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Abstract—Machine learning algorithms have proved their
effectiveness in detecting malware. This paper conducts an em-
pirical study to demonstrate the effectiveness of selected machine
learning algorithms in detecting and classifying Android malware
using permissions features. The used dataset consists of 9000
different malicious applications from the CIC-Maldroid2020,
CIC-Maldroid2017 and CIC-InvesAndMal2019 datasets collected
by the Canadian Institute for Cybersecurity. Meta-Multiclass and
Random Forest ensemble classifiers are used based on different
machine learning classifiers to overcome the imbalance in the
data classes. Moreover, a genetic attribute selection technique and
SMOTE are used to classify Ransomware sub-families to handle
the small size of the dataset and underfitting problem. The results
show that optimization and ensemble approaches are successful
in treating dataset issues, with 95% accuracy in classifying big
malware families and 80% in Ransomware subfamilies.
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I. INTRODUCTION

Malware is a malicious software that aims at affects the
confidentiality, integrity or availability of data and systems
without users consent to attain the harmful intent of the
attacker [1] [2]. Malware applications are classified into many
classes according to their behaviour and properties such as
adware, worms, viruses, rootkits, trojan horse, backdoor, spy-
ware, logic bombs, adware, and ransomware. Systems re-
sources are attacked to affect the assets for the purposes of
getting financial benefits, for stealing private information or
using the computing resources to attack other victims [3] [4]

[5].

The usage of smartphone devices are growing immensely,
which provides attackers a powerful mean to access users
private information. According to google [6], there were 2
billion Android devices until November 2017, which means
that Android operating system has 71.15% of the Mobile
Operating System Market Share Worldwide [7] [8]. The wide
spread of Android devices has increased Android attacks three
times for the past two years. Therefore, there is a significant
need to find ways to detect and classify malware families.

Fig. 1 shows the mobile malicious installation packages
for Android that were discovered by Kaspersky Company
only between 2017 to 2020, which shows an increase in the
discovered malware from 2019 to 2020 by more than 2,100,000
malicious packages [9].
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Fig. 1. Mobile Malicious Installation Packages for Android in 2017 through
2020

Android malware apps can be classified using static analy-
sis method, dynamic analysis method, and Hybrid approach. In
Static analysis method, the static features such as static APIs
and permissions are used to classify APKs into malware or be-
nign applications. Meanwhile, dynamic analysis approach uses
dynamic features such as dynamic APIs, memory usage, CPU
usage,Network outgoing traffic, etc. to classify malware and
benign applications. Extracting dynamic features of malware
is performed using an isolated environment, called sandbox,
such as cuckoo sandbox [10]. Fig. 2 shows the environment
of dynamic analysis of android applicatoins and extracting
dynamic features. The hybrid approach uses a combination of
static features and dynamic features to classify Android APKs.
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Fig. 2. Dynamic Analysis of Android Apps

The aforementioned approaches may be used with hy-
perparameter tuning to perform correctly. Similarly, Other
approaches are used to deal with the underfitting problem,
such as genetic algorithms [11]. The Genetic Algorithm (GA)
is a search-driven optimization technique based on genetic and
natural selection principles. It is often used to find almost
the optimal solutions for complex problems [6]. Furthermore,
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Malware analysis using machine learning may face dataset
oversampling problems. For example, synthetic Minority Over-
sampling Technique (SMOTE) [12], which is an oversampling
technique, is used to generate samples for the minority class.
It cares about the feature space to generate new samples and
helps of interpolation between positive samples that belong to
each other. SMOTE selects the first positive class randomly
then KNN’s for the chosen positive sample is gained [7].

This paper implements and compare the performance of
several machine learning algorithms in classifying a large
dataset of APKs into malware and benign applications, clas-
sifying malware applications into its main classes, and classi-
fying ransomware applications into its subfamilies. The used
datasets are CIC-Maldroid2020, CIC-Maldroid2017 and CIC-
InvesAndMal2019, which consists of 9000 Android APK
samples were collected by the Canadian Institute for Cyberse-
curity.The measures used are f-score, accuracy, TPR and FPR.
The contributions of this paper are summarized as follows:

e It classifies the dataset into malware or benign appli-
cation using various machine learning algorithms.

e It classifies the malware into main classes: SMS
malware, Ransomware, Banking malware, Scareware,
Adware, and Premium SMS malware.

e It classifies the Ransomware family as subfamilies
depending on extracted permissions as static features.

e It employs optimization techniques to overcome the
problems dataset: ensemble algorithms, SMOTE, and
genetic algorithm. The ensemble machine learning
algorithms. The meta-Multiclass and Random Forest
classifiers are used to solve unbalancing problems
in classifying malware into its main classes to get
accurate and unbiased performance measures. Fur-
thermore,the paper applies the genetic algorithm and
SMOTE used to improve the performance of classify-
ing ransomware subfamilies because it is a small and
imbalance dataset.

The rest of paper is organized as follows. The next section
discusses some related work. Section 3 demonstrates the used
methods and materials. Section 4 demonstrates and discusses
the results. Finally, Section 5 concludes the work.

II. RELATED WORK

The use of machine learning algorithms in detecting and
classifying malware have been studied widely. However, due
to the continuous growing of malware types, the change in
their features, and the skills of attackers, machine learning
algorithms and the features they use need to be optimized
an modified continuously. This section discusses some related
work in this field.

Zhiwu et al. [13] proposed a classification method based
on static features, which are bytecode features, assembler code
features, and PE features. The authors used eight machine
learning classifier models, which are Gaussian Naive Bayes,
Random Forest, Decision Tree, SVM linear, SVM, KNN,
and Ada-boosting. They used a dataset from VirusShare. In
the comparison among the different algorithms, the cost, the
needs, and convenience were considered. In addition, they used

Vol. 13, No. 2, 2022

Kaspersky scan engine results. According to the experiments,
the Random Forest model achieved the highest result of the
F1 score of 93.56% .

Fang et al. [14] proposed an approach based on extracting
control-flow graphs (CFG) and data-flow graphs (DFG) during
the instruction level. Then, they encoded the graphs into
matrices and used them to build the family classification
model using deep learning. The family classification model
considered the horizontal combination of CFG and DFG as
features to achieve the best performance. The malware dataset
used in the experiments were collected from Marvin, Drebin,
VirusShare and Contagio-Dump. The results showed that the
horizontal combination of CFG and DFG performed better than
CDGDroid.

Arslan et al. [15] proposed a method for Android malware
families classification using Dalvik Executable (DEX) file
section features. The proposed approach converted DEX files
to Red/Green/Blue images and plain text. Next, from these
images, texture of the image, the color, and text were extracted
as features. The results showed that the proposed method
achieved a precision of 96%.

Gandotra et al. [16] used the manifest file to extract the
permissions as features of android applications. The source
code was used to verify whether a permissions is requested
by the application or not. The considered the assumption that
malicious apps are those that request several different permis-
sions without using them. The proposed approach extracted
all permissions requested by an application and stored them in
a database. Then, the use of permissions was verified. Next,
for each app, the proposed approach computed the number of
suspicious values. These values were used for classification.
The results showed that the SVs for malicious apps and
benign apps were in the ranges [4-95,858] and [21-55,967]
respectively. To classify the apps, the approach used Naive
Bayes and Logistic Regression. The authors claimed that the
accuracy was 91.95%.

Sahin et al. [17] proposed an approach to detect zero-
day malware based on the integration of static and dynamic
analysis. The authors validated the proposed approach using a
real-world dataset of malicious samples. The performance of
the proposed approach was measured before and after features
selection to show the effectiveness of the proposed relevant
feature selection method in improving the model construction
time as well as the accuracy. The proposed approach used
the entropy to compute the purity of each feature and select
the relevant features. The results showed that the accuracy of
all classifiers using the integrated features set is very good.
However, the naive Bayes classifier did not achieve good
results. Furthermore, the results showed that the approach of
features selection improved the model building time and the
accuracy.

Udayakumar [18] suggested a new permission-weight ap-
proach. The approach applied the algorithms of KNN and
Naive Bays to build the model and used RF as a weighting ma-
trix to assign weights for permissions based on whether a per-
mission is requested by the app (benign and malicious apps).
The results showed that by adding the weighted approach, the
KNN algorithm improved 2% and the NB algorithm improved
7%.
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Milosevic et al. [19] proposed an approach that help
in understand the types of malware, and machine learning
algorithms, such as Decision Trees, Multilayer Perceptron and
Multi SVM, can be used to detect malware. The proposed
approach used the debug Size as a feature with a score of
0.26. Using SVM and neural networks for classification, the
proposed approach got an of 90.2% and 98% at training
approach, and neural networks get 99% at the testing approach.

Alzubaidi [20] applied an approach based on deep learn-
ing algorithms to detect android malware apps families. He
claimed that he achieved an accuracy of 99%. Meanwhile,
Ashit [21] applied an enhanced Birch algorithm to find the
malware and modified executables of Windows and Android
operating system.

III. METHODS AND MATERIALS

The method proposed in this paper is divided into two
parts: classifying main malware-families and classifying Ran-
somware subfamilies. The classification process is based on
using permissions as features to show the ability of machine
learning classifiers to distinguish between the different mal-
ware families. Furthermore, it aims at helping security officers
to develop more reliable systems against different types of
malware, and to detect malicious applications by using only
the permissions and minimum resources.

A. Features Extraction

The “apktool.jar”’, which is a reverse engineering tool, was
used to extract the permissions of each APK. As a result,
140 permissions were extracted. Next, a python code was
developed and used to represent the APKs and the requested
permissions by each APK in a vector space file.

Fig. 3 shows the operations of the extracting and selecting
permissions features. The figure shows that the APK tool was
used to analyze the Android APK file in order to extract the
Manifest.xml and classes.dex files. Next, the Manifest parser
was used to extract the permission features, from which the
used features were selected form the classification process.
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Fig. 3. Extracting and Selecting Permissions Features

B. Dataset

Two datasets have been used in this work. The first dataset
is CIC-Maldroid2020 [23] collected from Canadian Institute
for Cybersecurity. The dataset consists of 8750 Android sam-
ples as APK files, while the second dataset consists of 250
ransomware APKs collected from CIC-InvesAndMal2019 [22]
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and CIC-Maldroid2017 [24]. The dataset was divided into
three subsets. The first dataset consists of 1422 Adware, 2506
Banking, and 4821 SMS malware. The second dataset consists
of 250 Ransomware subfamilies.

C. Methodology

The work has two main parts. The first one is the feature
extraction of APKs permissions as well as feature selection.
The second one is the data processing, where main malware
families were classified using ensemble machine learning
algorithm; Random Forest, Decision Tree and meta-Multiclass
classifiers. Meanwhile, Naive Bayes, KNN, Decision Tree, and
Logistic Regression were used to classify Ransomware family
as sub-families.

IV. RESULTS AND ANALYSIS
A. Main Malware Family Classification

The classification of malware APKs into main classes were
performed using Meta-Multiclass, which is a classifier for
handling multi-class datasets with 2-class classifiers. Meta-
Multiclass has various capabilities including error correcting
output codes to increase the accuracy. Using this method, when
the base classifier cannot handle instance weights because they
are not uniform, the data is re-sampled with replacement based
on the weights before being processed by the base classifier.

Table I shows the performance matrices for the main mal-
ware families classification. The result shows that the Meta-
Multiclass classifier achieved high performance by classifying
malware with 94% accuracy and low error rate of about 0.029.

Fig. 4 shows classification error for meta-Multiclass classi-
fier using KNN as base classifier. The x-axis and y-axis repre-
sent the main malware family names, where 1, 2 and 3 labels
denotes Adware, SMS and Banking families respectively, star
shapes represent correct predicted points and square shapes
represent incorrect predicted points. The results show that the
highest prediction power of the classifier is for Adware data
samples with 97% true positive rate.

TABLE I. META-MULTICLASS CLASSIFIER

Malware Family TPR FPR F -SCORE  ROC

Adware 0968  0.018 0.966 0.988
SMS 0.872  0.022 0.910 0.954
Banking 0.985  0.047 0.947 0.979
AVG 0.942  0.029 0.941 0.974
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Fig. 4. Classification Error of Meta-Multiclass Classifier using KNN base
Classifier
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Fig. 5 shows the classification error for Random Forest
classifier. The x-axis and y-axis represent main malware family
names, where 1, 2 and 3 labels denotes Adware, SMS and
Banking families respectively, star shapes represent correct
predicted points and square shapes represent incorrect pre-
dicted points. To proof the meta-Multiclass findings, random
forest ensemble classifier on decision tree as a base classifier
was applied. According to the results, the two used ensemble
methods showed similar performance.

Using Meta-Multiclass classifier based on KNN as base
classifier and Random Forest classifier, the accuracy of en-
semble models are 95%. Furthermore, the results show that
the ensemble classifiers handle the data unbalancing problem
and classify main malware families correctly. The values of
TPR, F-score, accuracy, and ROC show the high performance
and low FPR value of about 0.027 as shown in Table II.

TABLE II. META-MULTICLASS CLASSIFIER BASED ON KNN AS BASE
CLASSIFIER AND RANDOM FOREST CLASSIFIER

Malware Family TPR FPR F -SCORE ROC

Adware 0.977  0.018 0.970 0.993
SMS 0.875  0.019 0915 0.964
Banking 0.983  0.045 0.949 0.981
AVG 0.945  0.027 0.945 0.979

1 3

Fig. 5. Classification Error of Random Forest Classifier

B. Ransomware Subfamilies Classification

The dataset used in this experiment was imbalanced.
Therefore, the challenge was to apply Machine learning al-
gorithms to measure the effectiveness of ML different models
in distinguishing ransomware subfamilies and treating the data
problems.

1) Ransomware Subfamilies Classification using Original
Dataset: To evaluate the effectiveness of machine learning
algorithms in detecting Ransomware subfamilies, the Decision
tree classifier was applied on the original dataset.

Fig. 6 shows the classification error for Decision Tree
classifier on original dataset, were the x-axis and y-axis
represent Ransomware subfamily names, star shapes represent
correct predicted points and square shapes represent incorrect
predicted points.

Table III shows that using Decision Tree classifier, the
accuracy are 62%. That is, the results show that machine learn-
ing algorithms based on permissions requested by applications
on original dataset does not effectively classify Ransomware
subfamilies.
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TABLE III. DECISION TREE CLASSIFIER

Sub-family TPR  FPR  F-score = ROC

‘Wannalocker 0 0.02 0 0.88
Svpeng 0.8 0.13 0.6 0.89
Simplocker 0.5 0.03 0.52 0.79
RansomBO 0.6 0.06 0.5 0.94
PornDroid 0.6 0.13 0.55 0.87
Pletor 0.5 0.04 0.5 0.88
LockerPin 0.8 0 0.9 0.91
Koler 0.5 0 0.66 0.91
Jisut 0.9 0.01 0.92 0.98
Charger 0.8 0.01 0.84 0.99
Average 0.6 0.06 0.61 0.9
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Fig. 6. Classification Error of Decision Tree on Original Data

2) Ransomware Subfamilies Classification using Optimiza-
tion Algorithms: To address data underfitting and imbalance
issues, we used Synthetic Minority Oversampling Technique
(SMOT), which uses the KNN algorithm to generate new
observations to eliminate the imbalance. In addition, we used
the genetic algorithm as hyperparameter tuning or parameter
tuning. Furthermore, the paper used the ensemble learning
algorithm to increase the model chance learning and produce
a good prediction.

Fig. 7 shows the classification error for Random Forest
classifier with optimization algorithms, where x-axis and y-
axis are Ransomware subfamily names, star shapes represent
correct predicted points and square shapes represent incorrect
predicted points. The imbalance and underfitting problems
were almost solved after applying SMOT and the genetic
algorithms with the random forest classifier. We noticed that
the accuracy improved up to 80% from the previous results,
which was 60%, with low false positive rate with 0.028 as
shown in Table IV.

TABLE IV. RANDOM FOREST CLASSIFIER

Sub-family TPR  FPR
‘Wannalocker 0.4 0.05 0.39 0.94
Svpeng 0.7 0.05 0.69 0.97
Simplocker 0.9 0 0.94 0.96
RansomBO 0.7 0.07 0.54 0.95
PornDroid 0.7 0.03 0.78 0.97

Pletor 1 0 1 1
LockerPin 0.8 0 0.9 0.99
Koler 0.9 0 0.94 0.99
Jisut 1 0.02 0.95 0.99

Charger 1 0 1 1
Average 0.8 0.03 0.8 0.97
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Fig. 7. Classification Error of Random Forest with Optimization Algorithms

V. CONCLUSION

Android threats and attacks are rapidly increasing as An-
droid devices and the number of users increasing around the
world. Therefore, the attacks on android operating systems
and users private information has increased. This paper has
discussed this issue and used an optimized machine learning
approach based on permissions as features to detect malware.
The paper has used a large dataset to detect malware and
classify detected malware into main malware families, which
are SMS malware, Banking malware, Adware. In addition, the
optimized approach was tuned to classify ransomware dataset
into its subfamilies. The optimized approach used ensemble
classifiers such as meta-Multiclass classifier with KNN as
base classifier and Random forest to classify main malware
families and handling the unbalanced dataset. In addition, the
optimized approach used Random Forest and Decision Tree
classifiers to classify ransomware subfamilies. The results have
shown that ensemble classifiers perform very well in han-
dling unbalanced data, detecting and classifying main malware
families by achieving an accuracy of 95%. Furthermore, the
results have shown that detecting and classifying Ransomware
subfamilies using traditional machine learning algorithms has a
poor performance with an accuracy of 62% for Decision Tree.
However, the tuned approach by the oversampling technique
has increased the accuracy to 81%.
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