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Abstract—Feature extraction in Copy-Move Forgery Detection 

(CMFD) is crucial to facilitate image forgery analysis. Edge 

detection is one of the processes to extract specific information 

from Copy-Move Forgery (CMF) Images. It sensitizes the amount 

of information in the image and filters out useless ones while 

preserving the important structural properties in the image. This 

paper compares five edge detection methods: Robert, Sobel, 

Prewitt (first Derivative), Laplacian, and Canny edge detectors 

(second Derivatives). CMFD evaluation datasets images (MICC-

F220) are tested with both methods to facilitate comparison. The 

edge detection operators were implemented with their respective 

convolution masks. Robert with a 2x2 mask, The Prewitt and 

Sobel with a 3x3 mask, while Laplacian and canny used adjustable 

masks. These masks determine the quality of the detected edges. 

Edges reflect a great-intensity contrast that is either darker or 

brighter. 

Keywords—Edge detection; first derivative; second derivatives; 

robert; sobel; prewitt; laplacian; canny edge detector 

I. INTRODUCTION 

Image forensic analysis requires good-quality images in any 
orientation to accurately detect the image textural properties. A 
good quality image can give the best evaluation when 
investigating a crime scene on any query image. Therefore, the 
analysis of CMFD detection image texture plays a significant 
role in image forensics. Edge-based segmentation is one of the 
methods used to analyze image textures in CMFD. 

Segmentation is an essential determinant for image 
information understanding and retrieval. It is also one of the 
frequent topics of discussion in the image processing and 
computer vision community [1]. Theoretically, image 
segmentation separates digital image data into a set of visually 
separate and identical regions based on parameters such as pixel 
intensity, similarity, discontinuity, cluster data, and so on [2]. 
The primary objective of segmentation is to clearly identify an 
image object from its background. Researchers have 
categorized segmentation into different techniques. The author 
[3] express segmentation as threshold techniques, edge 
detection techniques, region-based techniques, and 
connectivity-preserving relaxation methods. In [1] 
segmentation is seen as threshold-based, regional growth, edge, 
and segmentation based on clustering and weakly-supervised 
learning in CNN. In 2022, due to a significant improvement 

over the last four decades from the traditional segmentation-
based method to advance deep learning algorithms, [2] 
categorized segmentation algorithms into rule-driven and data-
driven methods. Methods for cleaning objects that rely on one 
or more rules are referred to as rule-driven. Classification 
methods that learn features from data, such as ANN and DL, 
are referred to as data-driven. According to [2], several rule-
based segmentation methods, such as fuzzy-based image 
segmentation (FBS), have been abandoned because they do not 
give satisfactory performance or because their lengthy 
computation times do not sufficiently substantiate their use. 
However, the reviewed literature mentioned that thresholding 
and edge detection methods are the most popular and applicable 
traditional image segmentation methods. This paper primarily 
focused on the edge detection-based segmentation method. 

Edge detection is a method for recognizing the points or 
pixels in an image where the luminance varies abruptly or 
significantly. These points are clustered along segments of lines 
known as edges. Edge detection seeks to identify and locate 
image discontinuities. Due to the high frequency of both noise 
and image, edge identification becomes problematic. This 
paper discusses the edge detection techniques to address the 
choice of an edge detection method based on distinctive edge 
identification, noisy removal, etc. 

Filtering is a method of correcting or improving the process 
of selecting the best keypoints in an image [4]. Edge detectors 
utilize filters to highlight edges while removing noise in a given 
image. Smoothing, sharpening, and edge enhancement are 
some image-filtering activities invoked using filtering methods. 
These activities are used interchangeably to enhance images for 
proper image-processing applications [5]. The filters are 
utilized for locating the sharp, discontinuous edges. These 
discontinuities cause variations in pixel intensities, which 
define the object's boundaries [5]. By applying filters to images, 
salient key points can be efficiently located for object detection. 

Edges are of fundamental importance during any image-
processing task. The intensity values of pixels that share a 
neighborhood are compared in detecting edges. The significant 
changes in the dense regions are located as edges. These dense 
areas are often difficult to trace due to the presence of noise. 
The presence of noise in the image affects the detection of the 
Edges; therefore, noise needs to be cleaned before the detection 
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of edges [6]. Noise reduction has been a challenge in the edge 
detection process, attracting the attention of many scholars in 
different areas of application that use images. Edge detection 
algorithms have been used for decades and have recently been 
employed in various domains because of their ability to detect 
and differentiate good boundaries in images. 

Research has been conducted over the past decades to detect 
abrupt changes in image intensities (edges). Edge detection was 
employed in glass production for texture analysis [6], Canny 
Edge Detection Algorithm for Congregating Traffic 
Information [7], Sobel edge detector for synthetic aperture 
radar (SAR) detection [8], Laplacian edge detector for bladder 
cancer diagnosis [9], Kirsch edge detector for sharpening effect 
in images [10], Sobel edge detector for hardware 
implementation on the FPGA Nexys 4 DDR Board [11], copy-
move forgery detection in digital images [12]. 

This paper presents an analysis of five types of edge 
detectors. It examines the edges by applying various edge 
operators and their respective filters. Five selected images in 
the MICC-F220 CMFD dataset are tested and compared to each 
other. This paper presented the related work in Section II; 
Section III presents the algorithms based on the first derivatives 
and explains the edge detector operators and their various 
masks. Section IV presented an algorithm based on the second 
Derivative, and Section V presented the result of the five 
operators. Finally, Section VI discussed the result, and the 
conclusion was depicted in Section VII. 

II. RELATED WORK 

As shown in Fig. 1, an angle gradient vector indicates the 
intensity change at that edge pixel. The cycle spot in Fig. 1 is 
the corresponding gradient vector on one data point or pixel. 
The intensity changes from 0 to 255 in the gradient direction at 
that pixel. The gradient's magnitude determines the edge's 
strength by calculating the gradient in uniform regions; a zero 
vector is obtained, indicating that there are no edge pixels. In 
natural images, where there are rarely ideal discontinuities or 
uniform regions, as seen in Fig. 1, thus, the gradient magnitude 
is evaluated to determine whether to detect the edge pixels. 
Edge detection is one of the simplest and oldest image-
processing procedures, it is frequently employed in recently 
advanced edge detection algorithms. Edge detection is a 
technique for detecting abrupt changes in image intensity. The 
use of first-order or second-order derivatives can be employed 
to detect those changes [13]. Edge detection methods were 
developed in the 1970s using small operators such as Sobel 
(3x3) to compute an approximation of the image's first 
Derivative. Edge detection involves the application of different 
size operators because the change in image intensity depends 
on the image scale. This variation in intensity can be 
demonstrated as a peak in Fig. 3, using gradient-based operators 
(first Derivative) or a sharp zero-crossing on gaussian-based 
operators (second Derivative), respectively. 

The edge detection algorithms are divided into two distinct 
categories: Gradient-based (first Derivative) and Gaussian-
based (second Derivative) [10]. An adaptive mask convolves 
the input image, resulting in a gradient image with edges 
recognized via the thresholding technique. To detect edges, the 
gradient operators (Sobel, Prewitt, and Roberts) examine the 

maximum and minimum intensity values. They determine the 
distribution of intensity values in each pixel's neighborhood to 
see if it should be categorized as an edge. Sobel, Prewitt, and 
Roberts operators are time-consuming and cannot be deployed 
for real-time applications (Bhardwaj & Mittal, 2012). On the 
other hand, the Laplacian of Gaussian (LoG) is categorized 
under the Gaussian-based method (second Derivative). 
Gradient-based operators are filters with various kernel sizes 
convolved with the original input image to produce the image 
gradient. Zero-crossing or second-order derivative methods are 
other names for Gaussian-based approaches. They significantly 
extract sharp zero-crossing points, and zero-crossing indicates 
the presence of maxima (an edge) [3]. The Canny operator is 
well-known for its exceptional performance, as it goes through 
noise reduction, gradient magnitude calculation as gradient 
operators, thresholding to maintain firm edges while deleting 
weak ones, and finally, non-maximum suppression for edge 
thinning through Hysteresis [8], [10]. 

Various survey has been conducted to investigate the impact 
of edge detection in digital images. This can be summarized in 
Table I. 

 

Fig. 1. Gradient Vector with Red Spot Indicating the Location of a Pixel. 

TABLE I. RELATED EDGE DETECTION SURVEY 

S/N Year  Author Description of Survey 

1 2022 
Kheradmand, & 

Mehranfar [2] 

Edge Segmentation-based 

techniques 

2 2022 Jin et al.[14] 
Recent advances in image edge 

detection 

3 2017 Song, & Yan, [1] Image Segmentation Techniques  

4 2015 
Öztürk & 

Akdemir [6] 

Edge Detection Algorithms for 

Glass Production analysis 

5 2015 
Vikram Mutneja 

[15] 

Methods of Image Edge 

Detection 

6 2015 Li et al. [16] Visual Feature Detection 

7 2013 
Lopez-Molina et 

al. [17] 

Quantitative error measures for 

edge detection 

8 2012 
Shrivakshan et al. 

[17] 
Color filter technology 

9 2011 
Papari, & Petkov 

[18] 

Edge and line-oriented contour 

detection 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 10, 2022 

154 | P a g e  

www.ijacsa.thesai.org 

III. ALGORITHMS BASED ON FIRST DERIVATIVE 

(GRADIENT-BASED) 

The main difference between the algorithms based on the 
first derivatives is the nature of the mask or filters (known as 
low pass filters) they applied during the computation of the 
derivatives. A general flow diagram for computing the First 
Derivative of an image is presented in Fig. 2. 

 

Fig. 2. Block Diagram of the First Derivative Edge Detection Algorithms 

[13]. 

The intensity variations in the magnitude and direction of 
an image f can be calculated using the gradient operator (∇). It 
is a well-known tool in image processing for calculating image 
orientations. Let's consider a 1 D image signal to detect an edge. 

A. Edge Detection using Gradient Operator based on 1D 

Image 

Consider a 1D image signal with edges in Fig. 3. 

 

Fig. 3. Image Signal (f(x)). 

The first Derivative of the image is computed to determine 
the intensity changes in the above image, f(x). Ideally, the 
Derivative of a continuous function represents the amount of 
change in the function [19]. When dealing with edges, those 
changes are obtained from the function. When the first 
Derivative of f for x is applied to the image in Fig. 3, it is 
transformed into the image in Fig. 4. The local extrema indicate 
the edges in the image. Finding the absolute value of the first 
Derivative obtained the two peaks (local extrema Fig. 4). The 
location of the peaks indicates where the edges occur, and the 
height of the peaks expresses the strength of the edges (local 
maxima Fig. 4). 

 

Fig. 4. First Derivative of f with Respect to x. 

B. Edge Detection using Gradient Operator based on 2D 

image 

When the above idea is applied to 2 D images, it is referred 
pure derivatives (partial Derivatives). According to calculus, a 
partial derivative of a 2D continuous function represents the 
number of changes along each dimension [19]. The gradient 
operator (partial Derivative) represents the most rapid change 
in intensity (see Fig. 5). 

 

Fig. 5. Edge Detection using 2D Image. 

The gradient operator is computed by: 

∆𝐼 = [
𝜕𝐼

𝜕𝑥
+

𝜕𝐼

𝜕𝑦
]              (1) 

When equation (1) is applied to an image, it produces two 
numbers; the Derivative of the image (𝜕I) with respect to x and 
y. these two numbers (vectors) comprise all information needed 
to know about the edges. For example: 

 

Fig. 6. Gradient Operator when Applied to an Image. 

After applying the del operator, (∆𝐼), Fig. 6 produces two 
number vectors along each edge. Image (a) is a vertical edge 
with a non-zero value for the x direction and a zero value for 
the y component. Image (b) is a horizontal edge, with zero for 
the x direction and a non-zero value for the y component. Image 
(c) is a tilted edge and therefore has a non-zero value for both 
the x and y direction. From these two numbers at each pixel, we 
can obtain both the edge strength and the edge orientation. The 
magnitude equals the sum of squares of the two partial 
derivatives, and their square root equals 1. While the orientation 
of the edge is measured with respect to the horizontal axis, Eq. 
3. 

Gradient Magnitude S = ||𝛁𝑰|| = √(
𝝏𝑰

𝝏𝒙
+

𝝏𝑰

𝝏𝒚
)2          (2) 

Gradient Orientation 𝜽 = tan-1  (
𝝏𝑰

𝝏𝒙

𝝏𝑰  

𝝏𝒚
⁄ )           (3) 
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When Eq. 2 and Eq. 3 are applied to discrete images, we 
will have a finite difference approximation for the partial 
Derivative (f) for x and y. To find the difference in the x and y 
direction, we need at least two pixels in each direction, making 
four pixels in Fig. 7. Assuming the physical distance between 
the pixels is epsilon. We obtain a finite difference in the image 
as in Fig. 7. 

 

Fig. 7. Four Pixels Images in 1D Image. 

𝒅𝑰

𝒅𝒙
 ≈  

𝟏

𝟐𝜺
 ((Ii+1,j+1 - Ii,j+1) +( Ii+1,j - Ii,j))            (4) 

𝒅𝑰

𝒅𝒚
 ≈  

𝟏

𝟐𝜺
 ((Ii+1,j+1 - Ii+1,j) + (Ii+1,j - Ii,j))            (5) 

Eq. 4 and Eq. 5 can be applied as a convolution using the 
filter in Eq. 6 and Eq. 7 to convolve the image for x and y. when 
this is done, the values obtained are enough to determine the 
edge magnitude and orientation. 

𝒅𝑰

𝒅𝒙
 ~ 

𝟏

𝟐𝜺
 (

−𝟏 𝟏
−𝟏 𝟏

)               (6) 

𝒅𝑰

𝒅𝒚
 ~ 

𝟏

𝟐𝜺
 (

𝟏 𝟏
−𝟏 −𝟏

)              (7) 

With the gradient approach, a variety of gradient operators 
have been proposed over the last few decades [6], [20]–[23], 
which include Robert, Prewitt, Sobel (3x3), and larger Sobel 
(5x5). The Sobel operator (3x3) has been broadly used across 
various applications in the literature. The Derivative is found in 
the diagonal direction to the orthogonal direction of the 
convolution. The main obstacle of these operators lies mainly 
between the Robert operator, a small operator, and the larger 
Sobel. The Robert (2x2) operator with four-pixel values has a 
perfect localization ability for the edges but is very sensitive to 
noise because of the fewer pixels to revolve around. Any minor 
modification with any of those pixels can affect the detection 
accuracy. Therefore, noise sensitivity does not produce a good 
edge in a noisy image. On the other hand, the larger Sobel 
operator (5x5) has very poor localization accuracy. This is 
because when the operator becomes larger, determining an edge 
at a particular pixel can be affected by the activities happening 
in other larger pixels around it, affecting the edge localization. 
From a practical point of view, getting the orientation and 
magnitude does not declare an edge to be an edge. It still needs 
to be localized by thresholding. In this case, two standard 
thresholds are applied such that for a threshold T, the edge is 
obtained when Eq. 9 is satisfied: 

||𝛁𝑰 (𝒙, 𝒚)|| < 𝑻  (not an edge)            (8) 

||𝛁𝑰 (𝒙, 𝒚)|| > 𝑻  (an edge)             (9) 

By introducing hysteresis-based thresholding, two 
thresholds are used (T0, T1) to obtain an edge, Eq. 11 and Eq. 
12. 

||𝛁𝑰 (𝒙, 𝒚)|| < 𝑻0   (not an edge)          (10) 

||𝛁𝑰 (𝒙, 𝒚)|| <T1          (an edge)           (11) 

T0≤ ||𝛁𝑰 (𝒙, 𝒚)|| < T1 (an edge if the neighboring pixel is an 

edge)  (12) 

An edge pixel is defined by two fundamental 
characteristics: its edge strength, which is equal to the gradient 
magnitude, and its edge direction, which is equal to the gradient 
angle. However, for a discrete function, a gradient is not 
defined; instead, the gradient may be defined as an ideal 
continuous image, which is inferred using some specific 
operators. These operators use a pre-determined convolution 
mask to detect edges. 

C. The Roberts Cross Operators 

Roberts (1963) introduced the Roberts Cross operator. He 
clearly and concisely measures a 2-D spatial gradient on an 
image. As a result, high spatial frequency zones are 
emphasized, which typically correspond to edges. The 
operator's input and output are grayscale images in the most 
common situation. The estimated absolute magnitude of the 
spatial gradient of the input image at that point is represented 
by pixel values at each position in the output. Eq. 13 and Eq. 14 
are the 2x2 convolution mask that convolves images in x and y 
directions (Gx, Gy). These masks are made such that Gy is a 900 
rotation of Gx [11]. 

Roberts Operators Masks 

Gx  =  [
1 0
0 −1

]             (13) 

Gy =  [
0 1

−1 0
]            (14) 

Eq. 13 and Eq. 14 can be applied independently to the query 
image to obtain separate gradient components at each 
orientation. The absolute value of the combination of the 
gradient components (Gx, Gy) gives the magnitude at each 
point in Eq. 16 and the orientation of the gradient in Eq. 17. 

|𝑮| = √𝐆𝒙𝟐 + 𝐆𝒚𝟐             (15) 

Which can also be computed approximately as: 

|𝑮| = |𝑮𝒙| + |𝑮𝒚|            (16) 

The angle 𝜃 of orientation is given by: 

𝜽 =  𝐚𝐫𝐜𝐭𝐚𝐧 ( 𝑮𝒙
𝑮𝒚

 ) - 𝟑𝝅

𝟒
           (17) 
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D. Sobel Operator 

The Sobel operator introduced by [21] indicates a high-
frequency spatial region. The Sobel operator is achieved 
through a 2D image spatial frequency measurement by 
converting the image into grayscale and computing the absolute 
approximate gradient magnitude value at each point. 

The Sobel operator is convolved using a (3x3) convolution 
kernel. With one kernel rotated 90 degrees over the other. Eq. 
18 and Eq. 19 show the Robert cross operators. 

Sobel Operators Masks 

Gx =  [
1 0 −1
2 0 −2
1 0 −1

]           (18) 

Gy =  [
1 2 1
0 0 0

−1 −2 −1
]            (19) 

Sobel kernels can be used to compute separate 
measurements of the gradient component at each orientation, 
which are later combined to form the magnitude of the gradient 
for x and y orientations. The gradient magnitude can be 
computed using Eq. 20 and Eq. 21, while the orientation is 
computed using Eq. 22. 

|𝑮| = √𝐆𝒙𝟐 + 𝐆𝒚𝟐             (20) 

It can further be approximated by: 

|𝑮| = |𝑮𝒙| + |𝑮𝒚|            (21) 

The angle of orientation is given by: 

𝜽 =  𝐚𝐫𝐜𝐭𝐚𝐧 (𝑮𝒙
𝑮𝒚

)            (22) 

One of the problems of Sobel is using a gaussian smooth to 
reduce noise, which in turn affects the detection of a good edge. 
Despite this limitation, Sobel exhibits the quality of edge 
detection applied to solving various computer vision problems 
[24]. 

E. Prewitt Operator 

The Prewitt operator introduced by [25] has similar 
properties to that of Sobel, such as convolution kernels. The 
kernel for the Prewitt operators are shown in Eq. 23 and Eq. 24. 
When applied to a noiseless and well-contrasted image, it is a 
computationally less expensive and faster edge detection 
method (Pujare et al., 2020). It is a gradient-based edge 
detection operator, and it has gradient features. Compared to the 
success of edge detection in complex images, the success of the 
Prewitt operator is greater than Roberts's operator [6] 

Gx =  [
1 0 −1
1 0 −1
1 0 −1

]           (23) 

Gx =  [
1 1 1
0 0 0
1 −1 −1

]           (24) 

The gradient-based operators can be determined using some 
pre-determined steps known as algorithms. Algorithm 1 is one 

of the general algorithms used for gradient-based edge 
detection. 

Algorithms 1: Gradient-based edge detection 
algorithm 

1: Define x and y operators(ox and oy) 
2: gx ← convolve(img, ox) 
3: gy ← convolution(im,oy) 
4: maxM ← 0 
5: 
6: 
7: 
8: 
9: 

for pixels |i| in image do 
       Mag|i| ← Eqn. 17 
       if Mag|i|>maxM then 
            maxMag ←Mag|i| 
       end if 

10: end for 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 

for pixels i in image do 
        if Mag|i| >=thresh x maxMag then 
               detected_edges|i| ←1 
        else 
               detected_edges|i|←0 
        end if 
end for 
return detected_edges 

IV. ALGORITHMS BASED ON SECOND DERIVATIVES (NON-

GRADIENT-BASED) 

The methods outlined in the previous discussions merely 
involve filtering the image with various masks without 
considering the edges' properties or the image's noise. The 
second Derivative first dealt with the noise problem before 
going into edge detection. It is based on the concept introduced 
by Haralick and Marr and Hildreth Algorithms [26], [27]. This 
idea brings us to the concept of the Laplacian operator. 

A. Laplacian Operator 

Pierre-Simon de Laplace first applied the Laplace operator 
to the study of celestial mechanics or the motion of objects in 
space, and it is named after him. Since then, the Laplace 
operator has been used to represent many phenomena, 
including electric potentials, heat and fluid flow diffusion 
equations, and quantum physics. It's also been requested in 
discrete space, where it's been employed in image processing 
and spectral clustering applications [28]. 

The intensity variations in the sharp zero-crossing of an 

image f can be calculated using the Laplacian operator (𝜵𝟐). 
Consider a 1D signal f(x) in Fig. 8. The edge is located at the 
local extrema, which is the first Derivative of the signal 
(𝜕𝑓 𝜕𝑥)⁄ . But in the case of the second Derivative of the image 
(i.e., the Derivative of an image (𝜕2f 𝜕2x)⁄ . The zero-crossing 
through each peak of the signal indicates an edge. Peaks are not 
obtained at the edges, but a strong zeros-crossing indicates an 
edge (Fig. 8). 

 

Fig. 8. Second Derivative in 1D Signal. 
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The zero-crossing is obtained through the Laplacian 
operator in Eq. 25, known as dell square operator II. 

𝜵𝟐𝑰 =  
𝝏𝟐𝑰

𝝏𝒙𝟐  +  
𝝏𝟐𝑰

𝝏𝒚𝟐   (Dl square II)          (25) 

When Eq. 25 is applied to an image, the edges obtained are 
zero-crossing in the Laplacian of the image. The Laplacian 
operator does not provide the direction of the edges but a sharp 
zero-crossing which indicates the location of the edge. In 
discrete images, the second Derivative is in terms of finite 
difference (difference of the difference). This difference 
requires at least three pixels (3x3), known as the 3x3 Laplacian 
operator. Assuming the physical distance between the pixels is 
epsilon. We obtain a finite difference using the 3x3 image 
pixels in Fig. 9. 

 

Fig. 9. 3x3 Laplacian Operator. 

Fig. 9 is a 3x3 Laplacian operator called the "Del square 
operator II," where the epsilon (𝜀) denotes the distance between 
the pixels. It is referred to as the sum of the second Derivative 
of the image for x and the second Derivative of the image for y. 
For example, obtain an output of the Laplacian operator for the 
center pixel (Ii+1, j) from the above 3x3 operator. Eq. 26 and 
Eq. 27 are derived. 

𝝏𝟐𝑰

𝝏𝒙𝟐  ≈ 𝟏

𝜺𝟐  (Ii-1,j – 2Ii,j + Ii+1,j)            (26) 

𝝏𝟐𝑰

𝝏𝒚𝟐  ≈ 𝟏

𝜺𝟐  (Ii,j-1 – 2Ii,j + Ii,j+1)           (27) 

𝛻2𝐼 = 
𝝏𝟐𝑰

𝝏𝒙𝟐  + 
𝝏𝟐𝑰

𝝏𝒚𝟐                (28) 

Adding Eq. 26 and Eq. 27 and the Derivative of I with 
respect to y formulate the convolution mask in Eq. 29: 

𝛻2 ≈ 
1

𝜀2  [
0 1 0
1 −4 1
0 1 0

]            (29) 

The convolution mask in Eq. 29 obtained the second 
Derivative for x and the second Derivative for y. However, the 
edge can appear in any orientation. Assuming the edge appears 
in 4500, the epsilon in that direction (Ii,j, Ii+1,j+1) is not yet 
accounted for. This problem is peculiar to a continuous grid. 
However, the convolution can be modified on a discrete grid to 
fit all possible orientations in the image. The modified 
convolution, which is the most applicable Laplacian operator, 
is obtained in Eq. 30: 

𝛻2 ≈  
1

6𝜀2  [
1 4 1
4 −20 4
1 4 1

]           (30) 

One of the common algorithms used to implement the 
Laplacian operator for finding zero-crossing is the Marr-
Hildreth algorithm [13]. This method obtains a sharp zero-
crossing point by applying a convolution with a gaussian kernel 
and approximating the Laplacian operator with a 3x3 filter. 
Presented in Fig. 10 is a general flow diagram for finding zero-
crossing, while Algorithm 2 is used for the implementation 
[13]. 

 

Fig. 10. Marr-Hildreth Algorithm;s Block Diagram for Finding Zero-crossing 

[13]. 

Algorithms 2: Marr-Hildreth edge detection algorithm 
Imput required: input img, sigma value σ, size of kernel      k, and 
threshold for zero-crossing Tzc 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 

If kernel size then 
     Kernel ← compute-kernel k (n,σ) 
     imggm ← convolve (img, k) 
     #Define Laplacian operator Laplacian L 
     imgl ← convolve(imggs, L) 
else 
    log_k ← compute_log_k(n,σ) 
    imgl ← convolve(imggs, log_k) 
end if 
maxL ← 0 

 

12: 
13: 

 
14: 
15: 

for pixels i in images imgl do 
    if imgl [i] > maxl then 
          maxL ← imgl [i] 
    end if 
end for 

 

16: 
17: 
18: 
19: 
20: 
 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 

for pixels i in images imgl, except borders do 
    for pair (pts1, pts2) of opposite neighbors 

of p in imlap do 
           if (sign(imgl[pts1]) ≠ 

sign(imgl[pts2])) and (|imgl[pts1]|>TZC then 
                detected_edges[i] ← 1 
           else 
                detected_edges[i] ← 0 
            end if 
      end for 
end for 
return edges 

 

B. Canny Edge Detection 

The Canny Edge Detection Algorithm consists of a specific 
sequence of steps. Smooth the image with a Gaussian filter first. 
Then, compute the gradient magnitude and orientation by 
approximating the partial derivatives with finite-difference 
approximations. The gradient magnitude is then subjected to a 
non-maximum suppression. Then, the double threshold 
technique to find and connect edges [20] using Eq. 31. 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−

𝑥2+𝑦2

2𝜎2            (31) 
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Where x and y distance from the origin to the horizontal and 
vertical direction, respectively, 𝜎 is the Gaussian factor that 
determines the level of smoothing. The gradient of the 
smoothed array G(x,y) is employed to generate the x and y 
Partial Derivatives. After that, the results of x and y partial are 
added to obtain the normal gradient. Then non-maximum 
suppression is applied after determining the edge direction 
through the use of two thresholding in the Hysteresis [15][20]. 

Non-maximum suppression: Facilitate the detection of thin 
layered edges that produces smarter edges. The Canny edge 
detector employs non-maximum suppression to emphasize the 
local maxima as edges while suppressing all other ones along 
with the gradient magnitudes. 

Other operators employed the use of a single threshold 
value to remove edges that do not meet the required edge limit. 
Canny uses Hysteresis with upper and lower threshold values 
to suppress the edge that falls below the required threshold 
limit. If the high threshold is T1, the low threshold is T2, and 
the gradient magnitude is GM, then GM< T1 are dropped, and 
GM>T1 are maintained as the edge. However, an edge that falls 
between T1 and T2, is only maintained if it has a pixel value 
higher than T2 [11] and is expressed it as: 

GM<T1 = drop 

GM>T1 = maintain 

If T2≤GM<T1 

GM = edge if Pixel 𝐺𝑀 > 𝑇2 ∀ 𝑖 ∈ I(x, y) 

The canny edge detector has the advantage of intensive 
noise filtering than other detectors. It has three distinct 
attributes that differentiate it from the other detectors. Table II 
shows the advantages and disadvantages of various edge 
detection methods. 

Low error rate: The detected edges are refined not to include 
non-edges. It also ensures that all occurring edges are not 
missed. This is achieved by Eq. 32. 

𝑺𝑵𝑹 =
∫ 𝑮(−𝒙)𝒇(𝒙)𝒅𝒙

𝒘
−𝒘

√∫ 𝒇𝟐(𝒙)𝒅𝒙
𝒘

−𝒘

𝒏𝟎
           (32) 

Where f is the filter, G is the edge signal; the denominator 
is the root-mean-square (RMS) response to noise n(x) only. 

Good localization ensures a minimal distance between the 
actual edge and the detected edge which is expressed in Eq. 33. 

𝑳𝒐𝒄𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 =
𝟏

√𝑬[𝑿𝟎
𝟐]

 = 
|∫ 𝑮′(−𝒙)𝒇′(𝒙)𝒅𝒙

𝒘
−𝒘 |

√∫ 𝒇′𝟐(𝒙)𝒅𝒙
𝒘

−𝒘

𝒏𝟎
          (33) 

Single response rate: Each detected edge should maintain a 
single response in the total edges detected. This is implicit in 
the first criterion but made explicit about eliminating multiple 
responses. The first two criteria can be minimized by setting the 
parameter in Eq. 34 [29]. 

f(x) = G(-x)            (34) 

TABLE II. ADVANTAGES AND DISADVANTAGES OF VARIOUS EDGE 

DETECTION METHODS 

Edge detection 
methods 

Advantages  Disadvantages  

An algorithm 
based on the first 
Derivative 
(Robert, Prewitt, 
and Sobel) 

Fast and more accessible 
in computation 

Edges are detected along 
with their orientation. 

Sensitive to noise. 

The inaccurate and 
unreliable edge 
detection output 

An algorithm 
based on the 
second Derivative 
(LoG) 

Due to ease in an 
approximation of 
gradient magnitude, the 
cross-operation detection 
of edges and their 
orientation is also simple 

The characteristics of all 
directions of the image 
are fixed. 

A wide testing area 
around the pixel is 
possible 

The detection of edges 
and their orientation 
degrades the magnitude 
of the edges and 
increases the noise 

Malfunctioning at the 
corners, curves, and 
where the grey level 
intensity function varies 

Canny Edge 
Detector 

Better detection in noise 
conditions. 

Do not require zero 
crossing. 

Difficult to specify a 
generic threshold value 
that works well across 
all images 

V. EXPERIMENTAL RESULT AND DISCUSSION 

The edge detection methods discussed in the paper are 
applied to five sample images taken from the MICC-F220 
CMFD evaluation dataset. The result of each algorithm is 
shown in Fig. 11. 

 

Fig. 11. Comparison of Edge Detection Algorithms using Five Sample 

Images from MICC-F220 Benchmark Dataset, (a) Original Image (b) 

Grayscale (c) Robert (d) Prewitt (e) Sobel (f) Laplacian and (g) Canny Edge 

Detector. 
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VI. DISCUSSION 

Edge detection methods play an important role in object 
detection. It is used primarily in the pre-processing stage before 
feature extraction, an essential step in CMFD. Images are 
converted to grayscale to reduce noise. Edge detection based on 
first derivatives is generally sensitive to noise and, in most 
cases, produces unrealistic features. 

We have implemented five selected images from MICC-
F220 datasets. Roberts, Sobel, Prewitt, Laplacian, and canny 
edge detectors have been implemented on those images. The 
result in Fig. 11 shows that the edges in (c, d and e) detected 
using Robert, Prewitt, and Sobel, are too cluttered and almost 
lost the important image structures. The image appeared noisy 
with thick layered unsmoothed edges, mainly the result in (e), 
the Sobel, the edges appeared two to three times the pixel 
thickness. Since most of those images appeared to have lost 
their essential edge information, the results did not show the 
appropriate edge structure. However, the result can still indicate 
the geometric parts of the images but does not reveal the thin 
layer edges, essential for feature extraction in CMFD. 

On the other hand, edge detectors based on second 
derivatives, such as Laplacian and canny edge detectors, use 
adjustable parameters such as the size of the Gaussian filter and 
threshold [20]. The edges are smoothly detected on the image, 
and almost no noise pixels were detected while protecting the 
important structural properties in the images, as shown in Fig. 
11 (f and g). However, the canny method produces smoother 
and thin edges than the Laplacian. In Fig. 11 (g), we can see a 
good view of the various image structures. Fewer noise pixels 
were detected compared to gradient-based edge detectors. 

VII. CONCLUSION 

This study demonstrates that the Canny approach can 
produce equally acceptable edges with smooth continuous 
pixels and thin edges. Unlike the canny method, the Laplacian 
method also has better edge features compared to Robert, 
Prewitt, and Sobel method. These methods cannot generate a 
smooth and thin edge. However, the Laplacian and Canny 
algorithms are often susceptible to noise pixels. Sometimes it is 
impossible to filter a noisy image perfectly. Noisy pixels that 
are not eliminated will affect the outcome of edge detection. 
Based on our investigation, we have determined that between 
the Canny and other edge detection algorithms, Canny edge 
detection provided a superior response for CMFD images in 
MICC-F220 datasets. 
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