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Abstract—Estimation of reference evapotranspiration (ETo) 

is a complex and non-linear problem that is used for the 

quantification of crop water requirements. In this study, random 

forest regression based models are developed to predict the ETo 

of Bhopal city, Madhya Pradesh, India. The meteorological data 

is collected from IMD, Pune for the periods of the years 2015-16. 

Based on the correlation among meteorological variables with 

observed ETo, four different random forest regression models 

are created. Moreover, the effects of three important 

hyper-parameters of random forest, such as the number of trees 

in the forest, depth of the tree, and the number of samples at a 

leaf node are evaluated to estimate ETo using the proposed 

models. These hyper-parameters are applied in three different 

ways to the models such as one hyper-parameter parameter at a 

time, and combination of hyper-parameters using grid search, 

and random search approaches. In this study, the result indicates 

that a random forest regression based model with maximal 

meteorological input variables exhibits great predictive power in 

small execution time than minimal input variables. This study 

also reveals that the model that optimises the hyper-parameters 

using a grid search approach shows equal predictive power but 

takes much execution time whereas random search based 

optimization exhibits the same level of predictive capability in 

less computation time. Stakeholders can utilize random forest 

regression models with sufficient meteorological data to estimate 

crop water requirements, and enhance the food production. 
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I. INTRODUCTION 

Evapotranspiration is a step of the hydrological cycle and 
has numerous applications such as water management, 
irrigation scheduling, etc. Evapotranspiration consists of the 
evaporation and transpiration process. Evaporation removes 
water from the soils, ponds, and rivers whereas transpiration 
removes water from the plants. Reference evapotranspiration 
(ETo) is estimated on smooth grassland which is further used 
to estimate crop evapotranspiration. The FAO-PM56 is one of 
the standard empirical methods provided by the Food 
Agriculture Organization of the United Nations [1]. Such an 
empirical method suffers from complicated calculations. 
Weather stations at various places are equipped with power full 
devices that are constantly observing climatic data. Machine 

learning based models can be applied to such a huge amount of 
data to estimate ETo accurately and efficiently. Many authors 
have applied various machine learning algorithms to estimate 
ETo. 

The ability of M5P, RF, RT, REPT, and KStar and 
neuro-fuzzy inference systems such as ANFIS, ANFIS-GA, 
ANFIS-DE, and ANFIS-ICA has been tested to estimate 
evapotranspiration [2]. Feed-forward artificial neural network 
with the Levenberg–Marquardt (LM) training algorithm has 
been investigated to predict evapotranspiration [3]. Genetic 
programming (GP), support vector machine-firefly algorithm 
(SVM-FFA), artificial neural network (ANN), and support 
vector machine–wavelet (SVM–Wavelet) have been analyzed 
to predict reference evapotranspiration [4]. Extreme learning 
machine (ELM), back-propagation neural networks optimized 
by genetic algorithm (GANN), and wavelet neural networks 
(WNNgra) models have been developed to estimate 
evapotranspiration [5]. Random forest (RF) and generalized 
regression neural network (GRNN) models have been applied 
to estimate daily evapotranspiration [6]. Four tree based 
ensemble algorithms such as random forest (RF), M5 model 
tree (M5Tree), gradient boosting decision tree (GBDT), and 
extreme gradient boosting (XGBoost)) models have been 
compared for estimation of evapotranspiration [7] . GRNN, 
MLP, RBNN, GEP, ANFIS-GP, and ANFIS-SC models have 
been investigated for modeling evapotranspiration [8]. Genetic 
(GA) and gene expression programming (GEP) models have 
been used to estimate reference evapotranspiration [9]. M5P 
Regression Tree, Bagging, Random Forest (RF), and Support 
Vector Regression (SVR) have been compared [10]. The 
performance of kNN k-nearest neighbour, artificial neural 
network, and Adaptive boosting (AdaBoost) to predict daily 
evaporation for the potato crop have been investigated [11]. 
Machine learning algorithms have own hyper-parameters that 
can be tuned at the training duration. Tuning of 
hyper-parameters can affect the performance of the algorithm. 
There are various approaches to tune hyper-parameters. In [12] 
authors show empirically and theoretically that randomly 
chosen trails are more efficient than the trails on grid. [13] 
Performed comparative analysis of various hyper-parameters 
tuning methods to optimize the accuracy of machine learning 
algorithms. In [14] hyper-parameters are optimized using 
weighted random search approaches. 
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Estimation of ETo plays an important role in water saving 
and enhancement of food production leading to food security in 
the world. The selection of machine learning algorithms to 
estimate ETo is a challenging task because they are not good 
for all problems. The size and structures of the data affect the 
performance of the machine learning algorithm. In the current 
study, the random forest regression algorithm is chosen 
because of its high performance and handling a complex 
problem. In this paper, the contribution of works is 
summarized as follows: 

 The reviews of machine learning techniques to estimate 
reference evapotranspiration and hyper-parameter 
tuning approaches are done. 

 Meteorological data of Bhopal city is collected from 
IMD Pune. Descriptive analysis is performed on 
preprocessed data. The correlation coefficient of 
meteorological data with observed ETo is determined. 

 Four different random forest regression based data 
driven models (based on the correlation among 
meteorological variables with observed ETo) are 
developed. 

 Three hyper-parameters (n_estimators, max_depth, 
min_samples_leaf) are applied in three different ways 
(‗one parameter at a time, combinations of parameters 
using grid and random search approaches) to the four 
random forest models. 

 The performances of twenty models are evaluated and 
compared with FAO-PM56 using six statistical 
indicators. 

II. MATERIAL AND METHODS 

A. Study Site 

The proposed random forest regression based data driven 
models are analyzed in this study using meteorological data 
from Bhopal city of Madhya Pradesh state, India. Daily 
meteorological data for the years 2015-16 are obtained from 
the India Meteorological Data, Pune, which includes input 
attributes such as minimum temperature (Tmin) in 0C, maximum 
temperature (Tmax) in 0C, relative humidity (RH) in %, wind 
speed (u) in m/s and mean solar radiation (Rn) in MJ m-2 day-1. 
Daily mean sunshine hours of Bhopal city are taken from the 
Daily Normals of Global & Diffuse Radiation report issued by 
IMD Pune published in the year 2016. Bhopal city has a 
subtropical humid climate. It has an average elevation of 500 
meters and is located at 23.25 latitude and 77.42 longitude. 
Descriptions of training and test datasets are summarized in 
Table I. The monthly variation of ETo at Bhopal city is 
observed, where the average minimum ETo is 2.33 mm/day in 
January 2015 and 2.27 mm/day in December 2016 is noted, 
similarly average maximum ETo is 7.0 mm/day in May 2015 
and 7.47 mm/day in May 2016 is noted. The correlation matrix 
of observed ETo and the meteorological data of Bhopal city is 
given in Table II. It can be observed that ETo has a positive 
correlation with temperature, solar radiation, and wind speed 
parameters whereas a negative correlation with humidity. 
Hence it can be said that ETo is an energy driven process and 

increases as temperature, radiation, and wind speed are 
increased. 

B. FAO-PM56 Equation 

The FAO-56 Penman-Monteith equation is provided by the 
Food and Agriculture Organization of the United Nation and is 
considered a standard worldwide accepted method to estimate 
ETo. It is represented as- 
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TABLE I. STATISTICAL DESCRIPTION OF METEOROLOGICAL DATA 

Climatic 

parameters 
Data set Minimum Maximum Mean 

Standard 

Deviation 

Tmin 
Training 5.8 32.1 19.63 6.0 

Test 7.9 31.2 20.25 5.75 

Tmax 
Training 15.5 46.7 32.17 5.8 

Test 14.2 45.3 32.84 5.74 

RH 
Training 12 99 56.85 21.76 

Test 17 98 55.19 23.04 

u 
Training 0 6.6 1.01 0.65 

Test 0.2 2.9 0.99 0.57 

Rn 
Training 12.3 26.3 18.83 3.48 

Test 12.3 26.3 19.11 3.65 

ETo 
Training 1.71 9.5 4.06 1.57 

Test 1.56 8.1 4.15 1.58 

TABLE II. CORRELATION COEFFICIENT OF METEOROLOGICAL DATA 

WITH OBSERVED ETO 

 Tmin Tmax RH u Rn ETo 

Tmin 1      

Tmax 0.72 1     

RH -0.054 -0.6 1    

u 0.49 0.22 0.09 1   

Rn 0.36 0.70 -0.74 0.14 1  

ETo 0.71 0.87 -0.60 0.47 0.82 1 
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ETo is observed by CROPWAT8.0 software in this study, 
which is a decision support tool and developed by the Land and 
Water Development division of the Food and Agriculture 
Organization of the United Nation. Daily minimum 
temperature (Tmin), maximum temperature (Tmax), relative 
humidity (RH), bright sunshine hours (ls), and wind speed (u) 
are applied as input parameters to CROPWAT8.0 software and 
it returns daily or monthly solar radiation (Rn) and ETo (mm 
day-1). The FAO-PM56 is considered superior to other methods 
if reliable and complete meteorological data are available. 
Huge amounts of meteorological data are recorded at weather 
stations. Estimation of ETo from such large data using machine 
learning based models could be an alternative solution that 
produces accurate and efficient outcomes. 

C. Random Forest Regression 

Random forest is a supervised machine learning algorithm 
that is used for classification as well as regression problems. In 
this study a random forest machine learning algorithm is used 
to estimate ETo of Bhopal city, which is considered as a 
function approximation (regression) problem. It works based 
on the ensemble learning concept, in which instead of making a 
single model, multiple models are created on randomly 
selected data. Therefore the outcome of the random forest 
regression is made based on estimated results of multiple 
models [15]. Hence it is considered a highly stable model. It 
removes the overfitting problem of a decision tree. Multiple 
trees in the random forest lead to higher accuracy. It works 
well for large datasets with high dimensions. Various 
hyper-parameters are provided for the random forest. Tuning of 
hyper-parameters may improve the performance and predictive 
capability of random forests. Number of trees in the forest 
(n_estimators), the longest path between the root and the leaf 
node (max_depth), the minimum required samples to split a 
node in the tree (min_samples_split), the maximum number of 
leaf nodes in the tree (max_leaf_nodes), minimum number of 
samples at the leaf nodes (min_samples_leaf), and criteria to 
split the node in the tree (criterion) are considered some 
important hyper-parameters of random forest. In the present 
study, the performance of random forest is evaluated by tuning 
the three hyper-parameters such as n_estimators (10, 20, 30, .., 
100), max_depth ( 2, 3, 4, .., 10), and min_samples_leaf (2, 3, 4, 
5). These hyper-parameters are applied in three different ways 
to the models such as ‗one hyper-parameter at a time ‘, and 
‗combinations of hyper-parameters‘ using grid search, and 
random search approaches. In the case of ‗one hyper-parameter 
at a time‘, the search space consists of one dimensional hyper 
parameter values. Grid search and random search approaches 
are used when multiple hyper-parameters are applied to the 
model. In this case, the search space consists of a grid of 
hyper-parameter values, and the model is evaluated at each 
point in the grid. In the case of random search, the model is 
evaluated on a randomly opted grid point. Grid search is simple 
to implement and always finds the best combinations of 
hyper-parameter. It is a time consuming approach due to the 
exhaustive search nature. Random search exhibits the same 
performance in less computation time. 

D. Model Development 

Model development steps are shown in Fig. 1. Initially, the 
meteorological and geographical data of Bhopal city is taken 

into memory. Data preprocessing is a significant step to 
estimate ETo accurately. It transforms the data in a meaningful 
way. To obtain the optimum outcomes, missing values are 
filled in different ways. In the present study, missing values are 
filled by the mean value of those attributes. Values of all 
attributes are normalized using the z-score method to make all 
attributes to the same level of magnitudes so have the same 
emphasis. Values of ETo are observed using CROPWAT 8.0 
software (developed by the Land and Water Development 
Division of FAO (The Food and Agriculture Organization of 
the United Nation)) and made as a dependent variable, whereas 
the remaining attributes (Tmin, Tmax, Rn, u, RH) are designated as 
independent variables. The whole dataset is partitioned into the 
training dataset (80%) and the test dataset (20%). 

Four random forest regression based models such as 
RFR-Model1, RFR-Model2, RFR-Model3, and RFR-Model4 
are created. Different combinations of meteorological input 
parameters (made based on high correlation coefficient with 
observed ETo values) are applied to these models. In the 
RFR-Model1, Tmin, and Tmax are applied. In the RFR-Model2, 
Tmin, Tmax, and Rn are applied. In the RFR-Model3, Tmin, Tmax, 
Rn, and u are applied. And finally in the RFR-Model4, Tmin, 
Tmax, Rn, u, and RH are applied. In addition to the input 
combinations of meteorological parameters, three important 
hyper-parameters are tuned in each model. These 
hyper-parameters are tuned and applied to the proposed four 
models in three different ways: ‗one hyper-parameter at a time‘, 
and combinations of hyper-parameters are using grid search, 
and random search optimization approach. Taking into 
consideration four different models and the applicability of 
three hyper-parameters to the models produces twenty 
combinations. Therefore in this study, the performances of 
twenty models are evaluated. Six different statistical indicators 
are used in this study to evaluate the performance of the 
models such as mean absolute error (MAE), mean squared 
error (MSE), root mean squared error (RMSE), Pearson 
correlation coefficient (r), r2 (coefficient of determination), and 
Nash-Sutcliffe(NS). These models are implemented in Python 
with the help of Pandas, Numpy, Sklearn and Matplotlib 
libraries. 

E. Performance Evaluation Indices 

Predictive skills of RFR-MODEL1, RFR-MODEL2, 
RFR-MODEL3, and RFR-MODEL4are evaluated using the 
following parameters: 

Mean absolute error (MAE). 

n

n

i
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where 

= predicted evapotranspiration. 

= observed evapotranspiration. 
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Fig. 1. Flow Char of Random Forest Regression based Models. 

Mean square error (MSE). 
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Root mean square error (RMSE) -A small value of RMSE 
denotes the model fits the datasets strongly. 
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Pearson correlation coefficient shows the strength of the 
relationship between observed and predicted ETo. 
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r2 (coefficient of determination) . A larger value of r2 

indicates the model fits the datasets strongly. 
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Nash-Sutcliffe efficiency (NS) is used to assess the 
predictive skills of models. 
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RFR-MODEL3 
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RFR-MODEL4 

Inputs: 

 (Tmin, Tmax, Rn, 

u,  RH) 

 

Hyper-parameters: 

n_estimators, 

max_depth, 

min_samples_leaf 
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III. RESULT AND DISCUSSION 

As stated earlier in the model development section, taking 
into consideration four different random forest regression 
based models and the applicability of three hyper-parameters to 
the models in different ways produces twenty combinations. 
Therefore in this study, the performances of twenty models are 
evaluated. The execution time span of each model is calculated 
from the beginning of the training period to the end of the 
testing period. 

A. Performance of the RFR-Model1 

In this model, only two meteorological inputs Tmin, and 
Tmax are applied. The performance of this model is 
demonstrated in Table III, where it exhibits mae of 0.48, mse 
of 0.39, rmse of 0.62, r of 0.92, r2 of 0.85, and Nash-Sutcliffe 
of 0.85 when the n_estimators hyper-parameter is tuned. Table 
IV exhibits the performance with mae of 0.45, mse of 0.34, 
rmse of 0.59, r of 0.93, r2 of 0.87, and Nash-Sutcliffe of 0.86 
when the max_depth hyper-parameter is tuned. Table V 
exhibits the performance with mae of 0.45, mse of 0.35, rmse 
of 0.59, r of 0.93, r2 of 0.87, and Nash-Sutcliffe of 0.86 when 
the min_samples_leaf hyper-parameter is tuned. Table VI 
exhibits the performance with mae of 0.46, mse of 0.36, rmse 
of 0.6, r of 0.93, r2 of 0.86, and Nash-Sutcliffe of 0.86 when the 
combination of three hyper-parameters (n_estimators, 
max_depth, min_samples_leaf) are tuned using a grid search 
approach. Similarly, Table VII exhibits the performance with 
mae of 0.46, mse of 0.35, rmse of 0.59, r of 0.93, r2 of 0.87, and 
Nash-Sutcliffe of 0.86 when the same combination of 
hyper-parameters are tuned using a random search approach. It 
can be observed that RFR-Model1 shows almost the same 
predictive capability in all scenarios. The Computation time of 
this model is represented in Table VIII. It takes 10.5 seconds 
when the n_estimators hyper-parameter is tuned, 29.38 seconds 
when the max_depth hyper-parameter is tuned, 70 seconds 
when the min_samples_leaf hyper-parameter is tuned, 301.33 
seconds when a grid search approach is applied, and 11.62 
seconds when a random search approach is applied 
respectively in order to estimate ETo. Regression analysis of 
the RFR-Model1 is shown in Fig. 2 for all scenarios. 

B. Performance of the RFR-Model2 

In this model, only three meteorological inputs Tmin, Tmax, 
and Rn are applied. The performance of this model is 
demonstrated in Table III, where it exhibits mae of 0..29, mse 
of 0.17, rmse of 0.41, r of 0.97, r2 of 0.93, and Nash-Sutcliffe 
of 0.93 when the n_estimators hyper-parameter is tuned. Table 
IV exhibits the performance with mae of 0.29, mse of 0.17, 
rmse of 0.41, r of 0.97, r2 of 0.94, and Nash-Sutcliffe of 0.93 
when the max_depth hyper-parameter is tuned. Table V 
exhibits the performance with mae of 0.29, mse of 0.17, rmse 
of 0.41, r of 0.97, r2 of 0.94, and Nash-Sutcliffe of 0.93 when 
the min_samples_leaf hyper-parameter is tuned. Table VI 
exhibits the performance with mae of 0.29, mse of 0.17, rmse 

of 0.41, r of 0.97, r2 of 0.94, and Nash-Sutcliffe of 0.93 when 
the combination of three hyper-parameters (n_estimators, 
max_depth, min_samples_leaf) are tuned using a grid search 
approach. Similarly, Table VII exhibits the performance with 
mae of 0.29, mse of 0.17, rmse of 0.41, r of 0.97, r2 of 0.94, and 
Nash-Sutcliffe of 0.93 when the same combination of 
hyper-parameters are tuned using a random search approach. It 
can be observed that RFR-Model2 shows the same predictive 
capability in all scenarios but higher than RFR-Model1. The 
Computation time of this model is represented in Table VIII. It 
takes 11.62 seconds when the n_estimators hyper-parameter is 
tuned, 31.9 seconds when the max_depth hyper-parameter is 
tuned, 69 seconds when the min_samples_leaf hyper-parameter 
is tuned, 321.39 seconds when a grid search approach is 
applied, and 9.72 seconds when a random search approach is 
applied respectively in order to estimate ETo. Regression 
analysis of the RFR-Model2 is shown in Fig. 3 for all 
scenarios. 

TABLE III. MODEL PERFORMANCE WHEN ‗N_ESTIMATORS‘ HYPER 

PARAMETER IS TUNED 

Performance 

Indices 

RFR-Model

1 

RFR-Model

2 

RFR-Model

3 

RFR-Model

4 

MAE 0.48 0.29 0.17 0.15 

MSE 0.39 0.17 0.05 0.05 

RMSE 0.62 0.41 0.23 0.22 

Pearson(r ) 0.92 0.97 0.99 0.99 

r2 0.85 0.93 0.98 0.98 

Nash-Sutcliff

e 
0.85 0.93 0.98 0.98 

TABLE IV. MODEL PERFORMANCE WHEN ‗MAX_DEPTH‘ HYPER 

PARAMETER IS TUNED 

Performance 

Indices 

RFR- 

Model1 

RFR- 

Model2 

RFR- 

Model3 

RFR- 

Model4 

MAE 0.45 0.29 0.17 0.15 

MSE 0.34 0.17 0.05 0.05 

RMSE 0.59 0.41 0.23 0.22 

Pearson(r ) 0.93 0.97 0.99 0.99 

r2 0.87 0.94 0.98 0.98 

Nash-Sutcliffe 0.86 0.93 0.98 0.98 

TABLE V. MODEL PERFORMANCE WHEN ‗MAX_SAMPLES_LEAF‘ HYPER 

PARAMETER IS TUNED 

Performance 

Indices 

RFR- 

Model1 

RFR- 

Model2 

RFR- 

Model3 

RFR- 

Model4 

MAE 0.45 0.29 0.18 0.16 

MSE 0.35 0.17 0.06 0.06 

RMSE 0.59 0.41 0.25 0.23 

Pearson(r ) 0.93 0.97 0.99 0.99 

r2 0.87 0.94 0.98 0.98 

Nash-Sutcliffe 0.86 0.93 0.97 0.98 
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TABLE VI. MODEL PERFORMANCE WHEN (N_ESTIMATORS, MAX_DEPTH, 
MAX_SAMPLES_LEAF) HYPER PARAMETERS ARE TUNED USING GRID SEARCH 

Performance 

Indices 

RFR- 

Model1 

RFR- 

Model2 

RFR- 

Model3 

RFR- 

Model4 

MAE 0.46 0.29 0.18 0.17 

MSE 0.36 0.17 0.06 0.06 

RMSE 0.6 0.41 0.25 0.24 

Pearson(r ) 0.93 0.97 0.99 0.99 

r2 0.86 0.94 0.98 0.98 

Nash-Sutcliffe 0.86 0.93 0.97 0.98 

TABLE VII. MODEL PERFORMANCE WHEN N_ESTIMATORS, MAX_DEPTH, 
MAX_SAMPLES_LEAF) HYPER PARAMETERS ARE TUNED USING RANDOM 

SEARCH 

Performance 

Indices 

RFR- 

Model1 

RFR- 

Model2 

RFR- 

Model3 

RFR- 

Model4 

MAE 0.46 0.29 0.19 0.16 

MSE 0.35 0.17 0.07 0.06 

RMSE 0.59 0.41 0.26 0.24 

Pearson(r ) 0.93 0.97 0.99 0.99 

r2 0.87 0.94 0.98 0.98 

Nash-Sutcliffe 0.86 0.93 0.97 0.98 

TABLE VIII. EXECUTION TIME (SECONDS) TAKEN BY EACH MODEL 

 One hyper-parameter at time 

grid 

search 

random 

search Models 
number 

of trees 

depth of 

trees 

samples 

at leaf 

node 

RFR-Model1 10.5 29.38 70 301.33 11.62 

RFR-Model2 11.62 31.9 69 321.39 9.72 

RFR-Model3 11.87 33.24 71.2 316.31 9.48 

RFR-Model4 12.44 36.8 75.57 329.98 11.12 

C. Performance of the RFR-Model3 

In this model, four meteorological inputs Tmin, Tmax, Rn, and 
u are applied. The performance of this model is demonstrated 
in Table III, where it exhibits mae of 0.17, mse of 0.05, rmse of 
0.23, r of 0.99, r2 of 0.98, and Nash-Sutcliffe of 0.98 when the 
n_estimators hyper-parameter is tuned. Table IV exhibits the 
performance with mae of 0.17, mse of 0.05, rmse of 0.23, r of 
0.99, r2 of 0.98, and Nash-Sutcliffe of 0.98 when the 
max_depth hyper-parameter is tuned. Table V exhibits the 
performance with mae of 0.18, mse of 0.06, rmse of 0.25, r of 
0.99, r2 of 0.98, and Nash-Sutcliffe of 0.97 when the 
min_samples_leaf hyper-parameter is tuned. Table VI exhibits 
the performance with mae of 0.18, mse of 0.06, rmse of 0.25, r 
of 0.99, r2 of 0.98, and Nash-Sutcliffe of 0.97 when the 
combination of three hyper-parameters (n_estimators, 
max_depth, min_samples_leaf) are tuned using a grid search 
approach. Similarly, Table VII exhibits the performance with 
mae of 0.19, mse of 0.07, rmse of 0.26, r of 0.99, r2 of 0.98, and 

Nash-Sutcliffe of 0.97 when the same combination of 
hyper-parameters are tuned using a random search approach. It 
can be observed that RFR-Model3 shows almost the same 
predictive capability with minor variations in all scenarios but 
higher than RFR-Model1 and RFR-Model2. The Computation 
time of this model is represented in Table VIII. It takes 11.87 
seconds when the n_estimators hyper-parameter is tuned, 33.24 
seconds when the max_depth hyper-parameter is tuned, 71.2 
seconds when the min_samples_leaf hyper-parameter is tuned, 
316.31 seconds when a grid search approach is applied, and 
9.48 seconds when a random search approach is applied 
respectively in order to estimate ETo. Regression analysis of 
the RFR-Model3 is shown in Fig. 4 for all scenarios. 

D. Performance of the RFR-Model4 

In this model, five meteorological inputs Tmin, Tmax, Rn, u, 
and RH are applied. The performance of this model is 
demonstrated in Table III, where it exhibits mae of 0.15, mse 
of 0.05, rmse of 0.22, r of 0.99, r2 of 0.98, and Nash-Sutcliffe 
of 0.98 when the n_estimators hyper-parameter is tuned. Table 
IV exhibits the performance with mae of 0.15, mse of 0.05, 
rmse of 0.22, r of 0.99, r2 of 0.98, and Nash-Sutcliffe of 0.98 
when the max_depth hyper-parameter is tuned. Table V 
exhibits the performance with mae of 0.16, mse of 0.06, rmse 
of 0.23, r of 0.99, r2 of 0.98, and Nash-Sutcliffe of 0.98 when 
the min_samples_leaf hyper-parameter is tuned. Table VI 
exhibits the performance with mae of 0.17, mse of 0.06, rmse 
of 0.24, r of 0.99, r2 of 0.98, and Nash-Sutcliffe of 0.98 when 
the combination of three hyper-parameters (n_estimators, 
max_depth, min_samples_leaf) are tuned using a grid search 
approach. Similarly, Table VII exhibits the performance with 
mae of 0.16, mse of 0.06, rmse of 0.24, r of 0.99, r2 of 0.98, and 
Nash-Sutcliffe of 0.98 when the same combination of 
hyper-parameters are tuned using a random search approach. It 
can be observed that RFR-Model4 shows almost the same 
predictive capability in all scenarios but higher than 
RFR-Model1, RFR-Model2 and RFR-Model3. The 
Computation time of this model is represented in Table VIII. It 
takes 12.44 seconds when the n_estimators hyper-parameter is 
tuned, 36.8 seconds when the max_depth hyper-parameter is 
tuned, 75.57 seconds when the min_samples_leaf 
hyper-parameter is tuned, 329.98 seconds when a grid search 
approach is applied, and 11.12 seconds when a random search 
approach is applied respectively in order to estimate ETo. 
Regression analysis of the RFR-Model4 is shown in Fig. 5 for 
all scenarios. 

It can be observed that RFR-Model1 demonstrates poor 
predictive performance. The performance of the models is 
improving gradually when the maximal meteorological input 
variables are taken into consideration. Grid search based 
optimization demonstrates the same level of performance but 
takes much execution time and will not be feasible when size 
of search spaces increases whereas random search based 
optimization exhibits better performance than grid search. 
Computation time is shown in Fig. 6. 
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Fig. 2. Regression Analysis of the RFR-Model1 in all Scenarios. 

     

   

Fig. 3. Regression Analysis of the RFR-Model2 in all Scenarios. 
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Fig. 4. Regression Analysis of the RFR-Model3 in all Scenarios. 

     

   

Fig. 5. Regression Analysis of the RFR-Model4 in all Scenarios. 
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Fig. 6. Computation Time of each Model. 

IV. CONCLUSION 

Estimation of ETo has numerous applications. Irrigation 
scheduling is one of them. In this study, random forest 
regression based four different models are developed to 
estimate ETo. Different combinations of meteorological input 
variables (made based on high correlation coefficient with 
observed ETo values) are applied to these models. Moreover, 
the effects of three important hyper-parameters of random 
forest regression, such as the number of trees in the forest, 
depth of the trees, and the number of samples at a leaf nod are 
evaluated to estimate ETo using the proposed models. These 
hyper-parameters are optimized and applied in three different 
ways to the models such as one parameter at a time, and 
combinations of hyper parameters using grid search, and 
random search.  This study reveals that the models with less 
meteorological input variables demonstrate poor performance 
than models with maximal input variables (r is of 0.99, r2 is of 
0.98 and Nash-Sutcliffe is of 0.98 in the case of RFR-Model4). 
Models based on grid search based optimization exhibit the 
same predictive power but take much computation time. The 
findings of this study are that random forest regression based 
models with sufficient meteorological data demonstrate better 
performance and are useful to the stakeholders such as farmers, 
engineers for irrigation scheduling and water management. In 
the future, more hyper-parameter optimization techniques will 
be applied to estimate accurate ETo for various places in India. 
This estimated ETo will be used to calculate crop water 
requirements of Wheat and Maize crops 
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