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Abstract—The process of converting low-resolution images 

into high-resolution images by removing noise and estimating 

high-frequency information is known as image super-resolution. 

Aliased and decimated versions of the actual scenes are 

considered low-resolution images. The edges of high-resolution 

images produced by super-resolution from a single image are 

typically blurred. This paper proposes an approach to generate 

high-resolution image with sharp edges by combining a cubic B-

Splines approximation, a discrete wavelet transform (DWT), and 

an iterative back-projection (IBP) edge-preserving weighted 

guided filter. A two-stage cubic B-Splines approximation, which 

includes pre-filtering and interpolation, is employed to up-sample 

the low-resolution image. The pre-filtering approach is used to 

transform pixel values to B-Splines coefficients. This approach 

minimizes blurring in the up-sampled image. The lost high-

frequency information is then estimated using a one-level discrete 

wavelet transform based on the db1 wavelet. Finally, using a 

weighted guided filter, the resulting image is subjected to back-

projection to obtain a high-resolution image. The proposed 

single-image super-resolution approach is applied on RGB colour 

images. The proposed method outperforms other selected 

approaches for comparison objectively in terms of PSNR and 

SSIM and also in visual quality. 

Keywords—Single-image super-resolution; pre-filtering; cubic 

B-Splines approximation; discrete wavelet transform (DWT); 

iterative back-projection (IBP); B-Splines coefficients 

I. INTRODUCTION 

In many fields of digital imaging, there is usually a need for 
images of a higher resolution in a pre-processing stage for 
other subsequent operations. The main applications include 
diagnosis of medical conditions, pattern recognition, remote 
sensing, and surveillance [1]-[3]. The details that can be 
obtained from an image depends on its resolution. The capture 
of high-resolution images is not always feasible in surveillance 
systems because of limitations in terms of storage 
requirements, bandwidth for transmission of high-resolution 
images, power, and the cost of the image capturing device [4], 
[5]. Therefore, the image acquisition and transmission systems 
limit the resolution of the captured images, leading to 
constraints on the quality of the images available for 
interpretation and perception. As a result, image super-
resolution (SR) is required to improve the information content 
in order to gain more details from the images. Multi-frame 
image reconstruction [6]-[8] and single-image super-resolution 
(SISR) [9]-[13] are the two types of super-resolution image 
reconstruction. 

Image super-resolution aims at the recovery of the lost 
high-frequency information and preservation of the edges [14]. 
In this paper, an approach that combines cubic B-Splines 
approximation, discrete wavelet transform and iterative back-
projection is proposed to achieve super-resolution from a 
single image. This is the first attempt to integrate the pre-
filtering in cubic B-Splines approximation for image super-
resolution. The key contributions of the proposed methodology 
over the current approaches are as follows: 

1) Design and integration of the pre-filtering to improve 

the up-scaling performance of the cubic B-Splines 

approximation. 

2) Comparative analysis of wavelet image reconstruction 

to determine the best-performing wavelet among the three 

wavelet families (Daubechies, Symlets and Coiflets) in terms 

of the recovery of the lost frequency information. 

3) Localization of the edges of the image using a weighted 

guided filter in back-projection to preserve and enhance details 

of the edges while avoiding widening of those edges. 

4) Attaining good objective performance and visual quality 

with low computation time. 

The rest of the paper is organized as follows. Section 2 
presents the previous related works and contributions of this 
research paper. Section 3 presents the detailed proposed 
methodology. Experimental results and discussion are given in 
Section 4. Summary of the findings and suggestions for further 
work are presented in Section 5. 

II. RELATED WORK 

Single-image super-resolution is an inverse optimization 
problem without a unique solution and thus very challenging 
because multiple solutions can be achieved based on the 
texture details. Direct interpolation using interpolation kernels 
[14], [15], wavelet transforms [16],[17], use of statistical 
approaches to estimate missing pixel values [18],[19], and 
example-based approaches [20], [21] are the sub-categories of 
single-image super-resolution. Bicubic interpolation is widely 
used in up-scaling [22], [23]. However, it exhibits non-uniform 
gain which leads to distortions and larger lobes which 
introduces artifacts. The cubic B-Splines has been found to 
perform better than the widely used Keys' bicubic 
interpolation. However, it is an approximating function 
requiring a two-stage process [24]. Chen et al. [25] proposed 
an example-based approach that employs local multi-gradient 
level pattern prediction. The method results in high-quality 
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output images compared to approaches selected for 
comparison. The approach is however limited by; (i) high 
computation requirements and (ii) high storage requirements 
for databases for training images. 

The low-resolution (LR) image is used as the low-
frequency sub-band, (LL), of the high-resolution image in the 
wavelet-based approach for super-resolution. The task is to 
estimate the high-frequency sub-bands in order to obtain a HR 
image. Demirel and Anbarjafari [26] proposed using a dual-
tree complex wavelet transform (DT-CWT) for resolution 
enhancement of satellite images. They interpolated the input 
LR images using a bicubic interpolation function and the 
subsequent high-frequency sub-bands, and combined them to 
form a super-resolved image using the inverse DT-CWT. To 
improve image quality, Lidong et al. [27] combined the 
DWT and contrast limited adaptive histogram equalization 
(CLAHE) in their approach. The low-resolution mage is 
decomposed into four sub-bands. After that, the CLAHE is 
applied to the low-frequency sub-bands. Demirel and 
Anbarjafari [28] proposed an algorithm to improve image 
resolution using the DWT and SWT decompositions. To 
preserve the image's high-frequency information content, DWT 
based on the Daubechies 9/7 wavelet family is used. These 
approaches were however limited by (i) blurring in the highly 
textured areas and (ii) lack of comparison among the wavelets 
used in order to determine the wavelet that produce higher 
quality images. 

In addition to estimating the high-frequency components, 
various methods have been employed to improve the super-
resolved images quality further. Iterative back-projection [29]-
[32] is one such process that minimizes the reconstruction 
error. Bareja and Modi [33] proposed a SISR based on IBP 
with an infinite symmetric exponential filter (ISEF) to preserve 
the edges. Ngocho and Mwangi [34] proposed back-projection 
using the Laplacian of Gaussian (LoG) kernel to enhance the 
edges and reduce noise in the resulting image. Makwana and 
Mehta [35] proposed an approach that combines IBP method 
with the Canny Edge detector and Gabor Filter for retrieval of 
the high-frequency information. They applied this method to 
grayscale images and compared them with existing algorithms. 
Despite the improvement in objective performance with these 
approaches, they employed global filters which leads to 
widening of the edges of the super-resolved images leading to 
reduced visual quality. 

Motivations behind the proposed approach. In the previous 
works it was noted that despite the better performance of the 
cubic B-Splines than other interpolation kernels, direct 
interpolation using cubic B-Splines on the pixel values of an 
image leads to over-smoothing especially in the regions having 
high local variances [12],[13]. The proposed approach attempts 
to rectify this issue by employing a pre-filter to compute the B-
Splines coefficients which are then subjected to cubic B-
Splines interpolation. In addition, various wavelets have been 
employed in estimation of the lost high-frequency information. 
However, no comparison among the wavelets used was tested. 
This investigation seeks to perform comparative analysis of 
various wavelet families to determine best performing wavelet 
in image-reconstruction [26]-[28]. Lastly, all the previous 
approaches employing iterative back-projection used global 

filters resulting in images with wider edges which is 
undesirable [31]-[35]. 

III. PROPOSED METHODOLOGY 

The flowchart for the proposed single-image super-
resolution approach is shown in Fig. 1. The proposed method 
combines a two-stage cubic B-Splines approximation, DWT, 
and iterative back-projection. 

A. Cubic B-splines Approximation 

1) Pre-filtering: The pre-filtering step is used to compute 

the coefficients of an image using a direct B-splines filter. This 

method employs a recursively moving average filter to reduce 

the computational cost. The cubic B-Splines approximation is a 

two-stage process which begins with the estimation of the B-

Splines coefficients,      from the pixel values of an image, 

    . The challenge is to determine the coefficients such that 

the interpolation kernel passes through the pixel values exactly. 

The desired values      are obtained from the coefficients, 

     as in (1). 

∑                                        (1) 

Where n is the degree of B-Splines kernel. 

Using discrete B-Splines kernel, (1) can be rewritten as in (2). 
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Where * is the convolution operator and                . 

The B-Splines coefficients,      can be obtained as in (3) 
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Fig. 1. Proposed Methodology. 

(     )
  

 is a direct cubic B-Splines filter having 

alternating sign change. The filter in (9) can be implemented 
using a causal filter in (10) and an anti-causal filter in (11). The 
cubic B-Splines coefficients are then obtained as in (12). 

                                          

 (             )                   (11) 

     
     

 
            (12) 

     are the signal values,       is the causal filter,       
is the anti-causal filter,   is the signal length, and      are the 
B-splines coefficients. The starting points for the two filters in 
(10) and (11) are given in (13) and (14) as follows. 

      ∑        
  
              (13) 
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2) Cubic B-Splines interpolation: The cubic B-Splines is 

based on the one-dimensional approximation kernel given in 

(15): 

     
 

 
{
                      

                
        

          (15) 

This approximation kernel is applied in (16) to obtain new 
pixel values of the interpolated image,     , from the B-
splines coefficients,     . Since the kernel is separable, for 

images, it is first applied along the rows and then along the 
columns sequentially. 

     ∑                       (16) 

The condition for the kernel to be interpolating is given in 
(17): 

     {
      

            
           (17) 

It is noted that for cubic B-Splines,        and hence 
does not satisfy the condition for being directly interpolating. 
Therefore, if it is applied directly to the pixel values of an 
image, it may lead to over-smoothing, especially in the regions 
with high local variances. This investigation seeks to determine 
whether pre-filtering will improve the performance of the cubic 
B-Splines approximation. 

B. One-level Discrete Wavelet Transform 

One level DWT is used to estimate the high-frequency sub-
bands of the super-resolved image by passing the signal 
through a low-pass filter (LPF) and high-pass filter (HPF) [36]. 
It is used to decompose a signal to approximation and detail 
coefficients, each with half-the frequency components from the 
original signal. The decomposition is done in two stages for 
images, first along the rows and then along the image columns. 
The output of the operation is four sub-bands (LL, LH, HL and 
HH). This study will investigate which wavelet will produce 
higher quality super-resolution images better among the three 
wavelet families: Daubechies, Symlets and Coiflets. 
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C. Iterative Back-Projection (IBP) 

Super-resolution is an inverse problem without a unique 
solution. A number of possible results can be limited by 
applying additional constraints leading to outputs closer to the 
ground truth images. The IBP is one such process to minimize 
the reconstruction error by projecting back the error difference, 

     between the input    image, and the low-resolution image 

from the resolution enhancement process,        . The 
process is repeated until convergence is achieved. The IBP 
process can be summarized as in (18) and (19). 

                         (18) 

              (      )                (19) 

Where n denotes the n
th
 iteration,   is the up-sampling 

operator and   is the down-sampling operator, p is the back-
projection filter and * is the convolution operator. In this paper, 
the weighted guided image filter [37],[38] has been selected as 
the back-projection filter. The weighted guided image filter 
combines the benefits of both the global and the local image 
filters. It incorporates edge-aware weighting that depends on 
whether the pixel values are on the edges or in smooth areas. 
Because of this weighting, the weighted guided filter maintains 
the sharpness of the edges of the image. Its complexity is also 
independent of the size of the kernel. Thus, we can use the 
larger kernel sizes can be employed with a negligible increase 
in computation times. 

D. Proposed Single Image Super-resolution Process 

The proposed image super-resolution process is given in 
steps (i) to (vii) as follows: 

Step (i) The input LR image is subjected to a two-stage 
cubic B-Splines approximation with an up-sampling factors of 
2 and 3. The LR image is subjected to a direct B-Splines filter 
(pre-filtering) in the first stage to transform the pixel values to 
coefficients in the B-Splines domain. In the second stage, the 
B-Splines coefficients are up sampled by integer factors of 2 
and 3 using the cubic B-Splines approximation kernel. 

Step (ii) The output image from the cubic B-Splines 
approximation is then decomposed into approximation 
coefficients (LL) and detail coefficients (LH, HL and HH) 
using one-level discrete wavelet transform based on the 
selected db1 wavelet. 

Step (iii) The pixel values of the LR image are scaled by a 
factor of 2. The factor of 2 corresponds to the normalization 
factor for a one-level DWT. The scaled LR image and the 
detailed coefficients are subjected to one-level Inverse Discrete 
Wavelet Transform (IDWT) to get the initial HR image. 

Step (iv) The initial HR image,       is down-sampled by a 
factor of 2 and 3 depending on the decimation factor used. The 

result is a low-resolution image,       

                        (20) 

Step (v) The low-resolution image,       is subtracted from 

   to obtain an error image     . 

                        (21) 

Step (vi) The error image,      is then convolved with a 
back-projection filter, p, and up-sample it. The results are then 
added to the initial HR image. 

            (      )            (22) 

Step (vii) Steps (iv) to (vi) are repeated until the 
convergence is achieved. 

IV.  RESULTS AND DISCUSSION 

In this section, the experimental settings are first 
introduced, then performance of the proposed super-resolution 
algorithm and the comparison to other proposed approaches is 
reported. 

A. Experimental Settings 

A total of 74 images were used in the super-resolution 
approach. The images are obtained from the public databases. 
The first set. The second image set contains the 24-bit RGB 
colour images from Signal and Processing Institute from 
University of California, Los Angeles, USA [41]. The dataset 
contains 36 high altitude aerial images of dimensions 512×512 
and 1024×1024 pixels. The format is Tagged Image Format 
File (TIFF). The second set was obtained from Eastman Kodak 
Company [42]. It contains 24 RGB colour images of 
dimensions 512×768 pixels and 256×256 pixels. The last 
dataset was obtained from Deep AI [43]. It contains 14 images 
of dimensions 512×768 pixels commonly used for testing SR 
models. The test image sets contain images with significantly 
different frequency content and variations in texture and edges. 
The simulations were conducted in MATLAB R2020a 
environment. Fig. 2 illustrates a sample of 16 images from the 
databases. 

 

Fig. 2. Sample Test Images from the Selected Databases. From the Left to 

the Right and Top to the Bottom: Aerial1 (1024×1024), Aerial2 (1024×1024), 

Aerial3 (1024×1024), Aerial4 (1024×1024) Baby (768×512), Bird (768×512), 
Kodim03 (768×512), Kodim10 (768×512), Arctic hare (256×256), African 

girl (768×512), Lena (512×512), Monarch (768×512), peppers1(512×512), 

peppers2 (768×512) and tulips (768×512). 
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For comparison, three single-image super-resolution 
methods have been used: LoG IBP [34], VDSR [39], NEDI 
[40], and bicubic interpolation as the baseline. 

B. Experimental Results 

The Peak Signal-to-Noise Ratio (PSNR) based on Mean 
Square Error (MSE) and Structural Similarity Index Measure 
(SSIM) are used to quantify the performance of the algorithm. 
The MSE measures the amount of lost frequency information 
in the image through pixel-by-pixel comparison. SSIM on the 
other hand considers effects of luminance and brightness of the 
image. The higher the PSNR and SSIM, the better the quality 
of the super-resolved image. 

1) Investigation of the importance of pre-filtering in cubic 

b-splines approximation: Two sets of experimental approaches 

were conducted to validate the effectiveness of the pre-filtering 

incorporated in cubic B-splines approximation. Grayscale 

version of the test images were used in this investigation. The 

test images were decimated by a factor of 2 to obtain LR 

images. In the first approach, the cubic B-splines interpolation 

was applied directly to the pixel values of the LR images. In 

the second approach, the proposed pre-filter was first used to 

transform the pixel values of the LR images to B-Splines 

coefficients. The cubic B-Splines interpolation was then 

applied to the B-Splines coefficients. Table I shows the results 

for the PSNR and SSIM comparison between the cubic B-

Splines approximation which integrates the pre-filtering 

approach and direct interpolation using cubic B-Splines 

interpolation kernel. From Table I, the results indicates that 

cubic B-Splines approximation achieves better performance 

with the average PSNR and SSIM improvement of 3.43 dB and 

0.05 respectively from direct interpolation. The other test 

images also gave similar results. These results indicates that 

applying a pre-filter to pixel values of an image before 

performing up-sampling with cubic B-Splines produces 

significantly better results than otherwise. 

TABLE I. COMPARISON BETWEEN CUBIC B-SPLINES APPROXIMATION (WITH PRE-FILTERING) AND DIRECT INTERPOLATION (WITHOUT PRE-FILTERING) 

Image Labels 

  

PSNR (dB) SSIM 

Without  

Pre-filtering 

With  

Pre-filtering 
Improvement 

Without  

Pre-filtering 

With  

Pre-filtering 
Improvement 

Aerial1 29.39 30.66 1.28 0.72 0.77 0.05 

Aerial5 31.41 33.99 2.58 0.74 0.79 0.05 

Baby 32.21 35.26 3.05 0.90 0.95 0.04 

Bird 30.19 34.39 4.11 0.92 0.97 0.05 

Kodim03 30.20 32.59 2.39 0.87 0.91 0.04 

Kodim10 29.02 30.82 1.80 0.84 0.89 0.05 

Arctic hare 33.03 37.66 4.63 0.94 0.97 0.03 

Lena 32.21 35.34 3.13 0.89 0.93 0.04 

Peppers2 32.83 36.18 3.35 0.93 0.96 0.03 

Tulips 29.50 33.52 3.26 0.86 0.92 0.06 

AVERAGE 30.99 34.42 3.43 0.85 0.90 0.05 

TABLE II. PSNR COMPARISON OF THE PERFORMANCE OF SELECTED WAVELETS IN IMAGE RECONSTRUCTION 

Image Labels 

  

Daubechies Symlets Coiflets 

db1 db2 db3 db4 sym2 sym3 sym4 coif2 coif3 coif4 

Aerial1 33.49 31.10 28.85 27.78 31.50 29.40 30.74 27.91 26.82 26.08 

Aerial2 34.00 31.37 28.36 27.01 31.60 29.20 28.64 27.27 26.09 25.44 

Aerial5 35.65 32.62 29.54 28.23 32.69 29.67 30.32 27.89 27.10 26.67 

Baby 32.86 27.90 23.48 21.22 29.00 25.00 23.92 20.21 17.92 16.44 

Bird 31.49 26.52 22.00 19.77 26.70 22.45 23.04 19.58 17.64 16.62 

Kodim03 31.74 29.38 26.48 24.89 29.40 26.97 27.57 24.43 22.82 21.79 

Arctic hare 35.10 28.95 24.11 21.73 29.70 24.15 26.13 21.33 19.14 17.98 

Lena 31.21 27.41 23.20 21.03 28.00 23.56 24.66 21.12 18.97 17.75 

Peppers2 34.28 30.96 26.54 24.05 31.40 26.89 27.04 24.27 21.58 19.93 

Tulips 30.24 26.05 21.76 19.50 29.00 21.99 22.72 19.35 17.10 15.76 

AVERAGE 33.01 29.23 25.43 23.52 29.90 25.93 26.48 23.34 21.52 20.45 
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2) Comparative analysis for wavelet image reconstruction: 

The performance of the three wavelet families: Daubechies 

(db1, db2, db3 and db4), Coiflets (coif2, coif3 and coif4) and 

Symlets (sym2, sym3 and sym4) is evaluated in this 

subsection. The test images were converted to grayscale. They 

were then down-sampled followed by up-sampling by a factor 

of 2 using cubic B-Splines approximation. High-resolution 

images were then reconstructed based on the wavelets above. 

The results for a sample of ten images are shown in Table II. 

From the results obtained, the db1 wavelet achieves the best 

performance among the selected wavelets for all images. db1 

wavelet has therefore been chosen in the proposed approach to 

estimate the missing frequency information in one-level DWT. 

3) Convergence of the iterative back-projection (IBP): In 

this subsection, the convergence of the IBP based on the 

weighted guided filter is analyzed. Fig. 3 indicates the PSNR 

values for the four selected test images versus the number of 

iterations. The convergence is achieved when the difference 

between the PSNR values for the consecutive iterations is less 

than 0.01dB. From Fig. 3, the PSNR values increase gradually 

with the number of iterations, and convergence is achieved 

within five steps. The other test images gave similar results. 

With the convergence achieved within five steps of IBP, 
the number of iterations in the proposed super-resolution 
approach was set to 5. 

4) Comparison with recently proposed approaches 

a) Objective performance: In this subsection, the 

proposed approach's SR performance in comparison with 

other approaches is analyzed on 16 test images from the 

specified databases, as shown in Fig. 3. The performance 

metrics used for this comparison are PSNR and SSIM. The 

objective performance results in terms of PSNR and SSIM 

with an upscaling factor of 2 are shown in Tables III and IV 

respectively. The proposed approach outperformed the 

selected approaches in 13 out of the 16 sample images. 

In terms of SSIM, the proposed approach outperformed the 
selected approaches in all the selected images. The algorithm 
achieved highest average PSNR and SSIM. The best 
performance is highlighted in red. 

 

Fig. 3. PSNR Variations against Iterations for IBP. 

TABLE III. PSNR RESULTS WITH AN UP-SAMPLING FACTOR OF 2 

Image Labels 

  

Proposed VDSR [39] Bicubic LoG IBP [34] NEDI [40] 

 R  G  B  R  G  B  R  G   B  R  G  B  R  G   B 

Aerial1 31.4 34.6 40.1 31.0 34.4 39.3 30.5 33.7 39.2 30.4 33.6 38.9 29.5 33.0 38.9 

Aerial2 33.1 36.1 39.9 32.4 35.7 38.3 32.0 35.1 39.0 32.5 35.4 38.8 29.5 33.3 38.2 

Aerial5 34.7 35.1 35.5 34.3 34.9 35 33.6 34.1 34.6 33.6 34.0 34.2 32.5 33.4 34.7 

Aerial8 29.9 33.8 41.3 29.5 33.6 40.1 29.0 32.9 40.4 29.0 32.8 40.2 28.2 32.1 39.8 

Baby 36.5 36.6 36.5 34.9 35.1 34.9 35.4 35.6 35.5 36.0 36.2 36.0 31.6 32.0 32.3 

Bird 36.2 36.5 36.3 34.8 35.2 34.3 34.7 35.1 34.8 36.2 36.5 36.1 29.7 30.2 30.0 

Woman 31.8 31.8 31.9 32.4 32.4 32.4 30.6 30.7 30.7 31.5 31.6 31.7 27.2 27.2 27.3 

Kodim03 33.7 33.5 33.4 34.0 33.9 33.6 32.6 32.5 32.6 33.0 32.9 32.7 31.2 31.2 31.7 

Kodim10 32.0 31.9 31.8 32.7 32.7 32.5 31.1 31.0 31.0 31.5 31.5 31.3 29.1 28.8 29.1 

Arctic hare 40.1 42.3 43.2 36.7 36.7 36.2 38.1 40.4 41.3 40.1 42.2 43.1 32.3 34.6 35.3 

African girl 32.1 32.4 32.3 32.0 32.4 32.4 31.3 31.5 31.5 31.4 31.9 31.7 29.8 29.7 30.0 

Lena 36.7 33.3 32.2 35.2 33.0 31.7 35.4 32.1 31.2 36.1 32.7 31.3 31.6 29.1 29.8 

Monarch 33.0 32.7 32.6 33.6 33.6 33.5 31.8 31.6 31.5 32.7 32.4 32.3 28.6 28.4 28.6 

Peppers1 31.8 30.3 31.9 31.0 30.2 31.0 30.4 29.0 30.9 30.4 29.4 31.0 29.5 27.0 29.4 

Peppers2 37.8 37.5 37.2 36.6 37.2 35.5 36.5 36.3 36.1 37.5 37.2 36.7 32.2 32.5 32.7 

Tulips 34.9 34.9 33.9 34.0 34.1 33.7 33.4 33 32.4 34.4 34.1 33.6 29.8 28.9 28.3 

AVERAGE 34.5 34.6 35.6 33.5 33.8 34.6 32.9 33.4 34.5 33.5 33.7 35.0 30.1 30.7 32.3 

32
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TABLE IV. SSIM RESULTS WITH AN UP-SAMPLING FACTOR OF 2 

Image Labels 

  

Proposed VDSR [39] Bicubic LoG IBP [34] NEDI [40] 

R G B R G B R G B R G B R G B 

Aerial1 0.84 0.88 0.92 0.78 0.85 0.90 0.77 0.83 0.91 0.77 0.83 0.91 0.74 0.82 0.90 

Aerial2 0.89 0.89 0.92 0.86 0.88 0.90 0.85 0.87 0.9 0.87 0.88 0.9 0.76 0.81 0.88 

Aerial5 0.89 0.89 0.88 0.80 0.81 0.78 0.80 0.81 0.78 0.79 0.79 0.76 0.76 0.77 0.77 

Aerial8 0.85 0.89 0.95 0.83 0.88 0.94 0.82 0.86 0.94 0.83 0.87 0.94 0.78 0.84 0.93 

Baby 0.96 0.96 0.95 0.95 0.95 0.93 0.95 0.95 0.93 0.96 0.95 0.94 0.91 0.91 0.89 

Bird 0.98 0.98 0.96 0.97 0.96 0.93 0.97 0.97 0.95 0.98 0.98 0.96 0.92 0.92 0.91 

Woman 0.95 0.96 0.96 0.95 0.95 0.95 0.94 0.95 0.94 0.95 0.95 0.95 0.90 0.91 0.90 

Kodim03 0.95 0.93 0.92 0.93 0.93 0.92 0.91 0.92 0.9 0.92 0.92 0.91 0.89 0.89 0.88 

Kodim10 0.94 0.95 0.91 0.92 0.92 0.92 0.90 0.90 0.89 0.90 0.91 0.90 0.86 0.86 0.86 

Arctic hare 0.98 0.98 0.98 0.96 0.96 0.96 0.98 0.98 0.98 0.98 0.98 0.98 0.95 0.95 0.96 

African girl 0.91 0.92 0.90 0.90 0.91 0.90 0.89 0.9 0.88 0.9 0.91 0.89 0.86 0.87 0.85 

Lena 0.96 0.94 0.85 0.93 0.91 0.81 0.93 0.88 0.80 0.93 0.88 0.80 0.90 0.84 0.78 

Monarch 0.96 0.96 0.95 0.96 0.95 0.95 0.96 0.95 0.94 0.96 0.96 0.95 0.93 0.93 0.92 

Peppers1 0.85 0.88 0.85 0.79 0.86 0.82 0.78 0.84 0.82 0.78 0.84 0.82 0.78 0.83 0.8 

Peppers2 0.97 0.97 0.95 0.96 0.97 0.93 0.96 0.97 0.94 0.96 0.97 0.94 0.94 0.94 0.91 

Tulips 0.94 0.96 0.95 0.93 0.95 0.95 0.92 0.94 0.94 0.93 0.95 0.95 0.88 0.89 0.89 

AVERAGE 0.93 0.94 0.93 0.90 0.92 0.91 0.88 0.89 0.89 0.90 0.91 0.91 0.86 0.87 0.88 

For the high-altitude aerial images obtained from [41], the 
PSNR was found to differ by as much as 9 dB between the 
colour channels – Aerial1 (Red=31.4 dB, Blue= 40.1 dB). This 
difference arises because the aerial images are almost one 
colour, with some colour channels containing very little 
information. The channel with low information returns very 
high PSNR values. In aerial1 image, the red channel contains 
highest information followed by the green channel and lastly 
the blue channel. 

The test image sets have images with significantly different 
frequency content and variations in texture and edges. The 
performance is therefore different for each image with images 
having high-frequency content achieving low PSNR and SSIM 
values when compared to images with low-frequency content. 
This is evident by peppers1 (Red=31.8dB, Green=30.3dB and 
Blue=31.9dB) and Arctic Hare (Red=40.1dB, Green=42.3dB 
and Blue=43.1dB). Arctic Hare is a significantly smooth image 
thus low frequency content while peppers1 image has high 
frequency content. 

Interpolation approaches performs better in smooth images 
as observed in Arctic Hare where the proposed algorithm, LoG 
IBP [34], and Bicubic interpolation all achieved the highest 
SSIM of 0.98 for an up-scaling factor of 2 compared to the 
VDSR [39] algorithm, which gave 0.96. 

The VDSR algorithm achieves better image quality in those 
images with patterns, for example, Monarch, where it achieved 
a PSNR improvement of over 0.9dB from the proposed 
algorithm in the blue and green colour channels. 

For up-scaling factor of 3, the high-resolution images from 
the selected databases were decimated by a factor of 3 to obtain 

the low-resolution images. The images were then up-scaled by 
3 using the proposed approach to obtain high-resolution 
images. The results were then compared to VDSR [39] and 
bicubic interpolation. LoG IBP [34] and NEDI [40] only up-
scales the image by a factor of 2 and were therefore not 
compared for up-scaling factor of 3. Table V shows the PSNR 
and SSIM results for this comparison. 

The approach with the best performance is highlighted in 
red. The selected approaches were applied independently to the 
three colour channels in RGB colour space in order to ensure 
the same treatment is applied in the colour images. 

From Table V, the proposed approach outperforms the 
selected approaches in 15 out of the 16 test images from the 
sample. It also achieves highest SSIM for all the test images 
from the selected databases. 

b) Visual quality comparison: Fig. 4 shows two images 

used for visual comparison. The blue rectangular box in the 

two selected images in shows the regions of interest to 

evaluate the performance of the super-resolution algorithms.  

c) Computational complexity: To evaluate the 

computational complexity, a total of 10 images were used: 

Aerial1, Aerial2, Aerial5, Aerial8, Kodim03, Kodim10, Lena, 

Monarch, Baby and Bird. Despite this measure not being a 

scientific method of computing execution time, it however 

servs as an indicator of the computational complexity of each 

algorithm. The elapsed time it takes to super-resolve each 

image using the start and stop watch timers in MATLAB 

environment. Table VI and Table VII shows the results for the 

up-scaling factor of 2 and 3 respectively. 
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TABLE V. PSNR AND SSIM RESULTS FOR AN UP-SCALING FACTOR OF 3 

Image Labels 

  

PSNR (dB) SSIM 

Proposed VDSR [39] Bicubic Proposed VDSR [39] Bicubic 

R G B R G B R G B R G B R G B R G B 

Aerial1 29.1 32.8 39.1 28.5 32.8 39.0 27.3 30.9 37.0 0.75 0.83 0.91 0.74 0.82 0.91 0.71 0.79 0.89 

Aerial2 26.9 31.1 37.1 26.9 31.1 36.7 25.8 29.8 35.4 0.63 0.78 0.87 0.61 0.72 0.86 0.61 0.70 0.84 

Aerial5 30.9 32.4 35.3 30.9 32.4 35.2 29.5 30.7 32.9 0.75 0.79 0.84 0.74 0.77 0.79 0.70 0.73 0.75 

Aerial8 26.8 30.8 38.7 26.8 30.4 38.3 25.1 29.1 36.9 0.74 0.81 0.92 0.71 0.79 0.91 0.70 0.77 0.90 

Baby 30.5 31.0 31.3 30.1 30.7 31.0 29.9 30.3 30.5 0.88 0.88 0.86 0.88 0.88 0.86 0.88 0.88 0.85 

Bird 30.3 30.8 30.8 29.6 30.5 29.6 30.2 30.6 30.5 0.91 0.91 0.93 0.90 0.91 0.87 0.92 0.92 0.89 

Woman 26.8 28.5 26.9 26.8 26.9 26.9 26.3 26.4 26.4 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 

Kodim03 30.2 30.5 31.0 30.3 30.4 31.1 28.4 28.5 28.9 0.86 0.86 0.85 0.86 0.86 0.85 0.85 0.85 0.84 

Kodim10 28.1 28.3 28.1 28.0 27.6 28.0 26.6 26.3 26.4 0.83 0.83 0.82 0.84 0.83 0.83 0.82 0.82 0.81 

Arctic hare 29.5 32.2 33.3 29.3 31.6 32.5 29.1 31.8 33.0 0.91 0.92 0.95 0.90 0.91 0.91 0.90 0.91 0.90 

African girl 28.2 28.4 28.6 28.1 28.8 28.1 27.1 27.3 27.3 0.82 0.86 0.85 0.82 0.84 0.81 0.81 0.82 0.81 

Lena 30.6 28.3 29.7 30.2 28.2 29.7 30.1 27.6 28.3 0.89 0.83 0.81 0.87 0.82 0.77 0.87 0.81 0.75 

Monarch 27.5 27.4 27.8 27.4 27.4 27.8 27.1 26.9 27.2 0.91 0.92 0.89 0.90 0.90 0.90 0.90 0.90 0.88 

Peppers1 29.2 26.4 29.1 28.0 26.2 28.7 27.5 24.8 27.4 0.82 0.88 0.82 0.80 0.83 0.81 0.76 0.79 0.77 

Peppers2 32.0 32.2 32.8 31.5 32.1 32.0 31.7 31.8 32.2 0.92 0.93 0.90 0.92 0.92 0.87 0.92 0.92 0.88 

Tulips 28.9 28.2 27.5 29.0 28.2 27.3 28.4 27.8 27.2 0.84 0.85 0.84 0.85 0.85 0.84 0.82 0.82 0.82 

AVERAGE 29.9 30.0 32.7 28.8 29.1 31.4 28.1 28.8 30.5 0.85 0.87 0.89 0.81 0.83 0.87 0.82 0.83 0.84 

  
(a)    (b) 

Fig. 4. Two Test Images used for Visual Comparison (a) Peppers1 Image 

and (b) Lena Image. 

TABLE VI. EXECUTION TIME FOR UP-SCALING BY 2 

Execution 

Time 

METHOD 

Bicubic Proposed 
VDSR 

[39] 

LoG IBP 

[34] 

NEDI 

[40] 

Total time in 

seconds 
6.21 16.18 238.21 20.61 982.1 

Time per 

image in 

seconds 

0.62 1.62 23.82 2.06 98.21 

TABLE VII. EXECUTION TIME FOR UP-SCALING BY 3 

Execution 

Time 

METHOD 

Proposed VDSR [39] BICUBIC 

Total time in seconds 24.68 311.82 10.01 

Time per image in seconds 2.47 31.18 1.00 

From the results in Table VI and Table VII, it can be 
observed that: Bicubic interpolation has the shortest execution 
across the two up-scaling factors each taking less than 1 second 
to up-scale an image, The VDSR requires more than 20s per 
image and 4. The NEDI algorithm is computationally intensive 
requiring almost 100 seconds per image. 

The proposed approach is second only to bicubic 
interpolation showing its computational efficiency with higher 
objective and visual performance. 

V. CONCLUSION 

This paper proposes a single image super-resolution 
approach that combines the cubic B-Splines approximation and 
discrete wavelet transform. The results demonstrated that the 
performance of the cubic B-splines can be significantly 
improved by first transforming the pixel values of an image to 
coefficients in the B-Splines domain before performing 
interpolation. The db1 wavelet was also found to recover the 
lost high-frequency information than other wavelets. In order 
to further enhance the sharpness of the edges of the super-
resolved images a weighted guided filter has been added into 
the proposed approach as a back-projection filter. The 
proposed algorithm was tested on a set of 74 RGB colour 
images. The results for a sample of 16 images from the set 
have been reported for up-scaling factors of 2 and 3. The 
approach was applied independently to the three colour 
channels. It outperformed bicubic interpolation and the other 
selected super-resolution algorithms in visual quality. 
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In terms of the visual comparison, Fig. 5 and Fig. 6 shows 
the zoomed extracts obtained from peppers1 and Lena image in 
Fig. 4 for the up-scaling factor of 2. From the zoomed extracts, 
the ground truth image has clear and sharper edges. The 
proposed method recovers the sharpness of the edges partially 
and maintains the natural texture of the images. The bicubic 
interpolation causes blurring of the output images NEDI, LoG 
IBP and VDSR maintains the edges but clearly smoothen out 
the highly textured areas. Other images also show similar 
results. 

The suggestions for further work are: 

1) Development of a 2-dimensional cubic B-Splines 

kernel. In this paper, a 1-dimensional kernel has been applied 

sequentially along the rows and the columns of the test images. 

2) Up-scaling by a rational number e.g., 3/2. The up-

scaling by integer factors of 2 and 3 were used in this paper. 

3) Further work could also constitute improvement of the 

resolution of noisy images. 

 
(a) LR Image. 

   
(b) Ground Truth.  (c) Proposed. 

  
(d) Bicubic.  (e) NEDI. 

  
(f) VDSR.  (g) LoG IBP. 

Fig. 5. Visual Comparison for the Zoomed Extracts Obtained from Peppers1 

Image with an Upscaling Factor of 2. 

 
(a) LR Image. 

  
(b) Ground Truth   (c) Proposed. 

  
(d) Bicubic.  (e) NEDI. 

  
(f) VDSR   (g) LoG IBP 

Fig. 6. Visual Comparison for the Zoomed Extracts Obtained from Lena 

Image with an Upscaling Factor of 2. 
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