
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

251 | P a g e

www.ijacsa.thesai.org

A Review on Software Bug Localization Techniques

using a Motivational Example

Amr Mansour Mohsen1, Hesham Hassan2, Ramadan Moawad3, Soha Makady4

Computer Science Department, Faculty of Computers and Information Technology, Future University in Egypt, Cairo, Egypt1, 3

Computer Science Department, Faculty of Computers and Artificial Intelligence, Cairo University, Cairo, Egypt2, 4

Abstract—Software bug localization is an essential step within

the software maintenance activity, consuming about 70% of the

time and cost of the software development life cycle. Therefore,

the need to enhance the automation process of software bug

localization is important. This paper surveys various software

bug localization techniques. Furthermore, a running

motivational example is utilized throughout the paper. Such

motivational example illustrates the surveyed bug localization

techniques, while highlighting their pros and cons. The

motivational example utilizes different software artifacts that get

created throughout the software development lifecycle, and sheds

light on those software artifacts that remain poorly utilized

within existing bug localization techniques, regardless of the rich

wealth of knowledge embedded within them. This research thus

presents guidance on what artifacts should future bug

localization techniques focus, to enhance the accuracy of bug

localization, and speedup the software maintenance process.

Keywords—Bug localization; bug localization artifacts;

information retrieval; program spectrum

I. INTRODUCTION

Software maintenance is considered a continuous process
in software projects. However, software maintenance is one of
the most expensive stages in the software development life
cycle [1]. According to Erlikh [2], maintenance consumes 70%
and maybe up to 90% of the time of any product's life cycle. In
addition to that, Hunt et al. [3] presented that the maintenance
process takes above 50% of the software life cycle. Also,
Lientz and Swanson [4] claimed that software maintenance
spending from 20% to 70% of the efforts exerting on
maintenance. Software Maintenance is defined by Sommerville
[5] as "the modification of a software product after delivery to
correct faults, to improve performance or other attributes".
Software maintenance must be applied to improve the design,
implement enhancements, and interface with other legacy
software [6] to build a new one with some updates or solve
bugs.

A different view of software maintenance [7] defines it as
"error, flaw, or fault in a computer program or system that
produces unexpected results or behavior". Once the bug
occurs, the bug triaging and localization process is applied to
solve the bug [7]. The process involves: (i) understanding the
bug, (ii) assigning a maintainer, and (iii) bug localization
within the source code, and (iv) bug fixing. The bug
localization process is the action of determining the location
of the bug in the software program [8]. However, locating the
bug manually could be time consuming, cost consuming, and
infeasible [10].

Several techniques have been utilized to localize bugs
automatically, including: information retrieval [9], machine
learning. [10], program spectrum [11], and program slicing
[12]. Those techniques use different software artifacts like bug
reports, stack traces, source code files. However, such
techniques do not necessarily benefit from all the information
present within those artifacts. For instance, techniques that
utilize source code do not use the structural relationships
between source code elements to locate bugs, although such
information could improve the accuracy of bug localization.
Hence, a review is conducted to identify the different artifacts
utilized by bug localization techniques, and how well such
artifacts’ information gets utilized.

Furthermore, a motivational example is introduced. Within
such motivational example, we present a running example that
includes different software artifacts and a set of injected bugs.
We applied various existing bug localization techniques that
utilized subsets of the included artifacts, to locate the injected
bugs within such example, and assessed various bug
localization techniques on those bugs. What difference in this
review that the process of motivational example helps in
identifying the limitations of those bug localization. Besides it
gives perspective for better utilization of the different software
artifacts to increase the quality of the results of such bug
localization techniques.

The rest of this paper is structured as follows. Section II
will present the related works to software bug localization
techniques. Section III presents the motivational example and
its software artifacts. Three categories of bug localization
techniques: information retrieval, machine learning, and
program spectrum will be explained, and applied to the
motivation example within Sections IV, V, and VI
respectively. Section VII discusses the findings and concludes
the review.

II. RELATED WORK

A. Related Work on Information Retrieval

An information retrieval technique called (BLIA) bug
localization using integrated analysis [9] proposed by Klaus
Changsun et al. to illustrate the technique besides showing
limitations. Such work utilizes different software artifacts like
stack traces, comments, bug reports, and the history of code
modifications are features utilized in the work.

Klaus Changsun et al. evaluated their work on three open-
source projects: Aspect-oriented extension to Java (AspectJ),
Widget toolkit for Java (SWT), and Barcode image processing

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

252 | P a g e

www.ijacsa.thesai.org

library (Zxing). The number of bugs and source files that they
worked on are as follows: AspectJ (284 bugs, 5188 source
files), SWT (98 bugs, 738 source files), and Zxing (20 bugs,
391 source files). Five steps were followed to complete their
approach. First, an information retrieval technique is used for
measuring the similarity between the bug reports text and
source code files called rVSM [13]. Then the structured data
in the bug reports like bug description, bug summary and
other stated before in the bug report artifact are analyzed and
integrated with the above data. After that, if stack traces
appeared in the bug report, they would be analyzed to extract
the beneficial information to improve the results of retrieval.
Moreover, the historical data for code modifications which is
extracted from version control systems to predict the affected
files and methods. Finally, similarity measurements were
applied between the accumulative data from the above steps
and the source code files. The results will be ranked by scores
to the files of the code which is mainly expected to have the
error. The proposed approach resulted in an enhancement in
the mean precision over some other approaches like
BugLocator with 54%, BLUiR with 42%, and BRTracer with
30%, and Amalgam with 25%.

Wen et al. proposed an information retrieval technique to
localize bugs called FineLocator. FineLocator recommends
the position of bugs based on method level [14]. It means that
not only recommend the source file that contains bug but also
the method contains bug. The proposed architecture consists
of three main components are method extraction, method
expansion, and method retrieval. The method extraction
process is applied by extracting the methods names and their
bodies using the abstract syntax tree for the code.
Additionally, the timestamp for the methods is also extracted
from version history systems and the dependence information
for each method is also extracted. The first sub-component of
method expansion is the semantic similarity measurement
between methods. This step will be applied first by generating
a numeric vector for each method by generating a bag of
words and among all methods of the code. Then the scores are
calculated between every two methods to know the similarity
score between them. Then the call dependency is applied
among the class level and the method level to enhance the
similarity scores between methods. Besides, another score is
calculated which is temporal proximity measure which
calculates the difference in time of edit between the methods
as the methods that edited in time near each other will be more
probable to be near to each other. Then all the above scores
are combined to one value which is the method augmentation
value. They test their work on ArgoUML, Maven, Kylin, Ant,
and AspectJ and enhance the performance of the method level
by 20% MRR.

Yaojing et al. [15] proposed an approach with three main
considerations which are 1) the fix history relationships with
old bug reports, 2) word co-occurrence in the bug reports and
source files, 3) The long source files. The proposed model
consists of a supervised topic modeling technique called LDA
for classifying the old bug reports and bug reports with special
topic w. Then the word co-occurrence with words from bug
reports that appear in the bug reports. In addition to the
creation of the long source files and stack traces in bug

reports. They test their work on 10-fold cross-validation. Also,
the proposed model was applied to three main projects PDE
with 3900 bug reports and 2319 source files, the platform with
3954 bug reports and 3696 source files, and JDT with 6267
bug reports and 7153 source files.

Mills et al. [16] constructed an approach trying to enhance
the process of text retrieval bug localization by studying the
most important elements of a bug report. A genetic algorithm
is applied to find the optimal query to retrieve the true results
from source files. Yu Zhou et al. construct an approach [17]
that consists of three steps to classify bug reports: Classifying
the summary part of each bug into (high, middle, and low)
using a machine learner. It will help to increase the accuracy
of bug localization systems. Then some structured features are
used from the bug reports using a machine learner.

Additionally, the results are merged from the above steps
and other machine learning algorithms are used. The authors
manually classify the bug reports into six categories (BUG,
RFE, IMPR, DOC, REFAC, other). Additionally, a voting is
applied [18] between different developers to classify each bug
report to label them. They need to classify either the bug
report is a bug or not. They answer the question of that a given
report is a corrective bug or not by using different fields in the
bug report. Also, the proposed approach Combines text
mining and a data mining approach to solve the problem. The
approach evaluated using 3200 random reports from large
projects like Mozilla, Eclipse, JBoss, firefox, and
OpenFOAM. The Use Bugzilla as the bug tracking system.
They use the only reports that are tagged by resolved or closed
to analyze them. They consider multiple fields of the bug
report like (textual summary, severity, priority, component,
assignee, and reporter.

Alessandro Murgia et al… Tonelli [19] tried to make bug
tracking systems linked with CVS to enhance the bug fixing
and relations between different versions of the software and
the bugs and also the end-users. Each commit component
consists of (author when it was done, modified files, and
commit messages). The work was stressed on fixing-issue
commits. They manually labeled the data of commits to
training their classifier through one author and this is a
drawback as the author may do not know enough the data in
the commits then maybe the classifier is biased to their
labeling. Preprocessing steps from natural language
processing are used like stemming and stop words removal to
enhance the classifier. Additionally, some regular expressions
are used to filter commits that relate to specific bugs. The
features used to feed the classifier are the words extracted
from the commits. They applied their experiments to Netbeans
and Eclipse projects. The machine learning classifier got a
precision of 99.9% for classifying fix issue and non-fix issue
commits. The dataset used has not appeared as they didn't use
a benchmark dataset. Besides, they identify the main terms
used for bug-fixing issues like the fix, for, and bug. The
support vector machines are classified with accuracy up to
99.9%.

B. Related Work on Machine Learning

In [52], the authors produced an approach for localizing the
bugs automatically using ranking. The source code files are

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

253 | P a g e

www.ijacsa.thesai.org

ranked to the most probably that contains the bug reported.
Different features will be used as a bag of words used from
source code files and bug reports. The similarity that is
measured between bug reports and source code files using
cosine similarity. Also, the API information is used to enhance
the features. Another feature is collaborative filtering which is
applied between similar bug reports. Additionally, the class
names and the bug fixing frequency considered to be featured.
They apply their experiment on AspectJ, Eclipse UI, JDT,
SWT, and Tomcat. The average accuracy of 70% achieved all
over the top 10 ranked files.

In [20], an approach proposed using deep learning with
rVSM to enhance the process of bug localization. The revised
vector space model (rVSM) is utilized to set up the features
that are used in measuring the similarity between bug
documents and source code files. The DNN is used to measure
the relevancy of the term between the terms in bug reports and
source code files. Also, another type of feature rather than
terms is the metadata feature about source code files, it seems
like logs about the file. The inputs are text similarity, metadata
about source code files. They used DNN to learn all the
features. They applied on different datasets like AspectJ, Birt,
Eclipse UI, JDT, SWT, and Tomcat. They got an average
precision of 0.52 using the tomcat dataset.

Dongsun Kim, Sunghun Kim, and Andreas Zeller
proposed a model [21] with two phases to predict the files to
be fixed. The bug report in many cases as mentioned by the
authors may not contain sufficient information to help in
predicting the files needed to be fixed. A machine learning
approach is applied to classify the bug reports as predictable
which means contain useful information or not predictable.
The Features extracted from the bug reports are the summary,
platform, operating system, severity, priority, and reporter.
Then the model is trained using the specified machine learning
and tested. Then in phase two, the predictable bug reports to
be fixed are then entering a multi-class classification model to
know the exact files to be fixed. The recommended model was
evaluated using 70 percent of the dataset for training and 30
percent for testing. They achieved an average accuracy for
predicting files to be fixed with 70 percent.

ERIC et al. [22] proposed a neural networks technique
based on the code coverage data as a feature. This coverage
data comes from applying virtual test cases to each line in the
code. Then they feed them to a neural network. The technique
was tested on four different benchmark datasets (Siemens,
UNIX, Grep, and Gzip). They enhance the performance of
examining lines of code than [23].

In [24], [25] a deep learning model are applied in order to
localize bugs using source code files and bug reports. They
got accuracy of applying on different benchmark datasets.

Liang et al. [10], proposed a deep learning system to
localize bugs. Bug reports text terms are utilized besides the
terms of source code files. The works are evaluated on four
datasets (AspectJ, SWT, JDT, and Tomcat) with the following
MAP (0.439, 0.457, 0.482, and 0.561).

C. Related Work on Program Spectrum

Jeongho et al. proposed a spectrum-based technique that
localizes bugs based on the variables that are most probably
suspicious [11] to rank the lines most probably contain bugs.
A limitation discussed in this paper about previous work
considering program spectrum that if there is an else block as
an example and the block contains many lines. The outcome
of the ranking of lines contains code will not be accurate and
maybe the cause of the error be directly before the block. To
overcome the above limitation, the variable-based technique
proposed to keep track of mainly the information about the
suspicious variables and their coverage in the code. First, the
variable spectra are created by using the test cases as an input
in addition to the execution trace data for each variable. Then
the suspicious ratios are calculated by substituting the variable
spectra with the coefficient's similarity. The final step is
applied by rank the most variables that are most suspicious in
descending order to the bug solver. The work was evaluated
using the Exam score evaluation metric.

On the other side, Henrique et al. constructed a spectrum-
based fault localization tool called Jaguar which stands for
Java coverage fault localization ranking [26]. An architecture
was formulated for the tool consists of two main components
which are Jaguar Runner and Jaguar Viewer. The java runner
component gathers the data for control flow spectra and data
the data flow using different unit tests. After the data
collection steps applied, then a metric score calculated using
one of past known calculations Metric like [27]. After that, the
mixed scores between data and control flow matrices are
normalized for the suspicious parts of the code. Then the
jaguar viewer colors the suspicious entities of the code
according to their score with for different colors according to
their danger. They assessed t their work based on the
Defects4J dataset.

A new method that depends on the level of predicates not
all the lines of the code was constructed by B´ela that utilizing
the data from test cases and code coverage data [28]. This
special type of spectrum-based fault localization took into
consideration which methods will be hit in the run time of test
cases to use these data in ranking the most suspicious
methods. Additionally, different past research metrics for
ranking that used for the lines of code as stated in [29] will be
used at the method level. The pre-step to the algorithm is the
building of the coverage matrix between the methods and the
test cases. A graph will be generated from the coverage as the
nodes of the graph represent the methods and the tests. The
edges that will link different nodes with each other represent
that a node that may be a test case will hit a node which is a
method. Besides, the failed test cases will be marked in the
graph. The first step was to calculate the edge weights by
summing up the total methods that hit a failed test case to all
methods. Then the values will be updated by calculating the
average value of methods that cover failed test cases. The next
step is to aggregate the values of edges to the method nodes.
Finally, the nodes of methods values will be updated by
calculating the resulted values concerning the number of test
cases. They evaluated their work based on the Defects4J
dataset that includes four projects with good results of the
ranking.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

254 | P a g e

www.ijacsa.thesai.org

 Abubakar et al. proposed a graph-based technique for the
spectrum-based technique based on the execution of the test
cases [30]. The technique aims at localizing not only a single
bug in the system but also multiple bugs during execution.
The exploration of localizing multiple bugs due to dealing
only with the bug affects the accuracy of localization as stated
by the authors. The graph represented here is undirected where
the nodes of the graph represent the program statements and
the edges represent the execution between them. Degree
centrality is a graph centrality to measure the importance of a
node in a network which will indicate that the part of the code
will be more probable to contain an error. Another measure in
which closeness centrality was used for each node to know the
shortest path length between the node and other nodes. The
result of this step will affect the process of multiple bug
localization. The technique is evaluated on about 5 out of 7
programs from the Siemens dataset (Dset6, Dset6, Dset7,
Dset8, Dset9, and Dset11). In the experiment on single fault
localization, 99% of the faulty version can be found by
exploring only 80% of the code. In the two bug's version,
about 99% of bugs found after exploring 70% of the
executable code. They evaluated their work based on the exam
score evaluation and the incremental Developer Expense
(IDE) methods.

Program slicing according to [12] [31] is a debugging
technique that formulates a slice of code which are statements
that affect a variable. Static slicing is a type of program slicing
that generates slices depend on control dependencies in the
code. Another type of program slicing is dynamic slicing
which works on reducing the amount of space generated by
static slicing. Dynamic slicing creates the slice depend on the
variable values at run time to reduce the number of statements
of the program in the debugging. However, execution slicing
as stated by [32] applied data flow tests to formulate the slice
or a group of slices (dice) by detecting the most probable
statements from the tests to have the bug.

III. MOTIVATIONAL EXAMPLE

This section presents the software artifacts of the software
system explained within the motivational example. These
artifacts will be later the input the application of different bug
localization techniques in the following sections. The system
description will be discussed in subsection “A”, a subset of
system source code files will be presented in subsection “B”,
and a subset of the software bug reports are shown in section
“C”.

A. System Description

Consider a system for online shopping. The aim of the
system is to be utilized for online shopping. The customer can
browse some products, add them to his shopping cart then
process the order. The order will be finalized, and the total
amount will be calculated including taxes and the customer
payment choice. The customer chooses a payment method and
assigns it a profile as it is either cash, or by credit card, and the
customer can update such payment method later. The
administrator of the shop can add new computer products to
the inventory with specific data. The shop has two main types
of components: "DesktopLaptop” or “ComputerComponents".

Also, the administrator can update taxes for any product, and
products of the same type must be updated automatically.

Fig. 1 shows a partial class diagram the ‘Online Shopping
System’ (OSS) including 9 classes. Customer class holds the
customer’s information and operations does like adding a
newproduct to the shopping cart (addProductToShopping ()
method) and assign a payment (setPayementMethod ()
method). ShoppingCart class holds information about products
selected by the customer. Payment Method class is an
interface for the type of payment, and it has two subclasses
PaybyCredit and PaybyCache, with specific attributes for
payment. ComputerProduct class is a parent class that consists
of the basic information of any computer product of the
system. DesktopLaptop and ComputerComponents are child
classes of ComputerProduct class, each with specific
properties. Inventory class manages the inventory through the
addProduct () method for adding products with their quantity
to the system. A relationship exists between Customer and
ShoppingCart classes because each customer must have a
shopping cart to add products to it. The relationship exists
between Customer and PaymentMethod since each customer
must decide his payment method for online shopping.
ShoppingCart and Inventory classes are in an aggregation
relationship with ComputerProduct class, as both classes
consist of computer products. Such software system has a set
of software artifacts that are presented within the following
subsections.

B. Motivational Example Source Code Files

A subset of source code files for the online shopping
system is presented in this section. The source code for the
“Shopping Cart” class is presented in Fig. 2. The source code
for the “Inventory” class is shown in Fig. 3.

Fig. 1. A Partial Class Diagram of the Online Shopping System (OSS)

Fig. 2. "ShoppingCart .java" Source Code.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

255 | P a g e

www.ijacsa.thesai.org

Fig. 3. "Inventory.java" Source Code File from File from the use Case

Example.

C. Motivational Example Bug Reports

A bug report is a terminology that refers to documenting
and describing software bugs that appeared while running a
software [33]. As stated by [33] a bug report can be submitted
by different stakeholders related to the software project such
as the tester or the developer or user to the system. They
posted their bug reports on a bug tracking system [33] which
is used mainly for open-source projects to track different bug-
report changes, assigned to solve the bug, or any other
discussions.

Four bug reports, for the used motivational scenario, are
presented in this section. Three bug reports have the status
“resolved fixed” and one new bug report has the status “New”.

TABLE I. BUG REPORT 1

Bug Report 1

Bug ID 1102

Bug Summary The payment method didn't change

Bug Status Resolved Fixed

Product Normal user

Reported Online Marketing Application

Version 5/5/2020

Bug Description

I purchased pc and two other products then when I

proceed to the order, they give me a note the payment
will be on the cache given; However, I updated my

payment method to pay by credit before.

Stack Trace -

Fixed Files Customer.java

Fixed Time 7/5/2020

Test Cases -

Bug report 1, shown in Table I, shows a user who had
previously changed his payment method from using cash to
using the credit card. When making a new purchase
afterwards, the system still displayed that his payment method
will be using cash. Bug report 2, shown in Table II, has the
status New” as it will be fixed by our example. The bug
appears with the user when adding a new product to purchase

to his cart, the program crashed and stopped. Bug report 3
shown in Table III presented a solved bug by adding a new
product to the store. When the user of the system adds a new
product to the system, a crash occurred. The bug was solved
by the maintainers and the source code file “Inventory. Java”.
Bug report 4 shown in Table IV presented a solved bug with
getting an invoice for a purchasing process. It was found that
the tax percent is calculated incorrectly however it is
calculated before. The solution to the bug is found in the
source file “ComputerComponents. Java”.

Starting from Section III to Section V, different bug
localization techniques will be discussed and applied to the
motivational scenario showing how those techniques work and
their limitations.

TABLE II. BUG REPORT 2

Bug Report 2

Bug ID 1104

Bug Summary Adding a PC to purchase cause an error

Bug Status New

Product Online Marketing Application

Reported 5/12/2020

Version 1.2

Bug Description

When trying to add a PC to purchase and browse

some other components and added them then adding
another pc to the cart it is crashed.

Stack Trace -

Fixed Files -

Fixed Time -

Test Cases -

TABLE III. BUG REPORT 3

Bug Report 3

Bug ID 1201

Bug Summary Error with adding a new product to the store

Bug Status Resolved Fixed

Product Online Marketing Application

Reported 5/5/2020

Version 1.1

Bug

Description

When I trying to add new product to the store, the

program crashed given the following error

Stack Trace

Exception in thread "main" java.lang.OutOfMemoryError:
GC overhead limit exceeded at

java.util.LinkedList.linkLast(LinkedList.java:142)

at java.util.LinkedList.add(LinkedList.java:338)
at Inventory.addProduct(Inventory.java:28)

at project. main(project.java:15)

Fixed Files Inventory.java

Fixed Time 5/9/2020

Test Cases 1201

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

256 | P a g e

www.ijacsa.thesai.org

TABLE IV. BUG REPORT 4

Bug Report 4

Bug ID 1325

Bug Summary Error with getting an invoice

Bug Status Resolved Fixed

Product Online Marketing Application

Reported 5/5/2020

Version 1.1

Bug Description
When the transaction is going to be fired, it calculates the

total invoice wrong with a problem in taxes percent

Stack Trace -

Fixed Files ComputerComponents.java

Fixed Time 7/5/2020

Test Cases -

IV. INFORMATION RETRIEVAL TECHNIQUES

Information retrieval (IR) [34] is finding or extracting
beneficial data that may be documents of unstructured nature
like text that answers information needs. In the bug
localization process, the source code files, bug reports either
old or new, stack traces artifacts [35] will be the unstructured
text of the system being analyzed. The unstructured data like
the natural text in the bug reports, stack traces and source code
file terms. This data needs to be retrieved and ranked using
specific queries to retrieve the file contains bug [35]. The
information retrieval passes through steps from preprocessing
and preparing different text sources to similarity measures.

A. Case Study IR Experiment

In this subsection, three experiments will be applied. First,
historical similar bug reports artifact will be utilized. Then
source code artifact will be utilized in the second experiment.
Finally, Similar Bug Reports Experiment applied.

1) Similar bug reports application: The first bug

localization technique to apply, is an information retrieval

technique that uses similarity scores across bugs. Klaus

Changsun et al. [9] proposed a technique to localize bugs

using an information retrieval technique. The assumption of

their work depends on that if there is a new bug report similar

in its attributes to one of the old bug reports then the fixed

source code file by this old bug report will be the

recommended source code file to be fixed with the new bug

report. Such technique was applied to calculate similarity

scores between the three resolved bug reports and the newly

added bug report within the presented motivational example.

The first step is to convert each bug report to a text vector as

shown in Table V.

Then the Term Frequency Inverse Document Frequency
(TF-IDF) measure [36] will be applied to the text of the bug
reports. The calculated similarity measure between the new
bug report (i.e., bug report 2) and each of the old bug reports
resulted in the following scores presented in Table VI: bug

report 1 is 0.2, bug report 3 is 0.16, and bug report 4 is 0.11.
The experiment resulted in that bug report 1 is the most
similar bug report to the new bug report. It means that the
fixed file within bug report 1 (Customer .java) in the old bug
report 1 is the file that contains the bug.

To evaluate the presented experiment, the new bug report
needed to be fixed manually to know the files that contain the
bug. The result of the manual investigation that the source
code file "ShoppingCart.java”. However, experiment 1
resulted in that the “Customer.java” is the file that contains the
bug which means that the experiment 1 result is not true.

To understand why the applied bug localization technique
failed to locate the source code file that contained the bug, a
closer look is needed at the used bug reports. As per the bug’s
description in Section 3.2, bug report 1 was fixed by a change
in Customer.java, whereas bug report 3 was fixed by a change
in Inventory.java. The similarity score between bug report 1
and the new bug report was higher than the similarity score
between bug report 3 and the new bug report. Hence, the
applied bug localization technique suggested fixing the same
file that was fixed previously by bug report 1. Hence, the
applied technique could lead to a wrong location based on the
text used within the newly opened bug. Such text is usually
written by an end user, who has no knowledge of the inner
details of the source code. Hence, relying on the text of the
bug report solely is one main drawback of that bug
localization technique. Another drawback is the complete
reliance of the technique on the presence of historically fixed
bug reports to recommend resolutions for the new bugs. Such
assumption is not realistic when developing new applications
that do not have a repository of previously fixed bug reports.

TABLE V. TEXT VECTORS OF THE BUG REPORTS OF OSS SYSTEM

Bug Report Bug Report Text Vector

Bug Report 1

[Payment, Method, change, Normal, User, Application,

purchased, two, products, proceed, order, they, give, note,
payment, cache, given, updated, method, pay, credit]

Bug Report 2
(NEW)

[Adding, PC, purchase, cause, error, Online, Marketing,

Application, trying, add, browse, some, components,

added, adding, another, pc, cart, crashed

Bug Report 3

[Error, with, new, product, store, Online, Application,
store, program, given, following, Exception, thread, main,

javalangOutOfMemoryError, GC, overhead, limit,

exceeded, at,
javautilLinkedListlinkLastLinkedListjava142,

javautilLinkedListaddLinkedListjava338,

InventoryaddProductInventoryjava28, project,
mainprojectjava15Inventoryjava]

Bug Report 4

[Error, new, product, store, Resolved, Fixed, transaction,

going, fired, calculates, total, invoice, wrong, problem,

taxes, percent]

TABLE VI. SIMILARITY SCORES BETWEEN THE NEW AND OLD REPORTS

Old Bug Report Similarity Score with the new bug report

Old Bug Report 1 0.20

Old Bug Report 3 0.16

Old Bug Report 4 0.11

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

257 | P a g e

www.ijacsa.thesai.org

2) Source code experiment: In the second experiment,

Similarity Scores between the new Bug report and the source

code files are applied [9]. As experiment 1, similarity scores

will be calculated. The difference here that text similarity will

be applied between the new bug report and project source

code files with the TF-IDF technique.

The number of source code files is nine files as listed in
Table VII with their text vectors. In the same table, the
similarity score between these sources code files and the new
bug report is calculated. The similarity results must be sorted
in descending order. But in this case, there are no common
words between the new bug report and all source files.

TABLE VII. TEXT VECTORS OF THE BUG REPORTS WITH SOURCE FILES

TEXT OF OSS SYSTEM

Source Code

Files (.java)
Source File Text Vector

Similarity

Score

ShoppingCart

[ShoppingCart, Computer, comp, counter,

Computer, addNewGoodsComputer,

compcounter, getGoods,

xthiscompigetName, compigetPricen]

0

Inventory

[Inventory, inventoryName, Computer,

comp, counter, Inventory, inventoryName,

addProductComputer, comp, add]

0

Customer

[Customer, cName, cNumber,

PaymentMethod, payment, ShoppingCart,

PaybyCahce,

addProductToShoppingComputer,

shaddNewGoodsc,

setPaymentPaymentMethod, thispayment,

getPaymentMethod]

0

Computer

[Computer, getName, double, getPrice,

updatePricedouble, price, getCode,

getStatus, printTaxes, setTaxesdouble, taxes]

0

ComputerComp

onents

[ComputerComponents, implements,

Computer, compName, code, price, status,

pName, Description, taxes,

ComputerComponentsString,

thiscompName, code, price, thispName,

Description, taxes, Override, getName,

return, getPrice, getCode, getStatus, status,

printTaxes, setTaxesdouble,

updatePricedouble]

0

DesktopLaptop

[DesktopLaptop, implements, Computer,

compName, code, price, status, HDD, RAM,

generation, screenSize, taxes,

DesktopLaptopString, compName, code,

price, HDD, RAM, generation, screenSize,

taxes, status, Offered, Override, getName,

return, getPrice, getCode, getStatus,

printTaxes, void, setTaxesdouble,

updatePricedouble]

0

PaybyCahce

[public, class, PayByCredit, implements,

PaymentMethod, Override, String,

getMethod, return, enter, card, number, pass]

0

PayByCredit

[PaybyCahce, implements,

PaymentMethod, Override, getMethod, Pay,

cache]

0

PaymentMetho

d
[PaymentMethod, getMethod] 0

Discussion: As per the above similarity calculation, the
text of the bug report does not match the naming conventions
used within source files. Hence, relying on similarity scores
analysis between the source code and bug reports would not
result in locating bugs. The absence of such similarity is
attributed to the constructing of those bug reports by a normal
user who uses terms not related to the developer terms used
within the source code files. So, the bug localization system in
this state will not resulted in a true source code file. An
example comparing the bug report called "NEW BUG
REPORT 1" text to source file text as an example
"ShoppingCart.java”. The similarity scores between all the
source code files and the new bug report equal to zero as no
common words between them. After computing the same way
with all source files, the new bug report got zero similarity
score with all of them.

3) Stack traces: Stack traces or execution traces represent

the method calls during the execution of the application. When

an error occurs during the execution and the program stops

working or works in an unexpected way, the current state of

the stack trace represents the method calls till the stopping

point.

The presence of stack traces, as a part of the bug report,
will enhance the accuracy of finding the source code file that
contains the error [37]. From an information retrieval
perspective, having a stack trace as a part of the bug report
will result in higher similarity score between the bug reports
and the source code files. Furthermore, stack traces result in
faster manual debugging by the developers [38]. For example,
Fig. 4 shows represents a bug from eclipse [39] how the file
names involved in the error and the corresponding line
number are shown appear or the line that contains an error are
shown in Fig. 4 that line 13 contains the error in the source file
inventory.java. Schroter et al. apply [40] a study on 3940 bug
reports. 2,321 bugs reports observed that they are fixed
contains stack traces with 60 %. Also, the mean lifetime of the
bugs include stack traces is 2.73 Days compared with the
remaining bug report does not contain stack traces with mean
4.13 days. So, in our case, bug report 2 with status new will
not be solved using stack traces as the bug report does not
contain it.

Fig. 4. Sample Stack Trace Extracted from ECLIPSE Bug.

V. MACHINE LEARNING TECHNIQUES

Machine learning is a branch of computational algorithms
that are designed to emulate human intelligence by learning
from the surrounding environment [41]. Different bug
localization techniques utilized different machine learning
techniques to localize bugs automatically.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

258 | P a g e

www.ijacsa.thesai.org

A. Case Study Experiment using Machine Learning

The most important step in applying a machine learning
algorithm is the preparation of the features. For the
motivational scenario, the features will be similarity scores
between each old bug report and all the source code files.
Each record or row of features represents this similarity scores
with the source code files as presented in the following
Table IX. Three bug reports will be utilized from the
motivational example. Two of them will be used for training
and one for testing. Their calculated similarity scores with the
source code files to be the features. Also, the result of these
features which the source file contains the error with each bug
report appeared in the right cell of the row. As these bug
reports are solved before and the files contains solved error
already known. After preparing the training set with these two
bug reports, it will be fed to the machine learning algorithm.
Then the testing phase started by preparing the features for a
bug report that we know its result before. The new bug report
is prepared with its specific features. Then the machine
learning algorithm will decide its decision which appeared in
the last row in Table VIII. As shown in Table VIII, we have
only two training examples with only two results. After
running a machine learning algorithm, with feeding the
training examples to the machine learning. Then feeding the
testing example as to tell us the source code file containing the
error. The result will be "ComputerComponents .java".

The file that contains the bug for new bug report 4 will be
“ComputerComponents.java”. That means the result of the
experiment is not true. Different reasons lead to such a wrong
location of the bug. First, machine learning needs a huge
training set to learn, otherwise it will not work properly [42].
Second, if the project has no old, solved bugs, machine
learning will not be an applicable technique. In such a case,
the only alternative would be to take training data from a
different software project, like projects similar in nature to
make use of their old bug reports. Some challenges will face
this work: the language of the project may be different, the
type of project as it may be desktop, web application or other.

TABLE VIII. FEATURES PREPARATION FOR MACHINE LEARNING

ALGORITHM BUG REPORT

Training

example

Feature 1

(ShoppingCart)

Feature 2

(Inventory)

Feature

N

Result

(Source

File)

Training

example 1
(Bug report 1)

0.11 0.1 ….. Customer

Training

example 2

(Bug report 3)

0.3 0.1 0.3 Inventory

Testing

example (Bug

Report 4)

0.1 0.5 0.1 ?

VI. PROGRAM SPECTRUM TECHNIQUES

Program spectra refer to the program entities that are
covered during the execution of the program [29], [43]. Also,
the spectrum based get some information executed from the
programs as the test cases. There are several types of spectra
[29] used in the spectra based fault localization as (program

statements, variables, execution trace, execution path, path
profile, execution profile, Number of failed test cases cover a
statement and not, number of successful test cases that cover a
statement and not, the total number of test cases that cover a
statement, the total number of test cases that do not cover a
statement, the total number of successful test cases, total
number of failed test cases and the test case number. Such
technique demands the presence of test cases, or the presence
of correct program execution traces, to be applied.
Furthermore, the technique demands having a large set of test
cases to cover the lines of code that most probably contains an
error.

A. Case Study Experiment using Program Spectrum

The main inputs to this experiment will be the test cases.
Some operations must be applied to test cases to know the
lines of code that will most probably have the error. Two test
cases related to the motivational example are shown in
Tables IX and X. When a new bug is reported, the output of
the test cases (i.e., the spectrum) can be utilized with some
equations to find the bug [44]. The source code file that the
test cases will run on is presented in Fig. 2.

TABLE IX. TEST CASE 1 FOR OSS SYSTEM

Test Case 1

Test Case Number 1

Test Case Inputs Create Object of Inventory

Expected Output Object Created without error

Actual Output Created Successfully

Test Case Result Success

TABLE X. TEST CASE 2 FOR OSS SYSTEM

Test Case 2

Test Case Number 2

Test Case Inputs Add new Product to Inventory

Expected Output Added Successfully

Actual Output Added Successfully

Test Case Result Success

From the test cases and different inputs, test case number
(1) will execute the following lines 6 to 13. And test case
number (2) will cover 14 and 16. Then the number of records
will be counted for each line to find the bug. The technique
applied for spectrum depends on the statistical equation for
every line of code covered by test cases. In Table XI, different
program spectrum listed in section 2.2.3 as number of
successful test cases that execute lines of code are presented
with the occurrence of each spectrum with each line of code
that are in the vertical rows. The hit of a spectra with a line of
code represented by 1 and 0 for nit hitting. The criteria for
each line like the number of successful test cases covered, the
number of failed test cases, overall test cases in each line. We
will consider that we have only two test cases for our bug
localization task. Test case one presented in the above figure,
it will hit the class source code from line 6 to 13 and the result
of this test cases is a success. Test case two will hit the lines of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

259 | P a g e

www.ijacsa.thesai.org

code from 14 to 16. Consider Line 6 as shown in the table for
illustration, we must calculate different spectrum for each line
from the resulted test case as follows: Number of success test
cases (NCS)covered line 6 will be test case number (1) only so
the total will be one. The number of failed test cases (NCF)
covered in line 6 will be equal to zero as our test cases here
are only two and both are successful. The number of test cases
covers line 6 is equal to one as we list it before. Several test
cases not covered in line 6 are equal to one which is test case
number (2). The number of failed test cases not covered
(NUF) line 6 is equal to zero as we have only two successful
test cases. The last spectrum is the Number of Success Test
Cases Not Covered which is one as test case 2 is a successful
test case not covered line 6. The total number of failed test
cases (NF) =0. The above steps will be calculated to all lines
of the code as shown in the table. Then an equation is applied
to calculate different spectra in one number for all lines of
code then we have to sort these scores in descending order.
The highest score will represent the line that contains the
error.

The equation performed here that utilized different
spectrum used from [44] presented in the (1):

𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(𝑂𝑐ℎ𝑖𝑎𝑖) =
𝑁𝐶𝐹

√𝑁𝐹∗(𝑁𝐶𝐹+𝑁𝐶𝑆)
 (1)

The score to line 6 will be equal to NCF = 0, NF=0,
NCS=1 by substituting, the result will equal to zero. The
above process will be repeated for every line of code then
sorted but here all scores equal to zero.

The main limitation of program spectrum is that the many
test cases need to be analyzed, to find the bug then many test
cases to be tested to find a true solution which affects the time
and performance of bug localization process [45].
Unfortunately, the results are equal, also we need to compute
many test cases that affect the time to find the source code file
contains bug [45].

TABLE XI. DIFFERENT PROGRAM SPECTRA FOR A SOURCE CODE FILE FOR

OSS SYSTEM

Different

Program

Spectra

Code Line

6 7 8 9 10 11 12 13 14 15

Success Test

Cases Covered
1 1 1 1 1 1 1 1 1 1

Failed Test

Cases Covered
0 0 0 0 0 0 0 0 0 0

Test Cases
Covered

1 1 1 1 1 1 1 1 1 1

Test Cases not

Covered
1 1 1 1 1 1 1 1 1 1

Failed Test
Cases not

Covered

0 0 0 0 0 0 0 0 0 0

Success Test
Cases not

Covered

1 1 1 1 1 1 1 1 1 1

Total Score 0 0 0 0 0 0 0 0 0 0

VII. DISCUSSION AND CONCLUSION

This paper presents a review to explore different software
bug localization techniques. The exploration done through
presenting different past works. Additionally, a motivational
example is applied to show how these techniques are working
presenting their limitations; also, the software artifacts that are
utilized and which are not utilized.

Two main findings are presented: (1) Some software
artifacts are not properly utilized in the process of software
bug localization. (2) The current software bug localization
techniques suffer from some limitations. We elaborate on
those findings as follows.

Finding 1: Many bug localization systems use information
from both bug reports and source files. Previous research [10],
[46], [47], [48], [49], [50], [51], [15] utilized the natural text
of the bug reports with terms of the source files. Method
names and the abstract syntax trees are used from source code
files [10]. However, the changes that applied to each source
code file among different from version control systems used
by [49], [15]. Also, application interface descriptions text has
been utilized by [49] , [50]. Test cases are also used where
successful test cases and failing test cases are used to find the
most probable error [22] [11] [26].

However, several artifacts are not utilized in the bug
localization process. They are software requirements, use
cases, classes’ relationships within the source code, software
architecture, and different comments between developers or
written discussion between them of old bug reports that may
affect the process of localization mentioned. If we have bug
report text data as stated above. Text data can be linked to
requirements text, which can be then, shorten the search with
source code files to specific files of a definite module.

Finding 2: Different software bug localization techniques
are applied in the process of bug localization (Information
Retrieval, Machine Learning, and Program spectrum). These
techniques suffer from some limitations and this appeared
from applying the motivational example.

Information retrieval techniques suffer from the problem
of the dependence on natural unstructured text. Those
techniques depend on matching the new bug report text to any
of the old bug reports, and hence recommending the fixed file
of the old bug report. But such technique may not take us to
the true old bug report depending on how the bug report is
written, which varies greatly between developers and end
users of the system. This issue appears as well if we attempt to
measure the text similarities between the new bug report and
the source code files. Also, the lack of old bug reports for the
same project may prohibit applying the technique altogether.

Machine Learning techniques will not work properly in
two situations. In the first situation, that we train the bug
localization system on some software projects, and the new
bug appears in a different project. Hence, the bug localization
system will not give the exact source code that contains the
error. The past works [46] [47] [48] [49] [11] are applied on
one of the datasets and tested on the same dataset. The second
situation when we do not have enough training examples to
train the machine learning algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

260 | P a g e

www.ijacsa.thesai.org

Test case-based techniques as program spectrum and
program slicing are depending on test cases to localize bugs.
The main limitation comes with performance and time to test
the whole system to find the bug. Also, the huge number of
test cases is to be examined to find the bug.

Accordingly, we anticipate that by utilizing additional
software artifacts, and additional information from previously
utilized software artifacts, we can improve the accuracy of bug
localization, and extend its applicability even to projects that
do not have historical information about the source code of the
fixed bugs.

REFERENCES

[1] S. M. H. Dehaghani and N. Hajrahimi, "Which factors affect software
projects maintenance cost more?," Acta Informatica Medica, vol. 21, no.
1, p. 63, 2013.

[2] L. Erlikh, "Leveraging Legacy System Dollars for E-Business," IT
Professional , vol. 2, no. 3, pp. 17-23, 2000.

[3] H. B., T. B. and M. K., "Software Maintenance Implications on Cost and
Schedule," in 2008 IEEE Aerospace Conference, 2008.

[4] B. P. Lientz and E. B. Swanson, Software maintenance management,
Addison-Wesley Longman Publishing Co., 1980.

[5] I. Sommerville, Software Engineering, Addison-wesley, 2007.

[6] A. Kumar and B. S. Gill, "Maintenance vs. reengineering software
systems," Global Journal of Computer Science and Technology, vol. 11,
no. 23, 2012.

[7] D. Cubrani´c, "Automatic bug triage using text categorization," in the
International Conference on Software Engineering & Knowledge
Engineering, Alberta, 2004.

[8] W. W. Eric, G. Ruizhi, L. Yihao, R. Abreu and W. Franz, "A survey on
software fault localization," IEEE Transactions on Software
Engineering, pp. 707-740, 2016.

[9] K. Youm, J. Ahn and E. Lee, "Improved bug localization based on code
change histories and bug reports," Information and Software
Technology, pp. 177-192, 2017.

[10] S. LU, W. MEILIN and Y. YUXING, "Deep Learning With Customized
Abstract Syntax Tree for Bug Localization," IEEE Access 7 , vol. 7, pp.
116309-116320, 2019.

[11] K. Jeongho, K. Jindae and L. Eunseok, "VFL: Variable-based fault
localization," Information and Software Technology, p. 179–191, 2019.

[12] T. Frank, " A survey of program slicing techniques," Journal of
Programming Languages, vol. 3, pp. 121-189, 1995.

[13] J. Zhou, H. Zhang and D. Lo., "Where should the bugs be fixed? more
accurate information retrieval-based bug localization based on bug
reports," in Software Engineering (ICSE), 2012 34th International
Conference on, IEEE, 2012.

[14] Z. Wen, L. Ziqiang, W. Qing and L. Juan, "FineLocator: A novel
approach to method-level fine-grained bug localization by query
expansion," Information and Software Technology, pp. 1-15, 2019.

[15] W. Yaojing, Y. Yuan, T. Hanghang, X. Huo, L. Ming, X. Feng and L.
Jian, "Bug Localization via Supervised Topic Modeling," in 2018 IEEE
International Conference on Data Mining (ICDM)., 2018.

[16] C. Mills, P. Jevgenija, P. Esteban, B. Gabriele and H. Sonia, "Are Bug
Reports Enough for Text Retrieval-based Bug Localization," in 2018
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2018.

[17] Y. Zhou, Y. Tong, R. Gu and H. Gall, "Combining text mining and data
mining for bug report classification," Journal of Software: Evolution and
Process, vol. 228, no. 3, pp. 150-176, 2016.

[18] M. D'Ambros, M. Lanza and R. Robbes, "An extensive comparison of
bug prediction approaches," in Mining Software Repositories (MSR),
2010 7th IEEE Working Conference on. IEEE, 2010.

[19] A. Murgia, G. Concas and M. Marchesi, "A machine learning approach
for text categorization of fixing-issue commits on CVS," in the 2010
ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement (p. 6). ACM., 2010.

[20] A. N. Lam, A. T. Nguyen, H. A. Nguyen and T. N. Nguyen,
"Combining deep learning with information retrieval to localize buggy
files for bug reports," in 2015 30th IEEE/ACM International Conference
on Automated Software Engineering, 2015.

[21] D. Kim, Y. Tao, S. Kim and A. Zeller, "Where should we fix this bug? a
two-phase recommendation model," IEEE transactions on software
Engineering, vol. 39, no. 11, pp. 1597-1610, 2013.

[22] W. ERIC and Q. YU, "BP neural network-based effective fault
localization," International Journal of Software Engineering and
Knowledge Engineering, vol. 19, no. 4, pp. 573-593, 2009.

[23] J. A. Jones and M. J. Harrold, "Empirical evaluation of the tarantula
automatic fault-localization," in the 20th IEEE/ACM international
Conference on Automated software engineering, 2005.

[24] Z. Ziye, L. Yun, W. Yu, T. Hanghang and W. Yaojing, "A deep
multimodal model for bug localization," Data Mining and Knowledge
Discovery, vol. 35, no. 4, pp. 1369-1392, 2021.

[25] B. Qi, S. Hailong, Y. Wei, Z. Hongyu and M. Xiangxin, "DreamLoc: A
Deep Relevance Matching-Based Framework for bug Localization,"
IEEE Transactions on Reliability , 2021.

[26] R. Henrique, d. A. Roberto, C. Marcos, S. Higor and K. Fabio, "Jaguar:
a spectrum-based fault localization tool for real-world software," in
2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST), 2018.

[27] A. Rui, Z. Peter, G. Rob and G. Arjan, "A practical evaluation of
spectrum-based fault localization," The Journal of Systems and
Software, p. 1780–1792, 2009.

[28] V. B´ela, "NFL: Neighbor-Based Fault Localization Technique," in
IEEE 1st International Workshop on Intelligent Bug Fixing (IBF), 2019.

[29] S. Higor, C. Marcos and K. Fabio, "Spectrum-based Software Fault
Localization: A Survey of Techniques, Advances, and Challenges,"
arXiv preprint arXiv:1607.04347, 2016.

[30] Z. Abubakar, P. ,. Sai and Y. C. Chun, "Simultaneous localization of
software faults based on complex network theory," IEEE Access, pp.
23990-24002, 2018.

[31] M. Weiser, "Programmers use slices when debugging," Communications
of the ACM, vol. 25, no. 7, pp. 446-452, 1982.

[32] W. Eric and D. Vidroha, "A Survey of Software Fault Localization,"
Department of Computer Science, University of Texas at Dallas, Tech.
Rep. UTDCS-45 9, Texas, 2009.

[33] J. Zhang, X. Wang, D. Hao, B. Xie, L. Zhang and H. Mei, "A survey on
bug-report analysis," Science China Information Sciences, vol. 58, no. 2,
pp. 1-24, 2015.

[34] U. Cambridge, Introduction to information retrieval, 2009.

[35] S. Wang and D. Lo, "Amalgam+: Composing rich information sources
for accurate bug localization," Journal of Software: Evolution and
Process, pp. 921-942, 2016.

[36] A. Aizawa, "An information-theoretic perspective of tf--idf measures,"
Information Processing & Management, vol. 39, no. 1, pp. 45-65, 2003.

[37] W. Shaowei and L. David, "Amalgam+: Composing rich information
sources for accurate bug localization," Journal of Software: Evolution
and Process , vol. 28, p. 921–942, 2016.

[38] N. Bettenburg, R. Premraj, T. Zimmermann and S. Kim, "Extracting
structural information from bug reports," in The 2008 international
working conference on Mining software repositories, 2008.

[39] S. Adrian, B. Nicolas and P. Rahul, "Do Stack Traces Help Developers
Fix Bugs?," in 2010 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010), 2010.

[40] S. Adrian, B. Nicolas and P. Rahul, "Do stack traces help developers fix
bugs?," in 2010 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010), 2010.

[41] M. Sayed, R. K. Salem and A. E. Khder, "A Survey of Arabic Text
Classification Approaches," International Journal of Computer
Applications in Technology, vol. 95, no. 3, pp. 236-251, 2019.

[42] K. J. Haider and Z. K. Rafiqul, "Methods to Avoid over-Fitting and
Under-Fitting in Supervised Machine Learning (Comparative Study),"
Computer Science, Communication & Instrumentation Devices, pp. 163-
172, 2015.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

261 | P a g e

www.ijacsa.thesai.org

[43] T. Reps, T. Ball, M. Das and J. Larus, Software Engineering—
Esec/Fse'97, Springer, 1997.

[44] A. Rui, Z. Peter and J. Arjan, "An evaluation of similarity coefficients
for software fault localization," in 12th Pacific Rim International
Symposium on Dependable Computing (PRDC'06), 2006.

[45] V. László and B. Árpád, "Test suite reduction for fault detection and
localization: A combined approach.," in 014 Software Evolution Week-
IEEE Conference on Software Maintenance, Reengineering, and
Reverse Engineering , 2014.

[46] H. Xuan, T. Ferdian, L. Ming, L. David and S. Shu-Ting, "Deep
Transfer Bug Localization," IEEE Transactions on Software
Engineering, pp. 1-12, 2019.

[47] X. Yan, K. Jacky, M. Qing and B. Kwabena, "Bug Localization with
Semantic and Structural Features using Convolutional Neural Network
and Cascade Forest," in of the 22nd International Conference on
Evaluation and Assessment in Software Engineering 2018. ACM, 2018.

[48] H. Xuan, L. Ming and Z. Zhi-Hua, "Learning Unified Features from
Natural and Programming Languages for Locating Buggy Source Code,"
in IJCAI, 2016.

[49] Y. Xin, B. Razvan and L. Chang, "Learning to Rank Relevant Files for
Bug Reports using Domain Knowledge," in In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2014.

[50] N,. An, T. N. Anh, A. ,. Hoan and N. N. Tien, "Combining Deep
Learning with Information Retrieval to Localize Buggy Files for Bug
Reports," in 30th IEEE/ACM International Conference on Automated
Software Engineering, 2015.

[51] S. Jeongju and Y. Shin, "FLUCCS: Using Code and Change Metrics to
Improve Fault Localization," in the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2018.

