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Abstract—As a key research subject in the fields of health and 
human-machine interaction, human activity recognition (HAR) 
has emerged as a major research focus over the past few decades. 
Many artificial intelligence-based models are being created for 
activity recognition. However, these algorithms are failing to 
extract spatial and temporal properties, resulting in poor 
performance on real-world long-term HAR. A drawback in the 
literature is that there are only a small number of publicly 
available datasets for physical activity recognition that contain a 
small number of activities, owing to the scarcity of publicly 
available datasets. In this paper, a hybrid model for activity 
recognition that incorporates both convolutional neural networks 
(CNN) are developed. The CNN network is used for extracting 
spatial characteristics, while the LSTM network is used for 
learning time-related information. Using a variety of traditional 
and deep machine learning models, an extensive ablation 
investigation is carried out in order to find the best possible HAR 
solution. The CNN approach can achieve a precision of 90.89%, 
indicating that the model is suitable for HAR applications. 

Keywords—Human recognition; deep learning; hybrid model; 
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I. INTRODUCTION 
Human activity recognition (HAR) is a well-established 

research topic that requires the correct identification of a wide 
range of activities that are collected in a variety of ways. 
Sensor-based HAR makes use of inertial sensors such as 
accelerometers and gyroscopes to measure the acceleration 
and rotational velocity of a body. There are numerous 
advantages to employing sensors to capture a person 
movement rather than cameras and microphones, including the 
fact that they are less sensitive to noise, less invasive for the 
user, and less expensive. Sensors are also less expensive than 
cameras and microphones [1]-[5]. Furthermore, as a result of 
the growing use of sensors embedded in cellphones, these 
devices have become virtually ubiquitous in our lives. 

Aspects of sensor-based HAR that are particularly 
challenging are the encoding of information and the 
representation of time. Previous classification systems 
depended on features extracted from kinetic signals that were 
first constructed and then implemented into the system. Please 
keep in mind that these characteristics are largely picked on 
the basis of heuristics, which are determined by the nature of 
the work at hand. If you have a deep grasp of the application 
area or extensive human experience, you may find that when 
you extract the characteristics from the data collection, you 
only get a shallow set of characteristics. As previously stated, 

standard HAR techniques do not scale well to complex motion 
patterns and do not perform well on dynamic data, which is 
defined as data gathered from streams that remain forever 
outside of the lab [6]-[9]. 

Automated and deep approaches to human-computer 
interaction are becoming increasingly prevalent in the field of 
human-computer interaction. Most deep learning research in 
biometrics has been focused on face and speaker recognition 
[12]. The selection of significant characteristics from the data 
is delegated to the learning model through the use of data-
driven signal classification methods, which are used to train 
the learning model on the data. CNNs are particularly useful 
when it comes to detecting spatial and temporal correlations 
between signals [10]. Efficient features are first extracted from 
raw data. The features include mean, median, autoregressive 
coefficients, etc. [11]. 

This paper presents the construction of an activity 
recognition model that incorporates convolutional neural 
networks (CNNs). The CNN network is used to extract spatial 
features, whereas the LSTM network is used to learn about 
time-related information. It is necessary to do a thorough 
ablation analysis utilizing a variety of classical and deep 
machine learning models in order to determine the most 
effective HAR solution possible. The CNN technique can be 
employed for HAR applications because of its high precision 
of 90.89%. 

II. RELATED WORK 
When it comes to common supervised machine learning 

techniques, the generic Activity Recognition Chain [13] 
includes steps such as preprocessing, extraction of features, 
and classification. When it comes to deep learning (DL), 
CNNs are an example of a technique that does not require the 
extraction of features from raw data before classification [14]. 
CNN feature extraction is accomplished through the 
convolution of the input signal with a kernel [15]. The 
outcome of the convolution technique is a feature map that 
contains information about the data. 

Both advantages and drawbacks arise from the ability of 
CNNs to automatically learn properties. It streamlines the 
ARC [14] by automating jobs that would otherwise require 
domain-specific expertise, like the identification of a suitable 
feature collection. In contrast to the feature selection 
approach, which starts with the largest number of features 
feasible and narrows it down to only those that provide the 
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best discrimination across target classes, CNNs do not require 
any of these phases. Instead, the use of a CNN incorporates 
the feature extraction phase into the classifier model, requiring 
an extended training period to generate adequate features and 
exposing the approach to problems such as those arising from 
cold starts. In order to mitigate this problem, it is common in 
computer vision to use pre-trained CNN models for feature 
extraction, such as those developed by Raja Raman et al. [16]. 

In the MLP classifier, there are numerous dense, fully 
connected layers that lead to an output layer with as many n-
nodes as the number of target classes present in the input. A 
vector of HCF is used as an input to a regular MLP in order to 
feed it (a). In the CNN scenario (b), convolutional layers are 
employed to extract features from the data [17]. 

An alternative is to do a max-pooling operation after each 
of the convolutional layers, which will result in a further 
reduction in the feature map size due to down sampling of the 
data [17]. A 1D vector that has been flattened from the output 
of the previous convolutional layer is supplied into the MLP 
layer just as it was in the HCF example. While IMU signals 
frequently contain a temporal component, 2D convolution is 
more commonly used in the processing of picture audio [18] 
and video audio [19]. 

Rectified Linear Unit (ReLU) activation functions are one 
of the most frequently used activation functions for 
convolutional layers, while Softmax activation functions are 
commonly applied in multi-class classification settings [15]. It 
is possible to employ alternative activation functions in the 
case of multi-label classification, such as the sigmoid function 
[20]. 

III. PROPOSED METHOD 
A two-pronged approach will be used to experiment with 

CNN in this section. In the first phase of this work, CNN 
automatically retrieved features with a variety of hyper 
parameters and topologies, which are then analyzed and the 
results were presented. A real-world dataset was utilized for 
the second aim, which investigated the viability of employing 
a pre-trained CNN feature extractor for HAR. It is useful to 
take advantage of a CNN ability to automate feature extraction 
while avoiding the cold-start difficulty. 

Two steps in a case study were recommended, which are 
depicted in Fig. 1. 

In the first stage, a CNN feature extractor is trained to 
extract features from images [Fig. 1(a)]. This step involves 
experimenting with different topologies and hyper parameter 
combinations. The best-performing HAR models have been 
discovered as a result of this research. It is only used as a 
feature extractor in the second stage, in order to convert raw 
data into a suitable input vector for a second classifier model 
in the third phase. The flattening layer generates feature 
vectors as a result of a succession of convolutional processes, 
and the weights of the CNN networks are fixed at the 
beginning of the first phase. 

 

 
Fig. 1. Two-pronged Approach will be used to Experiment with CNN. 

Following an aim similar to transfer learning, the feature 
vector formed by taking the output of the flattening layer can 
be used to represent raw data in a different context by using 
the feature vector created by taking the output of the flattening 
layer. As seen in Fig. 1(b), the characteristics generated by the 
pre-trained classifier are utilized to train the second model, 
which is subsequently used to train the first model. Finally, as 
illustrated in Fig. 1(c), the second model is put to the test. 

In several preliminary experiments, HCF and CNN were 
compared. However, the breadth of the current case study was 
restricted due to the nature of the data. For example, CNN 
feature extractor for HAR is used in this work to explain how 
to use the tool, and some additional data and analysis are 
included that was not included in the previous study to 
demonstrate how to utilize the tool. 

As a result of the prior investigation, several key data 
requirements for the case study were identified. For the first 
phase, it was found that data collected in controlled 
environments was the most appropriate choice. The likelihood 
of noisy labels being introduced into these datasets is low due 
to the fact that they are developed in a controlled laboratory 
environment. Consider that the comparison with HCFs may be 
influenced by issues such as label noise, which could result in 
an incorrect rating. 
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A. Network Architecture 
Because each sensor samples six different signal 

components, the type of input examples that the network 
receives is determined by the sensor design. These six 
different signal components are then organized into a single 
channel image matrix of size 6×204×N, which is the largest 
size available. Consequently, the network input takes the 
shape of 6×204×N, where N is the number of channels and is 
equivalent to the number of sensors used for sampling in the 
network. Model-driven input adaptation is the term used to 
describe this technique, which is capable of recognizing both 
spatial and temporal patterns within the signal components. 

The convolutional model is illustrated in its entirety in 
Fig. 3. Following the input layer, there are three convolutional 
layers and three max-pooling layers. Following this procedure, 
each input channel receives a collection of multiple feature 
maps, each with kernels of sizes 3×5, 2,4×2, and 2×2 
according to the size of the input channel. It is necessary to 
pad the input of each convolutional layer correctly in order to 
ensure that there is no resolution loss caused by the 
convolutional process. A batch normalization procedure is 
employed during the creation of each convolutional layer. In 
the three max-pooling layers, kernels with sizes of 3 3, 2×2, 
and 3×2 are employed. Following that there are three dense 
layers of 500, 250, and 125 units apiece, which together form 
a network that is entirely connected. During the training 
phase, neurons have a 0.5% chance of being dropped from the 
thick layers. 

It is true that the cross-entropy function is used to measure 
loss; however, it is also used as an activation function for all 
of the network nodes as well. The Adam optimizer is a 
stochastic approach to optimization that uses a random 
number generator. Units in the output layer correspond to the 
number of actions performed by each group, and there are m 
units in total. The softmax method will return the class of the 
input windows that is the most likely to be encountered. 

 
Fig. 2. CNN Architecture. 

The Fig. 2 represents the CNN Architecture. The input 
results in fully convolutional network (FCN).We have chosen 
a set of hyper parameters that are consistent across all activity 
groups and sensor configurations. These parameters were 
chosen based on best practices in the literature and empirical 
evidence. It has been discovered that a batch size of 1024 can 
significantly speed up the learning process when compared to 
smaller batches, while not being computationally prohibitively 
complex to maintain. 

Depending on the behavior of specific combinations, there 
are between 150 and 300 training epochs available. The 
starting rate of learning is set at 0.005% each minute. Rather 
than attempting to construct the most efficient network, our 
goal is to assess the classification potential of various sensor 
technologies. 

We make our architectural decisions as a result of a very 
normal network configuration, which is based on modest 
kernels, standard regularisation methods, and a small number 
of hyperparameters. If no regularisation process is employed, 
three convolutional layers will result in overfitting if no 
regularisation procedure is used. The inclusion of extra 
convolutional or dense layers has little effect on the 
performance of the network, but the introduction of dropout 
helps to stabilise learning and improve stability. 

IV. RESULTS AND DISCUSSION 
The Tensor Flow 1.7 framework is utilized in the 

construction of the network. Following the recording of the 
activity, the signal is decomposed into 204 points, each of 
which corresponds to roughly two seconds of movement, with 
a stride of five points between each point. Reduced window 
sizes are associated with enhanced classification performance, 
and in the context of CNNs, the limited structure of the 
network input data makes the training process easier. The 
shape of the generated matrix is determined by the number of 
sensors employed to sample the window: 6N×204 in this case. 
This has resulted in a significant increase in the quantity of 
training and testing samples available. It is uneven because the 
activities have varying execution periods and because 
different subjects may complete the same activity at various 
rates, which makes the dataset unbalanced. 

For the purpose of evaluating the performance of our 
classification system, we employ a typical 5-fold cross-
validation approach. To separate the accessible datasets, we 
employ topics rather than windows as a division method. As a 
result, this prevents overfitting and enhances the 
generalization of model outputs as a result. In order to produce 
each fold, an 80/20 split is achieved by separating four people 
from a group of 19, as mentioned previously. 

Through this case study, which is shown in Fig. 3 to Fig. 7 
were able to investigate the impact of various hyper 
parameters and CNN settings on the feature learning 
capabilities of our model. Regarding feature learning in HAR, 
this experiment provided an excellent overview of the main 
elements that determine a CNN ability to learn new features 
and how these aspects interact with one another. While the 
results from the first phase of the case study demonstrated that 
CNNs can perform at least as well as the best HCFs, the 
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results from the second step demonstrated that CNNs can 
perform at least as well as the best HCFs. This is why CNNs 
must be trained before being used, and as a result, they are 
susceptible to the cold-start problem. 

 
Fig. 3. Accuracy. 

 
Fig. 4. Precision. 

 
Fig. 5. Recall. 

 
Fig. 6. F1-Measure. 

To evaluate CNN feature learning methods for dataset test 
cases, a pre-trained CNN feature extractor was employed on a 
real-world dataset to extract features from it. Real-world 
datasets enable the evaluation of CNN automatic features in a 
more realistic environment than was previously possible. The 
problem of dealing with uncontrolled environments was 
brought to light through realism-based testing. 
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Fig. 7. Computational Time. 

Although a larger number of training epochs were 
required, it was demonstrated that SGD enabled the model to 
be trained with greater accuracy on the test set, leading to an 
F-Score of 94% in the more challenging target activities, 
which included transitions as a NULL class. We were 
successful in identifying a suitable network architecture that 
matched our feature learning criteria while also keeping the 
model complexity under control. The architecture was 
evaluated using data from a large real-world dataset that was 
made available to the public. 

V. CONCLUSION 
This paper presents the construction of an activity 

recognition model that incorporates both convolutional neural 
networks (CNNs) and convolutional neural networks (CNNs). 
This work was primarily intended to demonstrate the usage of 
a CNN pre-trained feature extractor rather than to provide a 
comprehensive analysis of the hyper parameters and settings 
used in the training process. The optimization of models, on 
the other hand, is subject to several restrictions. When 
analyzing designs with varied numbers of convolutional layers 
and convolution kernel sizes, for example, only the ReLU 
activation function was used to achieve the best results. 

 Other modes of activation may be investigated in future 
investigations. In a similar vein, the default Keera’s learning 
rate of 0.001 was employed. The CNN network is used to 
extract spatial features, whereas the LSTM network is used to 
learn about time-related information. It is necessary to do a 
thorough ablation analysis utilising a variety of classical and 
deep machine learning models in order to determine the most 
effective HAR solution possible. The CNN technique can be 
employed for HAR applications because of its high precision 
of 90.89%. 
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