
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

A Two-Step Approach to Weighted Bipartite Link
Recommendations

Nathan Ma
Adlai E. Stevenson High School Lincolnshire, Illinois, 60069, USA

Abstract—Many real-world person-person or person-product
relationships can be modeled graphically. Specifically, bipartite
graphs are especially useful when modeling scenarios involving
two disjoint groups. As a result, existing papers have utilized
bipartite graphs to address the classical link recommendation
problem. Applying the principle of bipartite graphs, this re-
search presents a modified approach to this problem which
employs a two-step algorithm for making recommendations that
accounts for the frequency and similarity between common edges.
Implemented in Python, the new approach was tested using
bipartite data from Epinions and Movielens data sources. The
findings showed that it improved the baseline results, performing
within an estimated error of 14 percent. This two-step algorithm
produced promising findings, and can be refined to generate
recommendations with even greater accuracy.

Keywords—Bipartite graph; weighted graph; link prediction;
two-step algorithm; information retrieval

I. INTRODUCTION

Bipartite graphs [1] are graphs that can be split into two
sets of vertices such that, within each set, there are no edges.
Edges only exist between the vertices of opposite sets. See
Fig. 1, for an example of a bipartite graph. Within a weighted
bipartite graph, each edge is also given a weight. Weighted
bipartite graphs [2] can be used to model a multitude of real-
world relationships such as the product-customer relationship.
In this scenario, the weighted edges represent how a customer
has rated a product.

This research focused on examining the link prediction
problem in the context of weighted bipartite graphs. Though
not solely limited to weighted bipartite graphs, the link pre-
diction problem [3] takes in an arbitrary graph network and
predicts the possibility of an edge between unpaired vertices.
When applied to weighted bipartite graphs, the link prediction
problem predicts the weight between unpaired vertices based
on the input graph network.

Weighted link prediction has broad applications. For exam-
ple, it is sometimes analogous to forecasting how customers
will rate products based on a network of customer-product
ratings. Many platforms, such as Amazon or YouTube, likely
employ some form of weighted link prediction algorithm
when recommending items to users. The applicability of link
prediction can be extended beyond user-item recommendations
to image recommendation systems as well [4].

In this paper, we propose an algorithm that performs
weighted link recommendation in two steps, which differs from
existing multi-step algorithms that utilize techniques derived
from the predominant Graph Convolution Networks [5] and
Graph Neural Networks [6]. In our two-step approach, the

Fig. 1. Example of an unweighted bipartite graph

confidence in a potential link occurring between two vertices
based on common neighbors was first evaluated. Then, weights
were determined based on the information derived from these
common neighbors. This algorithm was finally tested on ex-
isting datasets that could be modeled using weighted bipartite
graphs.

II. RELATED WORK

Given numerous real-world applications, prior papers have
examined different approaches to link prediction using either
weighted [7] or unweighted [8] bipartite graphs.

One approach to unweighted link prediction is to specifi-
cally predict internal links [9]. Internal links are defined as an
unpaired top and bottom node in which a hypothetical edge
between the nodes does not change the bipartite projected
graph. Only internal links may be considered for potential
edges because being “internally linked” means that two ver-
tices already share some degree of common neighbors. In
turn, this indicates that the two vertices are more likely to
have an edge develop between them. Whether an internal link
would become an actual edge may be determined from several
proposed weighting functions that account for factors such as
common neighbors and the overall number of neighbors. (See
Fig. 2, for an example of an internal link.)

One idea used in weighted link prediction is the Pearson
coefficient [10]. The Pearson coefficient does not predict edges,
but determines a similarity between two nodes within the
same disjoint bipartite set. Similarity is determined by first
finding the set of common neighbors between the two nodes.
For each of the two nodes, the weight of the edge with the
common neighbor is then subtracted from the average weight
of all edges extending from that node. These resulting values
are multiplied, and this process is repeated for all common
neighbors. A positive final value corresponds to a positive
similarity and vice versa.

www.ijacsa.thesai.org 1 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

Fig. 2. Example of internal links within a bipartite graph (dotted red edges)

It is also important to note the difference between link
prediction and link recommendation. Whereas link prediction
involves finding any arbitrary connections that will occur in the
future, link recommendation is more specific to the weighted
bipartite graph. Instead of dealing with arbitrary connections,
link recommendation identifies the most relevant connections
between unpaired top and bottom nodes and calculates a
weight for a hypothetical edge.

A classical approach specific to link recommendation has
been collaborative filtering [11]. The principle underlying
collaborative filtering is very similar to that of the Pearson
coefficient; if Person A and B rate a product similarly, then
Person A should rate another product more similarly to Person
B than a randomly chosen person. Thus, collaborative filtering
leverages the power of people with mutual interests to generate
recommendations.

Collaborative filtering may be applied in many different
ways such as: the use of neural networks [12] to establish
deeper analysis between the user-user and user-item connec-
tions, hybrids between memory and matrix-based ideas [13],
and the incorporation of time as a relevant factor in the decision
making process [14] [15]. Though collaborative filtering is not
the only approach to link recommendation [16], the role of
similarity nevertheless plays a vital role.

Traditionally, key factors that affect recommendation al-
gorithms include the size and density of the dataset [17].
This paper builds upon the previous work of both past link
prediction and recommendation models to create an algorithm
suited for recommendation.

III. METHODOLOGY

This recommendation algorithm is comprised of two steps.
First, pairs of currently nonadjacent top and bottom nodes were
identified for making a prediction. Second, predictions were
made after selecting the pairs. Notably, a recommendation
could not be made in the case of insufficient data connecting
a top node and a bottom node.

Intuitively, the top nodes can be thought of as products
and bottom nodes as customers. For ease of understanding,
the terms “bottom node” or “customer” and “top node” or
“product” are used interchangeably in this paper. Thus, the
weights between the top and bottom nodes represent the ratings
a customer has assigned to a product.

For each candidate pairing, let t denote the number of
neighbors of the original top node, excluding the original

bottom node. Next, for each of these neighbors, let n define
the number of neighbors that have at least one common top
neighbor with the original bottom node. Interpreting n

t , a
value close to 1 indicates that most of the customers who
already purchased the candidate product have purchased items
the candidate customer has already purchased. The inverse
is also true. Thus, a threshold value for n

t was defined
such that all values below were classified as “insufficient”
for recommendation, and all values above were classified as
“sufficient” for recommendation.

This threshold is expected to vary for every dataset. Gen-
erally speaking, the threshold should be lower in datasets
with a sparser distribution of edges and greater in more
compact datasets. Additionally, datasets with many edges may
be “sparse” if they also have many nodes.

Thus, the threshold can be given by the equation 9
10−

4
x+y ,

where x represents the average amount of edges for a bottom
node, and y represents the average amount of edges for a top
node.

This threshold was set to have a maximum value of 9
10 .

Thus, for larger values of x+y, the candidate bottom node must
have a common neighbor with at least 90% of candidate-top
adjacent bottom nodes. The term − 4

x+y serves to compensate
for smaller datasets with fewer existing edges. The constant
4 was specifically chosen to accommodate smaller datasets
such as the Epinions dataset. After performing some initial
testing, the constant values 1, 2, and 3 all returned few or no
recommendations because the resultant threshold was too high.
The constant value 4 was the first number that consistently
produced recommendations.

However, this does not prevent cases where the product and
customer have sufficient similarity, but have insufficient data to
ascertain that level of sufficiency. For example, if the candidate
top node has only one bottom neighbor besides the candidate
bottom node, and the candidate bottom node has a common
top neighbor with the one candidate top-adjacent bottom node,
then n

t = 1. This will always yield a value above the maximum
threshold set; however, this cannot be definitively determined
based on a single data point. Therefore, we also required that
the original bottom node and bottom nodes adjacent to the
original top node have a number of common neighbors at least
equal to the average number of edges of a top node.

Once the unpaired nodes with insufficient data were filtered
out, we predicted the expected weight between the candidate
top node and the candidate bottom node. This was achieved
by returning to the bottom nodes that were neighbors of the
candidate top node. For the sake of clarity, these bottom
nodes were labeled as candidate top adjacent. We defined the
similarity of one of these bottom nodes and the candidate
bottom node by how closely the common neighbors were rated.
In other words, the similarity represented how closely the
preferences of two customers matched based on the products
both had bought. Naturally, a higher similarity means that two
customers have similar preferences, which in turn, affects the
prediction positively.

Similarity was determined by comparing all products rated
by both customers. For each common product, the algorithm
computed the difference between the ratings assigned by the

www.ijacsa.thesai.org 2 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

Fig. 3. Piecewise function for temporary similarity

candidate bottom and the overall average rating assigned by
all of its customers. The process was repeated for the other
bottom node. The differences were compared, and a temporary
similarity for each common top node between the candidate
top adjacent bottom node and the candidate bottom node was
calculated. This was based on the absolute difference and
whether the signs were the same. The piecewise function
in Fig. 3 depicts the exact method employed for calculating
temporary similarity (r1 and r2 denote the two differences; a
denotes the average rating of the common top node).

After iterating through each of the common products, the
temporary similarity values were averaged to determine the
overall similarity between the candidate bottom node and the
candidate top-neighboring bottom node.

For each bottom node neighboring the candidate top node,
the algorithm computed similarity with the candidate bottom
node using the aforementioned algorithm. The predicted rating
p was determined by the following formula:

k represents the number of top-adjacent bottom nodes that
share at least one common neighbor with the candidate bottom
node. si represents the similarity score for the ith product-
adjacent bottom node. ri is the analogue for rating.

p =
Σk

n=1si · ri
Σk

n=1si

IV. RESULTS

The algorithm was implemented in Python and tested
using two datasets, which were obtained from the Epinions
website [18] and the MovieLens website [19], respectively.
Both datasets can be modeled using weighted bipartite graphs
with weights ranging between 1 and 5. Users in the Epinions
dataset rated products, while users in the Movielens dataset
rated movies. In both datasets, a 1 represented an utterly
unsatisfactory response whereas a 5 represented an extremely
satisfactory response.

After reading in the dataset, 80% of the given edges were
used to train the algorithm (which provided the averages used
in later calculations for similarity) and the remaining 20% of
the edges were set aside to test the algorithm.

The algorithm was tested by first running through 20%
of edges initially set aside. The first part of the algorithm
determined whether the edge had sufficient data to make a
prediction. If the edge had sufficient data, the second part of
the algorithm was implemented to obtain a predicted weight.

The predicted weight was measured against the actual
weight and the percent error was determined. To determine

Fig. 4. Histogram of individual error of epinions recommendations

Fig. 5. Histogram of individual error of movielens recommendations

the overall percent error of the algorithm, the average of all
individual percent error values for each prediction was used.

The performance of the algorithm across both datasets is
detailed in Fig. 4 and 5 and summarized in Table 1.

TABLE I. PERCENT ERROR OF EPINIONS AND MOVIELENS DATASET

Dataset Percent Error
Epinions 13.8%
Movielens 14.4%

Comparing Fig. 4 and 5, we noted that the error in predic-
tions from the Epinions dataset was approximately unimodal,
centered between 6 and 18 percent. On the contrary, the error
in predictions from the Movielens dataset was much more
right-skewed with no clear center value exhibited. The overall
percent error was therefore calculated using the mean value in
the Epinions dataset and the median in the Movielens dataset.

Considering the two datasets, the overall percent error was
approximately 14% which improved upon the 20% error of
existing algorithms [20]. This attests to the strength of our
two-step approach and encourages further exploration into
similar link prediction algorithms. However, though this is a
promising finding, it must be noted that each recommendation
was “screened”; i.e., a recommendation was only made if
sufficient data existed in the first place.

V. DISCUSSION

The two-step algorithm performed fairly well; however,
outlier recommendations were notable, particularly with re-
spect to the Movielens dataset. Specifically, the Movielens
recommendations generated error values up to 300%. Further
analysis revealed that though both datasets employed a similar
1-5 rating system and modelled a type of product-customer
relationship, the most pronounced difference was that the

www.ijacsa.thesai.org 3 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

Movielens dataset contained nearly 10 times the number of
entries than the Epinions dataset. This size difference may
have led to greater diversity in opinions, which in turn may
necessitate a different approach to the parameters.

With respect to the size of datasets, this algorithm runs in
O(n3) time. Therefore, testing the algorithm on datasets con-
taining more than approximately 100, 000 entries is infeasible
given the unrealistic run time required. A significant number
of existing datasets contain millions of entries, which limits
the scope of datasets available for testing. However, given the
size of the Epinions and Movielens datasets, both datasets may
provide solid representations of a real-world product-customer
relationship. However, the high time complexity is ultimately
a limitation compared to other methods which were able to
operate on much larger datasets.

An alternative method for calculating n
t may also be

considered. In the current algorithm, n was defined as the
number of candidate bottom nodes and top-adjacent bottom
nodes that share at least one common top node. However,
instead of a single common top node, the two bottom nodes
may be required to share at least two common top nodes, three
common top nodes, or even more common top nodes.

However, it must be noted that adjusting this parameter
would likely necessitate changing the n

t threshold. Requiring a
greater number of common top nodes would decrease the value
of n and warrant lowering the n

t threshold correspondingly.
This makes sense as while there might be fewer pairs of
sufficient bottom nodes, there would ultimately be a relatively
equivalent amount of data to work with as the number of
common top nodes was increased.

Additionally, other conditions can be deliberated on in
which the n

t value may be deemed sufficient enough to
generate a prediction. Examining the threshold, potential edges
were sometimes rejected due to insufficient data. Although the
n
t value was high enough, the value t might have been too low
to instill confidence in making a prediction. However, instead
of rejecting those edges outright, the threshold might have been
adjusted so that it increased as the number of top-adjacent
nodes decreased.

Furthermore, different functions could be explored that
determine similarity between the candidate bottom node and
a top-adjacent bottom node. In a manner similar to how the
Pearson coefficient was calculated, the piecewise function in
Fig. 3 rewards the bottom nodes for rating their common
top nodes similarly. It does this by taking into account the
differences between how the two bottom nodes rated the
common top nodes, and how they typically rated a top node.
Matching signs (positive or negative) would contribute more
positively towards similarity. One could also explore the effect
of slightly modifying the constants of the functions.

Finally, this result continues to highlight the value of
intuitive implementation within the context of this problem
[21]. This follows a recent trend within the documentation of
the link prediction problem of simplifying the problem [22].
Whereas previous papers used more involved methods such
as neural networks or time series to generate predictions, this
algorithm obtains strong results with two intuitive steps: search
and calculation.

VI. CONCLUSION

In this paper, we presented a two-step approach to the
classical link recommendation problem. Extending ideas from
previous papers focused on sign prediction or unweighted
link prediction, the algorithm utilized the properties of the
weighted bipartite graph to determine two parameters: 1) the
most relevant edges that could appear based on pre-existing
edges, and 2) the weights of the edges based on the idea of
similarity.

In the first step, the algorithm considered whether the can-
didate bottom node had common neighbors with bottom nodes
adjacent to the candidate top node. The algorithm proceeded
to compared this number against the total number of bottom
nodes adjacent to the candidate top node. The algorithm then
further determined whether any edges considered sufficient
were a result of low sample size. The exact tuning parameters
were determined by the density and size of the datasets.

In the second step, the idea of similarity was used. Sim-
ilarity between the candidate bottom node and candidate top
adjacent bottom nodes was calculated by taking into account
how closely common neighbors were rated. The weight of the
edge between the candidate bottom node and the candidate top
was more heavily influenced by higher similarity pairings and
less influenced by lower similarity pairings.

This algorithm was tested using the Movielens and Epin-
ions datasets, and it performed well compared with existing
algorithms. Further work will refine and improve the results of
the proposed algorithm. In particular, future work can explore
means to optimize its performance on larger datasets as well as
how to fit the constant terms better for each particular datasets.

ACKNOWLEDGMENT

I would like to thank Dr. Zhiliang Xu, professor of Ap-
plied and Computational Mathematics and Statistics at the
University of Notre Dame, for introducing me to this topic and
providing invaluable guidance and support during the research.

REFERENCES

[1] R. C. Read and R. J. Wilson. An Atlas of Graphs (Mathematics).
Clarendon Press, 2005.

[2] J. A. Bondy and U. S. R. Murty. Graph Theory With Applications. Great
Britain: Macmillan Press, 1976.

[3] C. C. Aggarwal, ed. Social Network Data Analytics. New York, NY:
Springer, 2011.

[4] K. Kobysheva, N. Voinova, I. Nikiforova. ”Hybrid image recommen-
dation algorithm combining content and collaborative filtering ap-
proaches”. Procedia Computer Science. 2021.

[5] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang. ”LightGCN:
Simplifying and Powering Graph Convolution Network for Recommen-
dation”. SIGIR ’20: Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval.
2020.

[6] H. Zhu et al. ”Bilinear Graph Neural Network with Neighbor Interac-
tions” International Joint Conferences on Artificial Intelligence. 2020.

[7] P. Bedi, A. Gautam, S. Bansal, D. Bhatia. ”Weighted Bipartite Graph
Model for Recommender System Using Entropy Based Similarity Mea-
sure”. The International Symposium on Intelligent Systems Technologies
and Applications. 2018

[8] P. Kumar, D. Sharma. ”A potential energy and mutual information based
link prediction approach for bipartite networks”. Scientific Reports.
2020.

www.ijacsa.thesai.org 4 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 12, 2022

[9] O. Allali, C. Magnien, and M. Latapy. “Link prediction in bipartite
graphs using internal links and weighted projection”. 2011 IEEE Con-
ference on Computer Communications Workshops (INFOCOM WK-
SHPS). 2011.

[10] N. A. Rahman. A Course in Theoretical Statistics. Charles Griffin and
Company, 1968.

[11] Wikipedia, ”Collaborative filtering”.
https://en.wikipedia.org/wiki/Collaborative filtering, 2022.

[12] X. He et al. “Neural Collaborative Filtering”. WWW ’17: Proceedings
of the 26th International Conference on World Wide Web. Apr. 2017.

[13] R. Zhang et al. “Collaborative Filtering for Recommender Systems”.
2014 Second International Conference on Advanced Cloud and Big
Data. 2014, pp. 301–308.

[14] K. Sun, T. Qian, T. Chen, Y. Liang. Where to Go Next: Modeling Long-
and Short-Term User Preferences for Point-of-Interest Recommenda-
tion. Proceedings of the AAAI Conference on Artificial Intelligence.
2020.

[15] Z. Yu, J. Lian, A. Mahmoody, G. Liu, X. Xie. ”Adaptive User Modeling
with Long and Short-Term Preferences for Personalized Recommenda-
tion”. Proceedings of the Twenty-Eighth International Joint Conference

on Artificial Intelligence. 2020. pp 4213-4219.
[16] H. Ghaleb and M. Abdullah-Al-Wadud. “An Enhanced Similarity Mea-

sure for Collaborative Filtering-based Recommender Systems”. 2019
International Conference on Sustainable Technologies for Industry 4.0
(STI). 2019, pp. 1–4.

[17] Z. S. Patrous and S. Najafi. “Evaluating Prediction Accuracy for
Collaborative Filtering Algorithms in Recommender Systems”. PhD
thesis. Stockholm, Sweden: KTH Royal Institute of Technology, 2016.

[18] P. Massa. http://www.trustlet.org/downloaded epinions.html. 2003.
[19] F. M. Harper and J. A. Konstan. “The MovieLens Datasets: History

and Context”. ACM Transactions on Interactive Intelligent Systems 5.4.
2015.

[20] K. Goldberg et al. “Eigentaste: A Constant Time Collaborative Filtering
Algorithm”. Information Retrieval 4, 2004.

[21] H. Fu, P. Poirson, K. S. Lee, C. Wang. ”Revisiting Neighborhood-based
Link Prediction for Collaborative Filtering”. WWW ’22: Companion
Proceedings of the Web Conference 2022. 2022. pp. 1009-1018.

[22] S. Rendle, W. Krichene, L. Zhang, and J. Anderson. ”Neural Collab-
orative Filtering vs. Matrix Factorization Revisited”. Fourteenth ACM
Conference on Recommender Systems. 2020. pp 240–248.

www.ijacsa.thesai.org 5 | P a g e


