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Abstract—This research focuses on the use of Light Detection 
and Ranging (LiDAR) sensors for robot localization. One of the 
most essential algorithms in LiDAR localization is the breakpoint 
detector algorithm which is used to determine the corner of the 
room. The previously developed breakpoint detection methods 
have weaknesses, such as the Adaptive Breakpoint Detector 
(ABD), could generate dynamic threshold values. The ABD 
results, on the other hand, still require Line Extraction to obtain 
the corner breakpoint. Line Extraction method, e.g. Iterative 
End Point Fit (IEPF), is used to categorize data, resulting in the 
generation of a line pattern as an interpretation of a wall. The 
computational method for obtaining the corner breakpoint 
becomes longer as the line is extracted. To address this issue, our 
algorithm proposes a new threshold area in the form of an ellipse 
with the threshold value parameter obtained from previously 
identified room size and sensor characteristics. As a result the 
corner breakpoint detection becomes more adaptive. The goal of 
this research is to create an Adaptive Line Tracking Breakpoint 
Detector (ALTBD) approach that will reduce the computing time 
required to detect corner breakpoints. Furthermore, the Line 
Extraction method required for corner breakpoint detection is 
modified in the ALTBD. To distinguish between the edge of the 
wall and the corner of the room, the boundary value is increased. 
The ALTBD method was tested in a simulation arena comprised 
of multiple rooms and halls. According to the results, the ALTBD 
computation time is faster in detecting corner breakpoints than 
the ABD IEPF method, also the accuracy for determining the 
position of the robot was improved. 

Keywords—LiDAR; breakpoint detector; robot localization; 
corner detection; line segmentation 

I. INTRODUCTION 
Robot localization which is a method to acquire 

information about a robot's direction and position in its 
working environment is required by every autonomous robot in 
order to move and accomplish its task. Three types of robot 
localization are global localization, predictive localization, and 
local localization [1]. When the robot is outside, global 
localization works relatively well [2]. Whenever the robot is 
indoors, it uses probabilistic localization, local localization, or 
a combination of the two [3]. Our research leads to 
probabilistic localization, which determines the robot's position 
and orientation based on sensor measurement data combined 
with prior knowledge in the form of a map of the arena in the 
room. 

Several papers have been written about the sensors used in 
localization and probabilistic localization methods, including 

encoder sensors [4][5], magnetic compass [6], magnetic 
anomalies map [7], low-cost gyro [8], ultrasonic sensors [9] 
[10], RFID [11] to the Light Distance and Ranging (LiDAR) 
sensor. Sensors such as encoder disc sensors, magnetic 
compasses, low-cost gyros, and ultrasonic sensors require 
significant movement before the robot can identify its position. 
If time is of the essence in accomplishing the objective of the 
robot, the sensor is not the first option to be installed in the 
robot. As a result, this research utilizes a LiDAR sensor 
capable of identifying the position and surroundings without 
requiring the robot to move, improving the robot's movement 
more effective. 

Previous research has widely proposed the LiDAR sensor 
since it has excellent spatial accuracy, fast data renewal, and 
does not rely on object illumination or reflectance [12]. This 
research focuses on determining the form of the room using the 
LiDAR sensor measurement results. The issue is determining 
how to identify the geometry of the space based on its corner 
position. Breakpoint detection is one way for determining the 
corner of a room. This method detects the room's corner points 
and the edge of the wall by verifying the discontinuity between 
the two points scanned consecutively by the LiDAR sensor 
[13]. 

Breakpoint detection method that combines Successive 
Edge Following (SEF), Line Tracking (LT), and Iterative End 
Point Fit (IEPF) was developed by Siadat et al. [14]. However, 
all three methods have a weakness: finding a consistent 
threshold value to detect a breakpoint between two consecutive 
sensor scan points is challenging. The observed breakpoints 
can take the form of room corners or the edge of a wall. The 
breakpoint detection threshold value should be dynamic, based 
on the distance between the sensor and the object being 
scanned [13]. 

Several researchers have indicated determining dynamic 
threshold values. The threshold value in Lee et al. [15] research 
is based on the current and prior measurement distance values. 
The DIET method, which takes the measurement angle into 
account when establishing the threshold value, was developed 
by Dietmayer et al. [16]. The method by including the virtual 
wall angle parameter as an estimate of the detected wall slope 
angle was improved by Santos et al. [17]. The threshold value 
in their Adaptive Breakpoint Detector (ABD) method as well 
developed by Borges and Aldon [13]. They use auxiliary 
angles to determine the point of intersection and use it as a 
reference for the threshold value, and Certad et al. [18] also 
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adjusted the threshold value in the ABD. They modify the 
measurement distance value in the ABD equation with the 
shortest distance value from either the current or previous 
distance. In his research on the ABD method, Su Young et al. 
[19] identified the lack of a line cluster perpendicular to the 
sensor as a problem. The challenge was then solved by 
combining the ABD and LT methods to create the Dual 
Breakpoint Detector (DBD), and Weerakoon et al. [20] also 
used ABD in their research. In order to increase the feature 
extraction rate value, Weerakoon et al. [20] research suggests 
taking the measurement error value and the longest distance 
value into consideration. The corner breakpoint was 
determined in three phases in this investigation. The first stage 
is ABD, which is used to segment the data depending on a 
threshold value. The following stage is Line Extraction with 
IEPF. Line Extraction is a method for organizing data based on 
line patterns that can be formed as an interpretation of a wall. 
The intersection of the two lines obtained by the IEPF two-
segment linear regression is then used to locate the corner 
breakpoint in the third phase. Dingyao et al. [21] research's to 
determine the corner breakpoint included one more phase into 
four phases, i.e. point feature matching to compare angles and 
distances. The second, third and fourth stages of Corner 
Breakpoint Detection render the algorithm's computational 
process worthless. 

To overcome these issues, The Adaptive Line Tracking 
Breakpoint Detector (ALTBD) method is developed in this 
research. The ALTBD method is a variation of the Line 
Tracking (LT) and Adaptive Breakpoint Detector (ABD) 
algorithms that introduces a new threshold area to improve 
corner breakpoint detection. By using established room sizes, 
this method also solves the challenge of finding the threshold. 
The breakpoint detection threshold value is made dynamic in 
this method by taking into consideration the difference 
between the sensor measurement distance and the projected 
virtual wall distance. Furthermore, the Line Extraction method 
required for corner breakpoint identification is improved in the 
ALTBD to reduce computational time. To distinguish between 
the edge of the wall and the corner of the room, the boundary 
value is increased. 

This paper outline is as follows: The next section reviews 
some relevant works on LT and ABD method. Section III 
defines the proposed adaptive line tracking breakpoint detector 
method. Section IV provides the methodology that used to in 
this research, and Section V shows the results and analysis, 
whilst the conclusion is presented in the final section. 

II. RELATED WORK 
In this section, several methods are discussed as the basis 

for the proposed method, namely Line Tracking (LT) and 
Adaptive Breakpoint Detector (ABD) method. 

A. Line Tracking Method 
Line tracking (LT) is a method of detecting breakpoints or 

segmenting line data that use linear regression and works in 
Cartesian coordinates. The following pseudo code [22] 
describes the working principle of this method: 

1) Begin with two points of measurement, then draw a line 
between them. 

2) Insert the next point to make a new line model. 
3) Reprocess the line's parameters. 
4) If the result of the generated line is satisfactory, 

continue (repeat to step 2). 
5) If the result is not satisfactory, make the last point the 

line segment's end point, re-process the line's parameters, and 
make it as one line segment. 

6) Go back to step 2 after completing the next two points. 

The difficulty in defining the threshold value (Dmax) to 
determine the breakpoint between the two measures is this LT's 
disadvantage [13]. Fig. 1 depicts two segments of data 
generated by LT when d5 > Dmax. 

B. Adaptive Breakpoint Detector Method 
The Adaptive Breakpoint Detector (ABD) method to 

address the issue of a fixed threshold value at LT was proposed 
by Borges and Aldon [13]. This method performs on the same 
principles as the LT method, which utilizes a threshold to 
detect breakpoints. The distinction is that there is no linear 
regression in this method, and the threshold value is made 
dynamic by utilizing the angle difference between the two 
measurement results. The ABD method is illustrated in Fig. 2 
along with the parameters utilized. In ABD, breakpoints are 
detected by creating a border circle with a radius of Dmax and a 
center at pn-1. A breakpoint is detected if the current scan point 
(pn) is found to be outside the circle. As a result, the previous 
scan point (pn-1) is considered the end point of the current 
segment, whereas pn is considered the beginning point of the 
following segment. 

The adaptive breakpoint detector (ADB) method has the 
advantage of having a threshold value (Dmax) that can change 
depending on the previously created distance (rn-1) and a 
difference in the angle of measurement (Δϕ). This value is used 
as a comparison (border value) to distinguish between two 
segments of line data. 

Equation (1) [13] describes the data terms stated as 
breakpoints: 

if ||pn– pn-1|| > Dmax then kb
n := TRUE and kb

n-1 := TRUE        
(1) 

Where, ||pn– pn-1|| represents the distance between the pn 
point and the pn-1 point. Dmax is the breakpoint threshold whose 
value is determined by the sensor's distance to a measurable 
object (rn). The current measured position is pn, while the 
previous measured point is pn-1. Fig. 2 depicts this ADB 
method. Detection is accomplished by drawing a dividing 
circle with the center point at pn-1 and a radius of Dmax. 

 
Fig. 1. Line Tracking Method [14]. 
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Fig. 2. Adaptive Breakpoint Detector Method [4]. 

If the current scan point (pn) is found to be outside the 
circle, pn-1 is considered the endpoint of the current segment 
and pn is determined the start point of the following segment. 
Equation (2) [13] describes its mathematical function: 

||ph
n – pn-1|| = rn-1. (sin (Δϕ)/sin(λ-Δϕ))           (2) 

||ph
n – pn-1|| as the breakpoint testing threshold value 

Equations (3) and (4) are provided a real implementation of the 
threshold formula with [13]: 

Dmax = ||ph
n – pn-1||+ 3σr             (3) 

Dmax= rn-1. (sin (Δϕ)/sin(λ-Δϕ)) + 3σr           (4) 

Where, σr is the laser scanner manufacturer's parameter and 
λ the angle between the virtual line and the line connecting the 
object point to the laser scanner (rn-1). 

1) Line extraction: The ABD method generates 
breakpoints only at the ends of segments, which we refer to as 
terminal breakpoints in our research. As a result, another 
algorithm, Line Extraction, is required to reprocess existing 
data into new segments that can represent a line. As a result, 
the ABD computation time exceeds the LT in determining the 
angular breakpoint. Linear Regression [23], Split and Merge 
algorithm [24], Iteration End Point Fit [25], RANSAC 
algorithm [26], Hough Transform algorithm and Expectation-
Maximization algorithm are some line extraction algorithms 
that can be used [27]. The Iteration End Point Fit (IEPF) 
method is discussed in this chapter as a comparison to the new 
method developed. 

The IEPF algorithm [25] is a recursive Line Extraction 
method. Data checks are performed repeatedly for each 
segment base due to its recursive nature. The IEPF method is 
depicted in Fig. 3 by truncating one segment of data resulting 
from ABD into three data segments that form three lines. First, 
the initial data (p1) and final data (pn) are connected to form a 
straight line. The distance between the second data and the line 
is then calculated orthogonally. This is repeated for the third 
data point, and so on until all members of the segment have 

been checked. The maximum orthogonal distance (di
m) of the 

result will be compared to the limit value (dthd). The limit value 
is the comparison value that was declared at the beginning. If 
the maximum value (di

m) is greater than the limit value, the 
segment will be halved at the maximum distance point. Fig. 9 
illustrates how the first cut of a segment (Z1 = { p1,.., pn}) into 
two segments (Z2 = {p1,..., pi} and Z3 = {pi,..., pn}) occurs at 
the pi point. The initial data (p1) and final data (pi) of the Z2 
segment are then connected to form a straight line. The 
distance between all of the data points in the segment Z2 is then 
calculated orthogonally to the line. The result's maximum 
orthogonal distance (dh

m) will be recompromised by the limit 
value (dthd). One line segment has been checked because the 
maximum orthogonal distance (dh

m) is less than the limit value 
(dthd). The segment is a Z2 made up of p1 to pi. The Z3 segment 
is treated similarly. However, the maximum orthogonal 
distance (dj

m) in the Z3 segment {(pi,..., pn)} is greater than the 
limit value (dthd), so the segment must be cut in half with the 
intersection point at the pj. The maximum orthogonal distance 
between the segments {pi,..., pj} and {pj,..., pn} is then 
calculated and compared to the limit value (dthd). The data 
grouping on the Z1 segment is complete because the maximum 
orthogonal distance of each segment is less than the limit value 
(dthd). Through IEPF on the Z1 segment, the final result is three 
line segments, namely S1{p1,..., pi}, S2{pi,..., pj}, and S3{pj,..., 
pn}. 

Weerakoon et al. [20] research's describes examples of 
ABD and Line Extraction implementation. The ABD threshold 
value equation was modified to Equation (5) in the research 
[20]. 

Dmax = min{rn,rn+1}(1 - 3σr)(sin (Δϕ)/sin(λ-Δϕ)) 

+ 3σr.max{rn,rn+1}             (5) 

The ABD method has a disadvantage in that the angle value 
generating the threshold value is obtained based on the results 
of the experiment and requires Line Extraction to detect the 
corner breakpoint. 

 
Fig. 3. IEPF Algorithm Working Principle. 
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III. THE PROPOSED ADAPTIVE LINE TRACKING 
BREAKPOINT DETECTOR METHOD 

A. Propose a New Method (Adaptive Line Tracking 
Breakpoint Detector) 
The Adaptive Line Tracking Breakpoint Detector 

(ALTBD) method we propose is a combination of the Line 
tracking (LT) and Adaptive Breakpoint Detector (ABD) 
methods. The existing breakpoint detector (ABD) obtains 
coverage in the form of a circle with a threshold value 
diameter, whereas ALTBD obtains coverage in the form of an 
elliptical area with an elliptical center point from the prediction 
point. The LT method calculation yielded the prediction point. 
Although elliptical shapes require more complicated equations, 
they depict a point spread rather than a circle. The threshold 
value on ABD is determined by the virtual angle derived from 
the experiment, whereas in ALTBD, the parameter producing 
an elliptical area, which is a minor value, is made adaptable by 
taking the measurement error of the LiDAR sensor into 
consideration. 

The linear equation F'n(x) generated by LT is used to 
predict the next point of measurement, as shown in Fig. 4. The 
point's polar angle value (θn+1) is then used as an input to 
calculate the equation of the line Fn+1(x). The predictive point 
p'n+1 is then obtained by intersecting the two equations of the 
line. The prediction point p'n+1 is defined as a point (0,0) or the 
center point of the elliptical area, with the x-axis representing 
as the major axis and the y-axis representing as the minor axis. 
The length of the major axis (qmaxn+1) is determined by the 
distance between the points pn and the prediction line F'n(x) at 
the point of intersection. Minor axis length (hmaxn+1) is 
determined by calculating using orthogonal regression against 
the prediction line and the error values at the previous points. 
Fig. 4 and 5 depict the parameters used in the ALTBD method. 
The ALTBD algorithm's flow is described in detail: 

 
Fig. 4. ALTBD Method. 

 
Fig. 5. Corner Detection ALTBD. 

Algorithm for Detecting Breakpoints in Adaptive Line 
Tracking: 

1) Determine the linear regression equation from three starting 
points (pn-2, pn-1, pn) and transform it into a predictive line 
(F'n(x)). 

2) Determine the difference between the starting point (jn-2, jn-1, 
jn) and the predicted line (F'n(x)). 

3) Using the equation 𝞮𝞮n = |jn |/rn, calculate the percentage error 
(𝞮𝞮n-2, 𝞮𝞮n-1, 𝞮𝞮n) relative to the distance to the sensor (rn). 

4) Determine the average error percentage, σn= (Σn
i=n-2𝞮𝞮i)/3 

5) Determine the minor axis limit, hmaxn+1 = σn + σoffset . 
6) Verify out the next angle data (θn+1). 
7) Create an equation using the angle gradient (θn+1) and the line 

(Fn+1(x)) that passes through the point (0,0). 
8) Make the intersection point of the prediction line (F'n(x)) and 

the scan line (Fn+1(x)) the prediction point (p'n+1).  
9) Calculate the distance between the prediction point (p'n+1) and 

the last scan point (pn) parallel to the prediction line (F'n(x)), 
and set it as the major axis limit (qmaxn+1). 

10) Read the next data set (pn+1). 
11) Transform the predicted point (pn+1) to new coordinates, with 

the predicted point (p'n+1) as the origin (0,0) and the predicted 
line (F'n(x)) as the x-axis. 

12) Calculate the new position of the point (pn+1), and update x by 
kn+1 and y by jn+1, 
kn+1 = cos(θ).(xpn+1 - xp’n+1) + sin(θ).(ypn+1 - yp’n+1) 
jn+1 = - sin(θ).(xpn+1 - xp’n+1) + cos(θ).(ypn+1 - yp’n+1) 

13) Enter the minor axis boundary (hmaxn+1), the major axis 
boundary (qmaxn+1), and the new measurement point position 
(kn+1, jn+1) into the ellipse equation,  
e_result = ((k2

n+1)/(qmaxn+1)) + ((j2n+1)/(hmaxn+1)) 
14) If e_result > 1, a breakpoint has been detected. Then, 

determine whether the position of the point (pn+1) is within the 
tolerance range of the corner (Dthcorner). 

15) If it is within the corner’s tolerance limit, set the point (kn+1,0) 
as the corner breakpoint and transform it back to the original 
coordinates. 

16) If it is not within the corner’s tolerance range, use the 
following three measurement points (pn+2, pn+1, pn) as the 
starting point and return to step 1. 

17) If e_result ≤ 1, then calculate the difference between the 
measurement points and the prediction line (jn+1). 

18) Recalculate the percentage of error, 𝞮𝞮n+1 = |jn+1|/rn+1 
19) Recalculate the minor axis limit, hmaxn+1 = σn+1 + σoffset  
20) Repeat step 6. 
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IV. METHODOLOGY 

A. Materials and Tools 
This research was performed out with the following 

hardware and software: The RpLidar A1 module, Beaglebone 
Black Wireless, Intel i5 2.5 GHz RAM 4GB Win32bit Laptop, 
and Jupyter Notebook. 

B. Stages of Research 
The seven research stages in the development of the 

Adaptive Line Tracking Breakpoint Detector (ALTBD) 
method are as follows: data acquisition, LiDAR data noise 
model design, LiDAR data generator module design with 
simulation, data processing using the ALTBD method, data 
processing using comparison methods (ABD Line Extraction 
and LT), testing the ALTBD algorithm, and analysis and 
evaluation. Fig. 6 depicts the flow of the research method. 

Because the data utilized in the test will use simulation data 
from the LiDAR data generator module, the first stage of this 
research is LiDAR data acquisition, which is done in real time 
to obtain a noise sensor model. The purpose of this data 
acquisition is to determine the noise characteristics of the 
RpLidar data and to validate the noise characteristics of the 
sensor manual document. Observations were taken on a 
straight wall with no obstacles that was greater than 5 meters 
long. 

1) LiDAR data acquisition: The next stage is LiDAR data 
acquisition, which is done to create a LiDAR sensor noise 
model. The distance between the LiDAR sensor and the wall 
was varied from 15 to 225 cm with 5 cm intervals to obtain 
appropriate data. For each distance variation, data were 
collected five times. 

2) Design of noisi model for the RpLiDAR A1: The 
simulation module use the noise model to verify that the 
generated data is as close to the real LiDAR data as possible. 
Residual noise will be added at random and generated using a 
normal distribution. The model is built using a polynomial 
regression method on the outcomes of LiDAR data collecting. 
Linear or polynomial interpolation is used to approximate the 
values of the element variables. 

3) Design of a LiDAR data generator simulation module: 
The arena simulation module is used to test the ALTBD 
method. A square-shaped arena with four rooms and multiple 
tunnels is used for simulation testing. That's the 2.4 m by 2.4 m 
arena for the Indonesian Fire Extinguisher Robot Contest 
(KRPAI 2019). In the KRPAI guide document [28], the 
position of the doors in rooms 3 and 4 distinguishes four 
distinct room layout combinations. This simulation module is 
made up of five blocks, as depicted in Fig. 7. This module 
takes as input the robot's position (x,y) and direction (azimuth), 
as well as the choice of space combinations 3 and 4. This 
module generates level 3 scan data with angle and distance 
attributes. 

4) Testing: The tests were analyzed by comparing three 
Breakpoint Detector methods: the one we developed 
(ALTBD), the LT method, and the ABD IEPF method from the 
Weerakoon et al. [20] research. In this research, the computing 
time, percentage of distance inaccuracy, and position 
difference between the Breakpoint Pattern Recognition results 
will be sought from each method. Computational time is 
measured beginning with level 3 scan data, which is processed 
in each method to produce an output in the form of a corner 
breakpoint. The percentage of distance measurement error is 
calculated by subtracting the results of the Breakpoint Detector 
from the position of the reference breakpoint. 

The difference is then compared to the sensor's distance 
from the reference breakpoint. But first, the Breakpoint 
Detector data must pass through the Breakpoint Extraction 
module to enable determining the reference breakpoint point 
easier. This research will investigate the position difference 
between the Breakpoint Pattern Recognition results and the 
actual global position. On the LiDAR data generator simulation 
module, the global position is the input sensor location in the 
arena. Fig. 8 depicts the test diagram. 

 
Fig. 6. Research Stages. 

 
Fig. 7. Arena Simulation Module Block Diagram. 
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Fig. 8. ALTBD Test Method. 

a) Breakpoint Extraction: This module sorts 
breakpoints, namely corner breakpoints, corner breakpoint 
terminal points, and other points that form only one side of the 
wall. This module also removes breakpoints that are 
overlapping. The breakpoint extraction module is required to 
support and facilitate the pattern matching process, allowing it 
to be developed as needed to achieve the best results. 

b) Breakpoint Pattern Recognition: The closest or 
adjacent star methodology is used in this research’s breakpoint 
pattern identification method, which is based on the concept of 
a star pattern recognition algorithm using a satellite star sensor 
[29]. The method's star pattern is replaced with a breakpoint 
pattern. The main catalog and the sub-catalogue are the two 
catalogs. The primary catalog contains IDs for all breakpoints, 
as well as two attributes: position in Cartesian coordinates and 
type (x,y). The sub catalog contains all of the neighboring 
breakpoint point IDs, as well as the distance between the 
breakpoints. The main idea behind this method is to compare 
each distance between the three observed breakpoint points to a 
catalog of previously defined space mappings. 

V. RESULT AND DISCUSSION 

A. Noise Data Model Design of RpLidar A1 
The Rplidar A1 noise data model is made up of three 

conditions: 0-60, 60-100, and 100-225 cm at the point nearest 
to the sensor and the wall. The first condition is approximated 
by 6-order polynomial regression, while the values of the 
variables in the equation are approximated by 3rd order 
polynomial interpolation. The regression used is appropriate to 
utilize 2nd order polynomials in the range of 60 to 225, but the 
range of 60 to 100 values of the element variables is produced 
by 3rd order interpolation. The range of 100 to 225 is then 
estimated using linear interpolation. 

B. Adaptive Line Tracking Breakpoint Detector (ALTBD) 
The measurement inaccuracy (σoffset) percentage value 

utilized is 0.04. This value is the average of the percentage of 
errors obtained from data collection results in the first stage of 

the research. The tolerance value as the corner breakpoint limit 
(Dthcorner) is 23 cm, which is half the door distance of 46 cm. 
Fig. 9 depicts one of the ALTBD module's results and Fig. 10 
depicts one of the ABD IEPF module's results. 

The ALTBD results show the detection of several corner 
breakpoints generated by the 18 mm thick side wall. Because 
the detected side is close to the sensor, the number of scanning 
points created is sufficient to make a segment with more than 
four points. Breakpoints that should be designated corner 
breakpoints by the IEPF method are regarded terminal 
breakpoints, in contrast to ABD IEPF. This is due to the fact 
that the required threshold distance is not met on that side. 

C. Adaptive Breakpoint Detector (ABD) and IEPF 
The threshold value equation utilized is consistent with the 

results of the Weerakoon et al. [20] research. The residual error 
is 0.0038, whereas the angle (λ) is 8º. The extraction line used 
is an IEPF with a limit value of 46 cm. The intersection of the 
two lines generated by the IEPF two-segment linear regression 
is used to determine the corner breakpoint. 

 
Fig. 9. Breakpoint Detector Results of ALTBD. 

 
Fig. 10. Breakpoint Detector Results of ABD IEPF. 
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D. Testing 
Fig. 11 depicts a comparison of the computing times of the 

three Breakpoint Detector methods. The comparison of the 
ALTBD, ABD IEPF, and LT methods reveals that the LT 
method computes faster than the ALTBD and ABD IEPF 
methods. The average computation time for the LT technique 
is 59,87 ± 1,94 ms, whereas the ALTBD and ABD IEPF 
methods require 101.61 ± 2.63 ms and 175.4 ± 10.13 ms, 
respectively. Although LT has the shortest calculation time, the 
resulting corner breakpoints are not as precise as ALTBD and 
ABD IEPF. If the accuracy of the LiDAR sensor's position in 
the room is a major priority in robot localization, this will be a 
disadvantage of the LT method. The ALTBD method has the 
second fastest computation time. Despite the fact that the 
ALTBD calculation is more sophisticated, each data point is 
only processed once. Unlike the IEPF ABD, the data is 
processed at least twice in this method. This method processes 
data twice, once using the ABD method and once using the 
IEPF method. The theory behind the significant difference in 
computational time is that the LT, ABD, and ALTBD methods 
are linear search algorithms with a time complexity of O(n), 
whereas the IEPF method is a linear recursive algorithm with a 
time complexity of T(n) = 2T(n⁄2) + O(n), with the worst-case 
complexity being O(n2). Table I presents the detailed results of 
the computational time comparison. 

According to the test results, the IEPF's disadvantage is the 
recognition of an inaccurate corner breakpoint. This takes the 
form of a four-sided space, as illustrated in Fig. 10. This is due 
to the fact that the IEPF seeks the greatest deviation from the 
line connecting the starting and finishing points. Furthermore, 
there is a lot of noise at that point. This type of room is said to 
be unfavorable for detecting corner breakpoints using the IEPF 
method. 

E. Breakpoint Extraction 
The results of the tests show that the IEPF method has 

weaknesses, including the inaccuracy of recognizing corner 
breakpoints in the form of a four-sided room, as illustrated in 
Fig. 12. Table II indicates that the ALTBD method detects 
corner breakpoints with only two errors out of 43 position 
samples tested, but the ABD IEPF detects them with ten. When 
compared to ALTBD and ABD IEPF, the LT method has the 
most detection errors. If there are only two corner breakpoints 
on one side of the wall, the accuracy of the corner breakpoint is 
declared correct. It is still considered a corner breakpoint 
detection error if there are more than two corner breakpoints, 
even if they are close to one other. 

The IEPF method is inaccurate in recognizing corner 
breakpoints because it looks for the greatest difference between 
the start and finish lines. Furthermore, there is a lot of noise at 
that point. When using IEPF, this type of room will result in an 
inaccurate corner breakpoint. In addition, ALTBD generates an 
inaccurate a corner breakpoint. Because the erroneous corner 
breakpoint is typically located distant from the LiDAR sensor, 
it has little effect on the location results of the Breakpoint 

Pattern Recognition, as illustrated in Fig. 13. However, with 
the spatial pattern depicted in Fig. 12, the resulting corner 
breakpoint position in the IEPF is not quite close to the LiDAR 
sensor. The Breakpoint Pattern Recognition method will not 
produce the right position if these two spots are not actual 
corner breakpoints. Some corner breakpoint detection problems 
in the LT method occur when the incorrect position is close to 
the sensor and the distance to the other reference corner 
breakpoint is within the Breakpoint Pattern Recognition 
tolerance limit, as illustrated in Fig. 14. As a result, the 
Breakpoint Pattern Recognition procedure is unable to locate a 
pattern match in the database. 

F. Breakpoint Pattern Recognition 
There are three stages to the breakpoint pattern recognition 

process. The first step is to look for a pattern match for the 
three initial reference points, which are the three breakpoints 
nearest to the sensor. The results of the search throughout the 
sub-catalogues are saved. Step two must be completed if there 
is more than one possibility. The second stage is to find a 
match against the original three reference points on the 
remaining corner breakpoints and terminal breakpoints in all 
sub-catalogues. The match of the nearby breakpoint points with 
the most points that determines the three initial patterns is 
eligible for selection. If stage two yields two or more results, 
stage three will be carried out. Stage three follows the same 
principles as stage two, with the exception of the matching 
point. This is the last of the breakpoints on the list (points that 
form a line). If step three is completed, all breakpoints have 
been verified. 

TABLE I. COMPUTATIONAL TIME RESULTS 

Location Num. 
sample 

Computational time in ms 

ALTBD ABDiepf LT 

Room 1 9 103,3 ± 8,0 198,9 ± 11,0 62,4 ± 0,0 

Room 2 8 103,8 ± 8,0 208,6 ± 8,0 58,5 ± 7,2 

Room 3 10 99,5 ± 8,0 157,9 ± 15,5 56,5 ± 8,0 

Room 4 8 101,4 ± 8,0 169,0 ± 11,7 62,4 ± 0,0 

Street 8 100,3 ± 8,0 135,9 ± 21,5 60,2 ± 5,9 

 
Fig. 11. Comparison of ALTBD, ABD IEPF and LT Computational Times in 

a Boxplot. 
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Fig. 12. IEPF Corner Breakpoint Detection. 

 
Fig. 13. ALTBD Corner Breakpoint Detection. 

 
Fig. 14. LT Corner Breakpoint Detection. 
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TABLE II. CORNER BREAKPOINT DETECTION RESULTS 

Location Num. 
sample 

Corner breakpoint 

ALTBD ABDiepf LT 

True False True False True False 

Room 1 9 33 0 34 3 36 4 

Room 2 8 32 0 32 0 32 6 

Room 3 10 30 0 32 3 36 3 

Room 4 8 28 1 28 2 26 3 

Street 8 34 1 32 2 45 7 

Furthermore, the major catalog should be summarized in 
order to limit the number of candidate positions generated. In 
fact, one wall has four sides: two long sides and two wide 
sides, or what is generally referred to as the thick side. The 
wall has four breakpoints at first, which are then combined into 
two breakpoints with the condition that the wall thickness is 
included in the tolerance limit value. The main catalog, which 
originally had 40 points, was reduced to 19 points. Similarly, 
the sub-catalog averaged 19 nearby breakpoints at the end. The 
reduced number of neighbors in the reference point accelerates 
the matching process. 

Fig. 15, 16, and 17 shows that the position generated by 
ALTBD is more accurate than ABD IEPF through the pattern 
recognition process using the closest breakpoint method. This 
is due to the fact that the reference points for position 
computations are only the two closest corner breakpoints. 
ALTBD produces the closest corner breakpoint more precisely 
than ABD IEPF. 

 
Fig. 15. Boxplot of the difference between ALTBD and ABD IEPF Position 

Errors. 

 
Fig. 16. Breakpoint Pattern Recognition Results of ALTBD. 

 
Fig. 17. Breakpoint Pattern Recognition Results of ABD IEPF. 

VI. CONCLUSION 
This research was successful in developing a new algorithm 

for breakpoint detection called the Adaptive Line Tracking 
Breakpoint Detector (ALTBD). This method modifies the Line 
Tracking (LT) and Adaptive Breakpoint Detector (ABD) 
algorithms by introducing a new threshold area in the shape of 
an ellipse, resolving corner breakpoint detection more adaptive 
and fasting. Algorithm testing was done by apply the ALTBD 
and ABD algorithms with Iterative End Point Fit (ABD IEPF) 
to detect the position of the robot in the room. 

The results of the tests prove that the ALTBD computation 
time is faster in detecting corner breakpoints than the ABD 
IEPF method. The average computation time for the ALTBD 
method is 101.61 ± 2.63 ms, while the ABD IEPF is 175.4 ± 
10.13 ms. The corner breakpoint detection error in the ALTBD 
method is only two errors out of 43 position samples, whereas 
the ABD IEPF method has ten detection errors. Furthermore, 
the ALTBD method is more accurate in determining the 
position of the robot than the ABD IEPF method, with a 
distance difference of 9.72 ± 1.55 mm, instead of 11.2 ± 2.14 
mm in the ABD IEPF. 
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