs; raw data 
are used as received. 

 Codes are generated for all priority rules in MATLAB 
R2012b and run in an i5 desktop PC with 4 GB RAM. Many 
heuristics initially order the jobs according to a priority rule 
and then refine the solution further using some strategy. The 
initial priority ordering may have significant impact on the 
final result. To start with, Taillard instances are initially 
ordered as per the priority rule (PR) considered and the 
makespans computed without any further processing. The 
average PRDs (APRDs) are presented in Table I. The bold 
digits indicate the best result for a particular problem set. 
There is not much difference in the results among the PRs 
considered. The best APRD of 21.40% is reported by PR-DB 
and the worst one by PR-D (21.64%); the difference being 
1.12%. Even no “no priority rule” reports a better mean value 
of 21.61% and accounts for best results in 4/12 sets. Though 
PR-DB reports the lowest deviation, it reports best results in 
one case only, 10 machines and 100 jobs. 

Subsequently, the impact of different initial sequences has 
been investigated. NEH considers the first two jobs of the 
processed sequence as the initial sequence. Baskar et al. [22] 
considered a few other sets of jobs as initial sequences and 
analysed (Table II) the impact using Taillard dataset. The 
performance was analysed by randomly selecting two jobs 
also from the processed sequence. The results show that the 
APRDs vary slightly with respect to the initial partial 
sequence. According to them, randomly selecting two jobs 
also results in a reasonably good APRD with 3.43% which 
may be due to the job insertion strategy that was originally 
used by the NEH algorithm. It is to be noted that many 
heuristics could not even better this mean value of 3.43% for 
the Taillard benchmark. 

Now, to assess the performance; the PR is applied to the 
classic NEH algorithm and the results are tabulated in Table 
III to Table VI. The benchmark used are; Carlier’s [17] 
proposed in 1978, Taillard’s [19], in 1993, Demirkol’s [18] in 
1998 and the latest VFR benchmark proposed in 2015 by 
Vallada et al.[21]. The better APRDs are shown in bold and 
italics in all the tables. 

For the Carlier 8 instances (Table III); Dong et al. priority 
rule, PR-D reports an APRD of 1.44%, an increase of 3.60% 
in the APRD over PR-NEH which is taken as the reference for 
the analysis in this paper. That is, for this dataset, the solution 
quality deteriorates when PR-D is used for initial ordering the 
jobs. The APRD of the new priority rule, PR-DB is 1.21%, a 
significant 12.95% improvement over the rule used by NEH. 

For the comparatively larger dataset of Demirkol’s which 
are 40 in numbers also, the proposed priority rule, PR-DB 
reports better APRD than the priority rules, PR-NEH and PR-
D with an improvement of 4.70% over the reference PR-NEH. 
The improvement of the rule, PR-D over PR-NEH being 
1.61%. Here, the lower bounds (LB) are considered instead of 
upper bounds (UB) for better comparison as the makespans 
better the UBs provided by Demirkol et al. in many cases. 
While using Taillard’s dataset; three more priority rules are 
considered as detailed below: 

• PR-LJP1: Descending order of the sum of their average 
processing time, mean absolute deviation and absolute 
(skewness). 

• PR-LJP2: Descending order of the sum of their average 
processing time, mean absolute deviation and 
skewness. 

• PR-DB1: Descending order of the sum of their average 
processing time and median absolute deviation. 

TABLE I. APRDS OF PRIORITY RULES – TAILLARD BENCHMARK 

Size (mxj) No PR PR-NEH PR-D PR-LJP PR-DB 

5x20 24.98 26.27 27.41 27.66 26.24 

10x20 28.77 28.47 28.15 27.96 28.16 

20x20 21.43 21.50 20.81 20.56 21.31 

5x50 15.32 16.46 17.21 17.63 16.91 

10x50 25.05 28.86 27.10 26.66 26.34 

20x50 29.73 29.15 28.13 27.76 27.89 

5x100 13.63 12.06 12.22 11.98 12.72 

10x100 20.92 19.08 20.21 20.24 18.85 

20x100 25.51 23.50 24.47 24.77 24.61 

10x200 15.67 15.70 14.78 15.31 15.11 

20x200 22.28 21.39 22.32 21.74 22.30 

20x500 15.99 16.31 16.80 16.51 16.33 

Mean 21.61 21.56 21.64 21.56 21.40 
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TABLE II. APRDS OF INITIAL PARTIAL SEQUENCES APPLIED TO NEH - TAILLARD BENCHMARK 

Size (mxj) Jobs 1 and 2 (NEH) Middle 2 Jobs Jobs 1 and 3 Jobs 1 and 4 Randomly 2 Jobs 

5x20 3.30 2.79 3.03 3.10 3.89 

10x20 4.60 3.68 5.04 4.18 4.40 

20x20 3.73 3.67 3.76 3.58 3.79 

5x50 0.73 0.82 0.68 0.68 0.94 

10x50 5.07 5.36 4.90 4.78 5.39 

20x50 6.65 6.54 6.63 6.66 6.85 

5x100 0.53 0.51 0.51 0.50 0.56 

10x100 2.21 2.11 2.20 2.19 2.24 

20x100 5.34 5.72 5.19 5.47 5.34 

10x200 1.26 1.41 1.24 1.30 1.35 

20x200 4.41 4.07 4.55 4.39 4.35 

20x500 2.07 2.26 2.12 2.07 2.12 

Mean 3.32 3.24 3.32 3.24 3.43 

TABLE III. APRDS OF PRIORITY RULES APPLIED TO NEH- CARLIER BENCHMARK 

Size (mxj) BM UB PR-NEH PRD PR-D PRD PR-DB PRD 

5x11 Carl1 7038 7038 0 7038 0 7038 0 

4x13 Carl2 7166 7376 2.93 7376 2.93 7376 2.93 

5x12 Carl3 7312 7399 1.19 7399 1.19 7399 1.19 

4x14 Carl4 8003 8003 0 8129 1.57 8021 0.22 

6x10 Carl5 7720 7835 1.49 7843 1.59 7843 1.59 

9x8 Carl6 8505 8773 3.15 8773 3.15 8570 0.76 

7x7 Carl7 6590 6590 0 6590 0 6590 0 

8x8 Carl8 8366 8564 2.37 8457 1.09 8617 3.00 

Mean    1.39  1.44  1.21 

%Improvement    Ref.  -3.60  12.95 

TABLE IV. APRDS (FROM LB) OF PRIORITY RULES APPLIED TO NEH- DEMIRKOL BENCHMARK 

Instance LB PR-NEH PRD PR-D PRD PR-DB PRD 

flcmax_20_15_3 3354 4071 21.38 4018 19.80 4065 21.20 

flcmax_20_15_6 3168 3898 23.04 3878 22.41 3870 22.16 

flcmax_20_15_4 2997 3672 22.52 3617 20.69 3625 20.95 

flcmax_20_15_10 3420 4248 24.21 4223 23.48 4217 23.30 

flcmax_20_15_5 3494 4007 14.68 4028 15.28 4038 15.57 

flcmax_20_20_1 3776 4779 26.56 4641 22.91 4674 23.78 

flcmax_20_20_3 3758 4567 21.53 4535 20.68 4598 22.35 

flcmax_20_20_9 3902 4699 20.43 4666 19.58 4611 18.17 

flcmax_20_20_2 3881 4606 18.68 4619 19.02 4626 19.20 

flcmax_20_20_10 3823 4487 17.37 4515 18.10 4462 16.71 

flcmax_30_15_3 4020 4770 18.66 4729 17.64 4692 16.72 

flcmax_30_15_4 4080 4912 20.39 4924 20.69 4890 19.85 

flcmax_30_15_9 4022 4857 20.76 4737 17.78 4770 18.60 

flcmax_30_15_8 4490 5070 12.92 5056 12.61 4982 10.96 
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flcmax_30_15_6 4184 5041 20.48 5013 19.81 4888 16.83 

flcmax_30_20_3 4806 5664 17.85 5648 17.52 5561 15.71 

flcmax_30_20_1 4772 5891 23.45 5995 25.63 5940 24.48 

flcmax_30_20_6 5004 5919 18.29 5989 19.68 5970 19.30 

flcmax_30_20_10 4899 5523 12.74 5532 12.92 5464 11.53 

flcmax_30_20_2 4757 5629 18.33 5470 14.99 5591 17.53 

flcmax_40_15_5 5560 6286 13.06 6380 14.75 6193 11.38 

flcmax_40_15_9 5119 5931 15.86 5907 15.39 5947 16.18 

flcmax_40_15_2 5290 6113 15.56 6105 15.41 6102 15.35 

flcmax_40_15_10 5596 6206 10.90 6271 12.06 6115 9.27 

flcmax_40_15_8 5576 6394 14.67 6329 13.50 6347 13.83 

flcmax_40_20_3 5693 6816 19.73 6865 20.59 6866 20.60 

flcmax_40_20_9 5998 6929 15.52 7065 17.79 6995 16.62 

flcmax_40_20_6 5990 7154 19.43 7160 19.53 7097 18.48 

flcmax_40_20_7 6170 7026 13.87 7107 15.19 7080 14.75 

flcmax_40_20_5 6011 6910 14.96 6846 13.89 6842 13.82 

flcmax_50_15_6 6290 7264 15.48 7206 14.56 7111 13.05 

flcmax_50_15_5 6355 6928 9.02 7026 10.56 6972 9.71 

flcmax_50_15_1 6198 6909 11.47 6860 10.68 6916 11.58 

flcmax_50_15_8 6312 7180 13.75 7158 13.40 7132 12.99 

flcmax_50_15_2 6531 7330 12.23 7267 11.27 7278 11.44 

flcmax_50_20_2 6740 8138 20.74 8063 19.63 8021 19.01 

flcmax_50_20_1 6736 7602 12.86 7550 12.08 7673 13.91 

flcmax_50_20_7 6756 7965 17.90 8081 19.61 7993 18.31 

flcmax_50_20_8 6897 7924 14.89 7890 14.40 7617 10.44 

flcmax_50_20_4 6830 8256 20.88 8218 20.32 8098 18.57 

Mean   17.43  17.15  16.61 

%Improvement   Ref.  1.61  4.70 

TABLE V. APRDS OF PRIORITY RULES APPLIED TO NEH- TAILLARD BENCHMARK 

Size (mxj) PR-NEH PR-D PR-LJP PR-LJP1 PR-LJP2 PR-DB PR-DB1 

5x20 3.30 2.70 2.71 2.95 3.04 2.74 1.93 

10x20 4.60 4.08 3.68 4.02 3.37 3.87 4.89 

20x20 3.73 3.82 2.91 3.20 3.13 2.95 3.73 

5x50 0.73 0.89 0.88 0.70 0.80 0.92 0.93 

10x50 5.07 4.90 4.84 4.71 4.82 5.44 5.56 

20x50 6.65 6.12 6.42 6.50 6.67 6.45 6.08 

5x100 0.53 0.41 0.54 0.57 0.50 0.50 0.60 

10x100 2.21 2.16 2.24 2.33 2.36 2.40 2.39 

20x100 5.34 5.65 4.99 5.28 5.07 5.16 5.71 

10x200 1.26 1.27 1.24 1.23 1.31 1.29 1.23 

20x200 4.41 4.57 4.14 4.24 4.26 4.27 4.39 

20x500 2.07 2.12 2.12 2.14 2.10 2.06 2.09 

Mean 3.32 3.22 3.06 3.16 3.12 3.17 3.29 

%Improvement Ref. 3.01 7.83 4.82 6.02 4.52 0.91 
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TABLE VI. AVERAGE PERCENT RELATIVE DEVIATION OF DIFFERENT PRIORITY RULES FOR VFR BENCHMARK 

Size (mxj) PR-NEH PR-D PR-DB Size (mxj) PR-NEH PR-D PR-DB 

5x10 2.18 1.51 1.67 20x100 5.71 5.61 5.27 

10x10 1.63 1.46 2.66 40x100 5.67 5.31 5.43 

15x10 1.53 2.17 2.47 60x100 4.95 4.51 4.85 

20x10 1.99 1.52 1.59 20x200 4.23 4.04 4.19 

5x20 1.51 2.76 2.19 40x200 4.71 4.66 4.51 

10x20 4.82 4.93 5.34 60x200 4.55 4.35 4.28 

15x20 4.33 3.93 4.50 20x300 3.00 3.03 2.99 

20x20 4.12 3.50 3.89 40x300 4.08 3.90 3.88 

5x30 1.43 1.64 1.45 60x300 3.93 3.91 3.93 

10x30 5.26 5.46 5.29 20x400 2.58 2.46 2.24 

15x30 5.83 5.44 5.31 40x400 3.66 3.51 3.43 

20x30 5.41 5.49 5.47 60x400 3.56 3.47 3.42 

5x40 1.09 0.79 0.70 21x500 2.27 2.23 2.00 

10x40 4.97 4.52 4.75 40x500 3.20 3.11 3.06 

15x40 6.05 5.87 5.56 60x500 3.12 3.20 3.13 

20x40 5.14 5.29 5.58 20x600 1.57 1.64 1.62 

5x50 0.55 0.82 0.84 40x600 3.13 2.98 2.86 

10x50 4.58 4.45 4.59 60x600 2.93 2.94 2.92 

15x50 6.52 6.90 6.76 20x700 1.40 1.23 1.32 

20x50 5.96 6.00 6.71 40x700 2.77 2.60 2.70 

5x60 0.89 0.48 0.34 60x700 2.75 2.71 2.78 

10x60 3.96 3.94 4.25 20x800 1.23 1.15 1.14 

15x60 5.79 5.91 5.91 40x800 2.43 2.52 2.50 

20x60 6.45 6.42 6.14 60x800 2.71 2.67 2.68 

Mean 3.83 3.80 3.92 Mean 3.34 3.24 3.21 

%Improvement  Ref. 0.78 -2.35 %Improvement  Ref. 2.99 3.89 

The PR-LJP proposed by Liu et al. [12] is proved to yield 
better results for the Taillard dataset. PR-LJP adds a third 
metric, absolute (skewness) to the priority rule, PR-D. 
However, when this absolute (skewness) is added to the sum 
of average processing time and mean absolute deviation (PR-
LJP1); the APRD comes down to 3.16% from 3.06%. The 
APRD slightly improves to 3.12% when the absolute 
(skewness) is replaced by skewness (PR-LJP2). For this 
dataset, PR-D reports an APRD of 3.22% and PR-DB, 3.17%. 
The improvement of PR-DB is 4.52% over PR-NEH which is 
better than PR-D (3.01% improvement). When the median 
absolute deviation (MAD1) replaces the mean absolute 
deviation (PR-DB1), we get an APRD of 3.29% (Table V) for 
the Taillard instances. 

The results of VFR (Small) and VFR (Large) datasets are 
given in Table VI. The performance is different here. For the 
VFR (Small) dataset, the performance of PR-DB worsens by 
2.35% whereas; PR-D reports 0.78% improvement over the 
reference priority rule, PR-NEH. For the smaller problems, the 
priority rule, PR-D reports the best results. However, when the 
number of problem sets are considered, the reference rule, PR-
NEH accounts for better results in 11/24 sets followed by PR-

D, 8/24 sets and the new rule, PR-DB does well in only 5/24 
cases. 

However, for the VFR (Large) dataset, the performance of 
the newly proposed rule, PR-DB is better than PR-D and PR-
NEH. The improvement over PR-NEH is 3.89% for this larger 
dataset. The new rule also reports best results in 13/24 
problem sets. PR-D comes next with better results in 8/24 
cases. The priority rule, PR-NEH which performs extremely 
well in smaller problems of VFR, could not match that 
performance and accounts for only 3/24 problem sets. 

The summary of the results is presented in Table VII. 

TABLE VII. SUMMARY OF RESULTS (APRDS) 

Benchmark PR-NEH PR-D PR-DB 

Carlier 1.39 1.44 1.21 

Demrikol (over LB) 17.43 17.15 16.61 

Taillard 3.32 3.22 3.17 

VFR (Small) 3.83 3.80 3.92 

VFR (Large) 3.34 3.24 3.21 
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For all the datasets except VFR (Small), the newly 
proposed priority rule, PR-DB outperforms PR-D and PR-
NEH. 

Paired t-tests are carried out at 95% confidence level using 
MINITAB17 and the results are presented in Table VIII. 

TABLE VIII. PAIRED T-TEST ON DIFFERENT BENCHMARKS 

Pairs T-Value P-Value 

Carlier 

PR-NEH vs PR-D -0.18 0.862 

PR-NEH vs PR-DB 0.55 0.597 

Demirkol 

PR-NEH vs PR-D 1.30 0.202 

PR-NEH vs PR-DB 3.75 0.001 

Taillard 

PR-NEH vs PR-D 1.16 0.270 

PR-NEH vs PR-DB 1.46 0.172 

VFR (Small) 

PR-NEH vs PR-D 0.38 0.710 

PR-NEH vs PR-DB -0.85 0.403 

VFR (Large) 

PR-NEH vs PR-D 3.86 0.001 

PR-NEH vs PR-DB 4.54 0.000 

Since only PR-D and PR-DB are similar priority rules, 
they are compared with PR-NEH and listed in Table VII and 
Table VIII. The analyses could prove the statistical 
significance in three cases with probability values of 0.001, 
0.001 and 0.000 for the pairs; PR-NEH vs PR-DB (Demirkol), 
PR-NEH vs PR-D (VFR-Large) and PR-NEH vs PR-DB 
(VFR-Large) respectively. 

V. CONCLUSION AND FUTURE WORK 
This paper proposes a new priority rule, PR-DB for the 

permutation flowshop scheduling problems. The popular NEH 
algorithm considers the jobs according to the non-increasing 
order of their total processing times. Dong et al. added another 
metric, the standard deviation of the processing times of a 
particular job for initial ordering. In this work, the standard 
deviation used in the priority rule of Dong et al., PR-D is 
replaced by Mean Absolute Deviation. The PR is applied to 
the classic NEH heuristic for makespan minimisation. 
Computational results show that the performance is better than 
PR-D for the Carlier, Demirkol, Taillard and VFR (Large) 
datasets. The results do not improve in the case of VFR 
(Small) instances. The paired t-tests are carried out to assess 
the statistical significance. The main advantage of the new 
rule is that it is simple yet powerful. It can be easily applied in 
scheduling the jobs in any engineering industry. Similarly, it 
can be combined with any popular tie-breaking rule to 
improve the solution quality further. Also, the results obtained 
could be used as the seed solution for any metaheuristic for 
better solution and schedules. Future work includes the 
assessment of PR-DB for other potential benchmarks also. 
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