
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Development of Adaptive Line Tracking Breakpoint
Detection Algorithm for Room Sensing using LiDAR

Sensor
Deddy El Amin, Karlisa Priandana, Medria Kusuma Dewi Hardhienata

Computer Science Department, Bogor Agricultural University (IPB University), Bogor, Indonesia

Abstract—This research focuses on the use of Light Detection
and Ranging (LiDAR) sensors for robot localization. One of the
most essential algorithms in LiDAR localization is the breakpoint
detector algorithm which is used to determine the corner of the
room. The previously developed breakpoint detection methods
have weaknesses, such as the Adaptive Breakpoint Detector
(ABD), could generate dynamic threshold values. The ABD
results, on the other hand, still require Line Extraction to obtain
the corner breakpoint. Line Extraction method, e.g. Iterative
End Point Fit (IEPF), is used to categorize data, resulting in the
generation of a line pattern as an interpretation of a wall. The
computational method for obtaining the corner breakpoint
becomes longer as the line is extracted. To address this issue, our
algorithm proposes a new threshold area in the form of an ellipse
with the threshold value parameter obtained from previously
identified room size and sensor characteristics. As a result the
corner breakpoint detection becomes more adaptive. The goal of
this research is to create an Adaptive Line Tracking Breakpoint
Detector (ALTBD) approach that will reduce the computing time
required to detect corner breakpoints. Furthermore, the Line
Extraction method required for corner breakpoint detection is
modified in the ALTBD. To distinguish between the edge of the
wall and the corner of the room, the boundary value is increased.
The ALTBD method was tested in a simulation arena comprised
of multiple rooms and halls. According to the results, the ALTBD
computation time is faster in detecting corner breakpoints than
the ABD IEPF method, also the accuracy for determining the
position of the robot was improved.

Keywords—LiDAR; breakpoint detector; robot localization;
corner detection; line segmentation

I. INTRODUCTION
Robot localization which is a method to acquire

information about a robot's direction and position in its
working environment is required by every autonomous robot in
order to move and accomplish its task. Three types of robot
localization are global localization, predictive localization, and
local localization [1]. When the robot is outside, global
localization works relatively well [2]. Whenever the robot is
indoors, it uses probabilistic localization, local localization, or
a combination of the two [3]. Our research leads to
probabilistic localization, which determines the robot's position
and orientation based on sensor measurement data combined
with prior knowledge in the form of a map of the arena in the
room.

Several papers have been written about the sensors used in
localization and probabilistic localization methods, including

encoder sensors [4][5], magnetic compass [6], magnetic
anomalies map [7], low-cost gyro [8], ultrasonic sensors [9]
[10], RFID [11] to the Light Distance and Ranging (LiDAR)
sensor. Sensors such as encoder disc sensors, magnetic
compasses, low-cost gyros, and ultrasonic sensors require
significant movement before the robot can identify its position.
If time is of the essence in accomplishing the objective of the
robot, the sensor is not the first option to be installed in the
robot. As a result, this research utilizes a LiDAR sensor
capable of identifying the position and surroundings without
requiring the robot to move, improving the robot's movement
more effective.

Previous research has widely proposed the LiDAR sensor
since it has excellent spatial accuracy, fast data renewal, and
does not rely on object illumination or reflectance [12]. This
research focuses on determining the form of the room using the
LiDAR sensor measurement results. The issue is determining
how to identify the geometry of the space based on its corner
position. Breakpoint detection is one way for determining the
corner of a room. This method detects the room's corner points
and the edge of the wall by verifying the discontinuity between
the two points scanned consecutively by the LiDAR sensor
[13].

Breakpoint detection method that combines Successive
Edge Following (SEF), Line Tracking (LT), and Iterative End
Point Fit (IEPF) was developed by Siadat et al. [14]. However,
all three methods have a weakness: finding a consistent
threshold value to detect a breakpoint between two consecutive
sensor scan points is challenging. The observed breakpoints
can take the form of room corners or the edge of a wall. The
breakpoint detection threshold value should be dynamic, based
on the distance between the sensor and the object being
scanned [13].

Several researchers have indicated determining dynamic
threshold values. The threshold value in Lee et al. [15] research
is based on the current and prior measurement distance values.
The DIET method, which takes the measurement angle into
account when establishing the threshold value, was developed
by Dietmayer et al. [16]. The method by including the virtual
wall angle parameter as an estimate of the detected wall slope
angle was improved by Santos et al. [17]. The threshold value
in their Adaptive Breakpoint Detector (ABD) method as well
developed by Borges and Aldon [13]. They use auxiliary
angles to determine the point of intersection and use it as a
reference for the threshold value, and Certad et al. [18] also

241 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

adjusted the threshold value in the ABD. They modify the
measurement distance value in the ABD equation with the
shortest distance value from either the current or previous
distance. In his research on the ABD method, Su Young et al.
[19] identified the lack of a line cluster perpendicular to the
sensor as a problem. The challenge was then solved by
combining the ABD and LT methods to create the Dual
Breakpoint Detector (DBD), and Weerakoon et al. [20] also
used ABD in their research. In order to increase the feature
extraction rate value, Weerakoon et al. [20] research suggests
taking the measurement error value and the longest distance
value into consideration. The corner breakpoint was
determined in three phases in this investigation. The first stage
is ABD, which is used to segment the data depending on a
threshold value. The following stage is Line Extraction with
IEPF. Line Extraction is a method for organizing data based on
line patterns that can be formed as an interpretation of a wall.
The intersection of the two lines obtained by the IEPF two-
segment linear regression is then used to locate the corner
breakpoint in the third phase. Dingyao et al. [21] research's to
determine the corner breakpoint included one more phase into
four phases, i.e. point feature matching to compare angles and
distances. The second, third and fourth stages of Corner
Breakpoint Detection render the algorithm's computational
process worthless.

To overcome these issues, The Adaptive Line Tracking
Breakpoint Detector (ALTBD) method is developed in this
research. The ALTBD method is a variation of the Line
Tracking (LT) and Adaptive Breakpoint Detector (ABD)
algorithms that introduces a new threshold area to improve
corner breakpoint detection. By using established room sizes,
this method also solves the challenge of finding the threshold.
The breakpoint detection threshold value is made dynamic in
this method by taking into consideration the difference
between the sensor measurement distance and the projected
virtual wall distance. Furthermore, the Line Extraction method
required for corner breakpoint identification is improved in the
ALTBD to reduce computational time. To distinguish between
the edge of the wall and the corner of the room, the boundary
value is increased.

This paper outline is as follows: The next section reviews
some relevant works on LT and ABD method. Section III
defines the proposed adaptive line tracking breakpoint detector
method. Section IV provides the methodology that used to in
this research, and Section V shows the results and analysis,
whilst the conclusion is presented in the final section.

II. RELATED WORK
In this section, several methods are discussed as the basis

for the proposed method, namely Line Tracking (LT) and
Adaptive Breakpoint Detector (ABD) method.

A. Line Tracking Method
Line tracking (LT) is a method of detecting breakpoints or

segmenting line data that use linear regression and works in
Cartesian coordinates. The following pseudo code [22]
describes the working principle of this method:

1) Begin with two points of measurement, then draw a line
between them.

2) Insert the next point to make a new line model.
3) Reprocess the line's parameters.
4) If the result of the generated line is satisfactory,

continue (repeat to step 2).
5) If the result is not satisfactory, make the last point the

line segment's end point, re-process the line's parameters, and
make it as one line segment.

6) Go back to step 2 after completing the next two points.

The difficulty in defining the threshold value (Dmax) to
determine the breakpoint between the two measures is this LT's
disadvantage [13]. Fig. 1 depicts two segments of data
generated by LT when d5 > Dmax.

B. Adaptive Breakpoint Detector Method
The Adaptive Breakpoint Detector (ABD) method to

address the issue of a fixed threshold value at LT was proposed
by Borges and Aldon [13]. This method performs on the same
principles as the LT method, which utilizes a threshold to
detect breakpoints. The distinction is that there is no linear
regression in this method, and the threshold value is made
dynamic by utilizing the angle difference between the two
measurement results. The ABD method is illustrated in Fig. 2
along with the parameters utilized. In ABD, breakpoints are
detected by creating a border circle with a radius of Dmax and a
center at pn-1. A breakpoint is detected if the current scan point
(pn) is found to be outside the circle. As a result, the previous
scan point (pn-1) is considered the end point of the current
segment, whereas pn is considered the beginning point of the
following segment.

The adaptive breakpoint detector (ADB) method has the
advantage of having a threshold value (Dmax) that can change
depending on the previously created distance (rn-1) and a
difference in the angle of measurement (Δϕ). This value is used
as a comparison (border value) to distinguish between two
segments of line data.

Equation (1) [13] describes the data terms stated as
breakpoints:

if ||pn– pn-1|| > Dmax then kb
n := TRUE and kb

n-1 := TRUE
(1)

Where, ||pn– pn-1|| represents the distance between the pn
point and the pn-1 point. Dmax is the breakpoint threshold whose
value is determined by the sensor's distance to a measurable
object (rn). The current measured position is pn, while the
previous measured point is pn-1. Fig. 2 depicts this ADB
method. Detection is accomplished by drawing a dividing
circle with the center point at pn-1 and a radius of Dmax.

Fig. 1. Line Tracking Method [14].

242 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Fig. 2. Adaptive Breakpoint Detector Method [4].

If the current scan point (pn) is found to be outside the
circle, pn-1 is considered the endpoint of the current segment
and pn is determined the start point of the following segment.
Equation (2) [13] describes its mathematical function:

||ph
n – pn-1|| = rn-1. (sin (Δϕ)/sin(λ-Δϕ)) (2)

||ph
n – pn-1|| as the breakpoint testing threshold value

Equations (3) and (4) are provided a real implementation of the
threshold formula with [13]:

Dmax = ||ph
n – pn-1||+ 3σr (3)

Dmax= rn-1. (sin (Δϕ)/sin(λ-Δϕ)) + 3σr (4)

Where, σr is the laser scanner manufacturer's parameter and
λ the angle between the virtual line and the line connecting the
object point to the laser scanner (rn-1).

1) Line extraction: The ABD method generates
breakpoints only at the ends of segments, which we refer to as
terminal breakpoints in our research. As a result, another
algorithm, Line Extraction, is required to reprocess existing
data into new segments that can represent a line. As a result,
the ABD computation time exceeds the LT in determining the
angular breakpoint. Linear Regression [23], Split and Merge
algorithm [24], Iteration End Point Fit [25], RANSAC
algorithm [26], Hough Transform algorithm and Expectation-
Maximization algorithm are some line extraction algorithms
that can be used [27]. The Iteration End Point Fit (IEPF)
method is discussed in this chapter as a comparison to the new
method developed.

The IEPF algorithm [25] is a recursive Line Extraction
method. Data checks are performed repeatedly for each
segment base due to its recursive nature. The IEPF method is
depicted in Fig. 3 by truncating one segment of data resulting
from ABD into three data segments that form three lines. First,
the initial data (p1) and final data (pn) are connected to form a
straight line. The distance between the second data and the line
is then calculated orthogonally. This is repeated for the third
data point, and so on until all members of the segment have

been checked. The maximum orthogonal distance (di
m) of the

result will be compared to the limit value (dthd). The limit value
is the comparison value that was declared at the beginning. If
the maximum value (di

m) is greater than the limit value, the
segment will be halved at the maximum distance point. Fig. 9
illustrates how the first cut of a segment (Z1 = { p1,.., pn}) into
two segments (Z2 = {p1,..., pi} and Z3 = {pi,..., pn}) occurs at
the pi point. The initial data (p1) and final data (pi) of the Z2
segment are then connected to form a straight line. The
distance between all of the data points in the segment Z2 is then
calculated orthogonally to the line. The result's maximum
orthogonal distance (dh

m) will be recompromised by the limit
value (dthd). One line segment has been checked because the
maximum orthogonal distance (dh

m) is less than the limit value
(dthd). The segment is a Z2 made up of p1 to pi. The Z3 segment
is treated similarly. However, the maximum orthogonal
distance (dj

m) in the Z3 segment {(pi,..., pn)} is greater than the
limit value (dthd), so the segment must be cut in half with the
intersection point at the pj. The maximum orthogonal distance
between the segments {pi,..., pj} and {pj,..., pn} is then
calculated and compared to the limit value (dthd). The data
grouping on the Z1 segment is complete because the maximum
orthogonal distance of each segment is less than the limit value
(dthd). Through IEPF on the Z1 segment, the final result is three
line segments, namely S1{p1,..., pi}, S2{pi,..., pj}, and S3{pj,...,
pn}.

Weerakoon et al. [20] research's describes examples of
ABD and Line Extraction implementation. The ABD threshold
value equation was modified to Equation (5) in the research
[20].

Dmax = min{rn,rn+1}(1 - 3σr)(sin (Δϕ)/sin(λ-Δϕ))

+ 3σr.max{rn,rn+1} (5)

The ABD method has a disadvantage in that the angle value
generating the threshold value is obtained based on the results
of the experiment and requires Line Extraction to detect the
corner breakpoint.

Fig. 3. IEPF Algorithm Working Principle.

243 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

III. THE PROPOSED ADAPTIVE LINE TRACKING
BREAKPOINT DETECTOR METHOD

A. Propose a New Method (Adaptive Line Tracking
Breakpoint Detector)
The Adaptive Line Tracking Breakpoint Detector

(ALTBD) method we propose is a combination of the Line
tracking (LT) and Adaptive Breakpoint Detector (ABD)
methods. The existing breakpoint detector (ABD) obtains
coverage in the form of a circle with a threshold value
diameter, whereas ALTBD obtains coverage in the form of an
elliptical area with an elliptical center point from the prediction
point. The LT method calculation yielded the prediction point.
Although elliptical shapes require more complicated equations,
they depict a point spread rather than a circle. The threshold
value on ABD is determined by the virtual angle derived from
the experiment, whereas in ALTBD, the parameter producing
an elliptical area, which is a minor value, is made adaptable by
taking the measurement error of the LiDAR sensor into
consideration.

The linear equation F'n(x) generated by LT is used to
predict the next point of measurement, as shown in Fig. 4. The
point's polar angle value (θn+1) is then used as an input to
calculate the equation of the line Fn+1(x). The predictive point
p'n+1 is then obtained by intersecting the two equations of the
line. The prediction point p'n+1 is defined as a point (0,0) or the
center point of the elliptical area, with the x-axis representing
as the major axis and the y-axis representing as the minor axis.
The length of the major axis (qmaxn+1) is determined by the
distance between the points pn and the prediction line F'n(x) at
the point of intersection. Minor axis length (hmaxn+1) is
determined by calculating using orthogonal regression against
the prediction line and the error values at the previous points.
Fig. 4 and 5 depict the parameters used in the ALTBD method.
The ALTBD algorithm's flow is described in detail:

Fig. 4. ALTBD Method.

Fig. 5. Corner Detection ALTBD.

Algorithm for Detecting Breakpoints in Adaptive Line
Tracking:

1) Determine the linear regression equation from three starting
points (pn-2, pn-1, pn) and transform it into a predictive line
(F'n(x)).

2) Determine the difference between the starting point (jn-2, jn-1,
jn) and the predicted line (F'n(x)).

3) Using the equation 𝞮𝞮n = |jn |/rn, calculate the percentage error
(𝞮𝞮n-2, 𝞮𝞮n-1, 𝞮𝞮n) relative to the distance to the sensor (rn).

4) Determine the average error percentage, σn= (Σn
i=n-2𝞮𝞮i)/3

5) Determine the minor axis limit, hmaxn+1 = σn + σoffset .
6) Verify out the next angle data (θn+1).
7) Create an equation using the angle gradient (θn+1) and the line

(Fn+1(x)) that passes through the point (0,0).
8) Make the intersection point of the prediction line (F'n(x)) and

the scan line (Fn+1(x)) the prediction point (p'n+1).
9) Calculate the distance between the prediction point (p'n+1) and

the last scan point (pn) parallel to the prediction line (F'n(x)),
and set it as the major axis limit (qmaxn+1).

10) Read the next data set (pn+1).
11) Transform the predicted point (pn+1) to new coordinates, with

the predicted point (p'n+1) as the origin (0,0) and the predicted
line (F'n(x)) as the x-axis.

12) Calculate the new position of the point (pn+1), and update x by
kn+1 and y by jn+1,
kn+1 = cos(θ).(xpn+1 - xp’n+1) + sin(θ).(ypn+1 - yp’n+1)
jn+1 = - sin(θ).(xpn+1 - xp’n+1) + cos(θ).(ypn+1 - yp’n+1)

13) Enter the minor axis boundary (hmaxn+1), the major axis
boundary (qmaxn+1), and the new measurement point position
(kn+1, jn+1) into the ellipse equation,
e_result = ((k2

n+1)/(qmaxn+1)) + ((j2n+1)/(hmaxn+1))
14) If e_result > 1, a breakpoint has been detected. Then,

determine whether the position of the point (pn+1) is within the
tolerance range of the corner (Dthcorner).

15) If it is within the corner’s tolerance limit, set the point (kn+1,0)
as the corner breakpoint and transform it back to the original
coordinates.

16) If it is not within the corner’s tolerance range, use the
following three measurement points (pn+2, pn+1, pn) as the
starting point and return to step 1.

17) If e_result ≤ 1, then calculate the difference between the
measurement points and the prediction line (jn+1).

18) Recalculate the percentage of error, 𝞮𝞮n+1 = |jn+1|/rn+1
19) Recalculate the minor axis limit, hmaxn+1 = σn+1 + σoffset
20) Repeat step 6.

244 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

IV. METHODOLOGY

A. Materials and Tools
This research was performed out with the following

hardware and software: The RpLidar A1 module, Beaglebone
Black Wireless, Intel i5 2.5 GHz RAM 4GB Win32bit Laptop,
and Jupyter Notebook.

B. Stages of Research
The seven research stages in the development of the

Adaptive Line Tracking Breakpoint Detector (ALTBD)
method are as follows: data acquisition, LiDAR data noise
model design, LiDAR data generator module design with
simulation, data processing using the ALTBD method, data
processing using comparison methods (ABD Line Extraction
and LT), testing the ALTBD algorithm, and analysis and
evaluation. Fig. 6 depicts the flow of the research method.

Because the data utilized in the test will use simulation data
from the LiDAR data generator module, the first stage of this
research is LiDAR data acquisition, which is done in real time
to obtain a noise sensor model. The purpose of this data
acquisition is to determine the noise characteristics of the
RpLidar data and to validate the noise characteristics of the
sensor manual document. Observations were taken on a
straight wall with no obstacles that was greater than 5 meters
long.

1) LiDAR data acquisition: The next stage is LiDAR data
acquisition, which is done to create a LiDAR sensor noise
model. The distance between the LiDAR sensor and the wall
was varied from 15 to 225 cm with 5 cm intervals to obtain
appropriate data. For each distance variation, data were
collected five times.

2) Design of noisi model for the RpLiDAR A1: The
simulation module use the noise model to verify that the
generated data is as close to the real LiDAR data as possible.
Residual noise will be added at random and generated using a
normal distribution. The model is built using a polynomial
regression method on the outcomes of LiDAR data collecting.
Linear or polynomial interpolation is used to approximate the
values of the element variables.

3) Design of a LiDAR data generator simulation module:
The arena simulation module is used to test the ALTBD
method. A square-shaped arena with four rooms and multiple
tunnels is used for simulation testing. That's the 2.4 m by 2.4 m
arena for the Indonesian Fire Extinguisher Robot Contest
(KRPAI 2019). In the KRPAI guide document [28], the
position of the doors in rooms 3 and 4 distinguishes four
distinct room layout combinations. This simulation module is
made up of five blocks, as depicted in Fig. 7. This module
takes as input the robot's position (x,y) and direction (azimuth),
as well as the choice of space combinations 3 and 4. This
module generates level 3 scan data with angle and distance
attributes.

4) Testing: The tests were analyzed by comparing three
Breakpoint Detector methods: the one we developed
(ALTBD), the LT method, and the ABD IEPF method from the
Weerakoon et al. [20] research. In this research, the computing
time, percentage of distance inaccuracy, and position
difference between the Breakpoint Pattern Recognition results
will be sought from each method. Computational time is
measured beginning with level 3 scan data, which is processed
in each method to produce an output in the form of a corner
breakpoint. The percentage of distance measurement error is
calculated by subtracting the results of the Breakpoint Detector
from the position of the reference breakpoint.

The difference is then compared to the sensor's distance
from the reference breakpoint. But first, the Breakpoint
Detector data must pass through the Breakpoint Extraction
module to enable determining the reference breakpoint point
easier. This research will investigate the position difference
between the Breakpoint Pattern Recognition results and the
actual global position. On the LiDAR data generator simulation
module, the global position is the input sensor location in the
arena. Fig. 8 depicts the test diagram.

Fig. 6. Research Stages.

Fig. 7. Arena Simulation Module Block Diagram.

245 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Fig. 8. ALTBD Test Method.

a) Breakpoint Extraction: This module sorts
breakpoints, namely corner breakpoints, corner breakpoint
terminal points, and other points that form only one side of the
wall. This module also removes breakpoints that are
overlapping. The breakpoint extraction module is required to
support and facilitate the pattern matching process, allowing it
to be developed as needed to achieve the best results.

b) Breakpoint Pattern Recognition: The closest or
adjacent star methodology is used in this research’s breakpoint
pattern identification method, which is based on the concept of
a star pattern recognition algorithm using a satellite star sensor
[29]. The method's star pattern is replaced with a breakpoint
pattern. The main catalog and the sub-catalogue are the two
catalogs. The primary catalog contains IDs for all breakpoints,
as well as two attributes: position in Cartesian coordinates and
type (x,y). The sub catalog contains all of the neighboring
breakpoint point IDs, as well as the distance between the
breakpoints. The main idea behind this method is to compare
each distance between the three observed breakpoint points to a
catalog of previously defined space mappings.

V. RESULT AND DISCUSSION

A. Noise Data Model Design of RpLidar A1
The Rplidar A1 noise data model is made up of three

conditions: 0-60, 60-100, and 100-225 cm at the point nearest
to the sensor and the wall. The first condition is approximated
by 6-order polynomial regression, while the values of the
variables in the equation are approximated by 3rd order
polynomial interpolation. The regression used is appropriate to
utilize 2nd order polynomials in the range of 60 to 225, but the
range of 60 to 100 values of the element variables is produced
by 3rd order interpolation. The range of 100 to 225 is then
estimated using linear interpolation.

B. Adaptive Line Tracking Breakpoint Detector (ALTBD)
The measurement inaccuracy (σoffset) percentage value

utilized is 0.04. This value is the average of the percentage of
errors obtained from data collection results in the first stage of

the research. The tolerance value as the corner breakpoint limit
(Dthcorner) is 23 cm, which is half the door distance of 46 cm.
Fig. 9 depicts one of the ALTBD module's results and Fig. 10
depicts one of the ABD IEPF module's results.

The ALTBD results show the detection of several corner
breakpoints generated by the 18 mm thick side wall. Because
the detected side is close to the sensor, the number of scanning
points created is sufficient to make a segment with more than
four points. Breakpoints that should be designated corner
breakpoints by the IEPF method are regarded terminal
breakpoints, in contrast to ABD IEPF. This is due to the fact
that the required threshold distance is not met on that side.

C. Adaptive Breakpoint Detector (ABD) and IEPF
The threshold value equation utilized is consistent with the

results of the Weerakoon et al. [20] research. The residual error
is 0.0038, whereas the angle (λ) is 8º. The extraction line used
is an IEPF with a limit value of 46 cm. The intersection of the
two lines generated by the IEPF two-segment linear regression
is used to determine the corner breakpoint.

Fig. 9. Breakpoint Detector Results of ALTBD.

Fig. 10. Breakpoint Detector Results of ABD IEPF.

246 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

D. Testing
Fig. 11 depicts a comparison of the computing times of the

three Breakpoint Detector methods. The comparison of the
ALTBD, ABD IEPF, and LT methods reveals that the LT
method computes faster than the ALTBD and ABD IEPF
methods. The average computation time for the LT technique
is 59,87 ± 1,94 ms, whereas the ALTBD and ABD IEPF
methods require 101.61 ± 2.63 ms and 175.4 ± 10.13 ms,
respectively. Although LT has the shortest calculation time, the
resulting corner breakpoints are not as precise as ALTBD and
ABD IEPF. If the accuracy of the LiDAR sensor's position in
the room is a major priority in robot localization, this will be a
disadvantage of the LT method. The ALTBD method has the
second fastest computation time. Despite the fact that the
ALTBD calculation is more sophisticated, each data point is
only processed once. Unlike the IEPF ABD, the data is
processed at least twice in this method. This method processes
data twice, once using the ABD method and once using the
IEPF method. The theory behind the significant difference in
computational time is that the LT, ABD, and ALTBD methods
are linear search algorithms with a time complexity of O(n),
whereas the IEPF method is a linear recursive algorithm with a
time complexity of T(n) = 2T(n⁄2) + O(n), with the worst-case
complexity being O(n2). Table I presents the detailed results of
the computational time comparison.

According to the test results, the IEPF's disadvantage is the
recognition of an inaccurate corner breakpoint. This takes the
form of a four-sided space, as illustrated in Fig. 10. This is due
to the fact that the IEPF seeks the greatest deviation from the
line connecting the starting and finishing points. Furthermore,
there is a lot of noise at that point. This type of room is said to
be unfavorable for detecting corner breakpoints using the IEPF
method.

E. Breakpoint Extraction
The results of the tests show that the IEPF method has

weaknesses, including the inaccuracy of recognizing corner
breakpoints in the form of a four-sided room, as illustrated in
Fig. 12. Table II indicates that the ALTBD method detects
corner breakpoints with only two errors out of 43 position
samples tested, but the ABD IEPF detects them with ten. When
compared to ALTBD and ABD IEPF, the LT method has the
most detection errors. If there are only two corner breakpoints
on one side of the wall, the accuracy of the corner breakpoint is
declared correct. It is still considered a corner breakpoint
detection error if there are more than two corner breakpoints,
even if they are close to one other.

The IEPF method is inaccurate in recognizing corner
breakpoints because it looks for the greatest difference between
the start and finish lines. Furthermore, there is a lot of noise at
that point. When using IEPF, this type of room will result in an
inaccurate corner breakpoint. In addition, ALTBD generates an
inaccurate a corner breakpoint. Because the erroneous corner
breakpoint is typically located distant from the LiDAR sensor,
it has little effect on the location results of the Breakpoint

Pattern Recognition, as illustrated in Fig. 13. However, with
the spatial pattern depicted in Fig. 12, the resulting corner
breakpoint position in the IEPF is not quite close to the LiDAR
sensor. The Breakpoint Pattern Recognition method will not
produce the right position if these two spots are not actual
corner breakpoints. Some corner breakpoint detection problems
in the LT method occur when the incorrect position is close to
the sensor and the distance to the other reference corner
breakpoint is within the Breakpoint Pattern Recognition
tolerance limit, as illustrated in Fig. 14. As a result, the
Breakpoint Pattern Recognition procedure is unable to locate a
pattern match in the database.

F. Breakpoint Pattern Recognition
There are three stages to the breakpoint pattern recognition

process. The first step is to look for a pattern match for the
three initial reference points, which are the three breakpoints
nearest to the sensor. The results of the search throughout the
sub-catalogues are saved. Step two must be completed if there
is more than one possibility. The second stage is to find a
match against the original three reference points on the
remaining corner breakpoints and terminal breakpoints in all
sub-catalogues. The match of the nearby breakpoint points with
the most points that determines the three initial patterns is
eligible for selection. If stage two yields two or more results,
stage three will be carried out. Stage three follows the same
principles as stage two, with the exception of the matching
point. This is the last of the breakpoints on the list (points that
form a line). If step three is completed, all breakpoints have
been verified.

TABLE I. COMPUTATIONAL TIME RESULTS

Location Num.
sample

Computational time in ms

ALTBD ABDiepf LT

Room 1 9 103,3 ± 8,0 198,9 ± 11,0 62,4 ± 0,0

Room 2 8 103,8 ± 8,0 208,6 ± 8,0 58,5 ± 7,2

Room 3 10 99,5 ± 8,0 157,9 ± 15,5 56,5 ± 8,0

Room 4 8 101,4 ± 8,0 169,0 ± 11,7 62,4 ± 0,0

Street 8 100,3 ± 8,0 135,9 ± 21,5 60,2 ± 5,9

Fig. 11. Comparison of ALTBD, ABD IEPF and LT Computational Times in

a Boxplot.

247 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Fig. 12. IEPF Corner Breakpoint Detection.

Fig. 13. ALTBD Corner Breakpoint Detection.

Fig. 14. LT Corner Breakpoint Detection.

248 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

TABLE II. CORNER BREAKPOINT DETECTION RESULTS

Location Num.
sample

Corner breakpoint

ALTBD ABDiepf LT

True False True False True False

Room 1 9 33 0 34 3 36 4

Room 2 8 32 0 32 0 32 6

Room 3 10 30 0 32 3 36 3

Room 4 8 28 1 28 2 26 3

Street 8 34 1 32 2 45 7

Furthermore, the major catalog should be summarized in
order to limit the number of candidate positions generated. In
fact, one wall has four sides: two long sides and two wide
sides, or what is generally referred to as the thick side. The
wall has four breakpoints at first, which are then combined into
two breakpoints with the condition that the wall thickness is
included in the tolerance limit value. The main catalog, which
originally had 40 points, was reduced to 19 points. Similarly,
the sub-catalog averaged 19 nearby breakpoints at the end. The
reduced number of neighbors in the reference point accelerates
the matching process.

Fig. 15, 16, and 17 shows that the position generated by
ALTBD is more accurate than ABD IEPF through the pattern
recognition process using the closest breakpoint method. This
is due to the fact that the reference points for position
computations are only the two closest corner breakpoints.
ALTBD produces the closest corner breakpoint more precisely
than ABD IEPF.

Fig. 15. Boxplot of the difference between ALTBD and ABD IEPF Position

Errors.

Fig. 16. Breakpoint Pattern Recognition Results of ALTBD.

Fig. 17. Breakpoint Pattern Recognition Results of ABD IEPF.

VI. CONCLUSION
This research was successful in developing a new algorithm

for breakpoint detection called the Adaptive Line Tracking
Breakpoint Detector (ALTBD). This method modifies the Line
Tracking (LT) and Adaptive Breakpoint Detector (ABD)
algorithms by introducing a new threshold area in the shape of
an ellipse, resolving corner breakpoint detection more adaptive
and fasting. Algorithm testing was done by apply the ALTBD
and ABD algorithms with Iterative End Point Fit (ABD IEPF)
to detect the position of the robot in the room.

The results of the tests prove that the ALTBD computation
time is faster in detecting corner breakpoints than the ABD
IEPF method. The average computation time for the ALTBD
method is 101.61 ± 2.63 ms, while the ABD IEPF is 175.4 ±
10.13 ms. The corner breakpoint detection error in the ALTBD
method is only two errors out of 43 position samples, whereas
the ABD IEPF method has ten detection errors. Furthermore,
the ALTBD method is more accurate in determining the
position of the robot than the ABD IEPF method, with a
distance difference of 9.72 ± 1.55 mm, instead of 11.2 ± 2.14
mm in the ABD IEPF.

ACKNOWLEDGMENT
The authors would like to thank the Head of the Satellite

Technology Research Center (BRIN) and Lembaga Penelitian
dan Pengabdian kepada Masyarakat (LPPM) IPB University
for their support in completing this research. This research is
partially sponsored by the Ministry of Research and
Technology of the Republic of Indonesia (RISTEK-BRIN)
through Penelitian Dasar Unggulan Perguruan Tinggi
(PDUPT) research grant number 3626/IT3.L1/PT.01.03/
P/B/2022.

REFERENCES
[1] R. Gonzalez, F. Rodiguez, J. L. Guzma, and M. Berengguel,

“Comparative study of localization techniques for mobile robots based
on indirect kalman filter”, International Symposium on Robotics (ISR),
pp:253–258. Switzerland. http://www.ual.es/~rgs927/papers/r amon-
gonzalez-isr09.pdf, 2009.

[2] J. Borenstein, H. R. Everett, L. Feng, and D. Wehe, (1997) “Mobile
robot positioning: sensors and techniques”, Journal of Robotic Systems,
14(4), pp. 231–249. doi: 10.1002/(SICI)1097-4563(199704)14:4<231
::AID-ROB2>3.0.CO;2-R.1997.

249 | P a g e
www.ijacsa.thesai.org

http://www.ual.es/%7Ergs927/papers/r%20amon-gonzalez-isr09.pdf
http://www.ual.es/%7Ergs927/papers/r%20amon-gonzalez-isr09.pdf

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

[3] J. Park, M. Choi, Y. Zu, and J. Lee, “Indoor localization system in a
multi-block workspace”, Robotica, 28(3), pp. 397–403. doi:
10.1017/S0263574709005712, 2010.

[4] N. L. Doh, H. Choset, and W. K. Chung, “Relative localization using
path odometry information”, Autonomous Robots, 21(2), pp. 143-154.
doi: 10.1007/s10514-006-6474-8, 2006.

[5] M. Faisal and H. ElGibreen, "Adaptive Self-Localization System for
Low-Cost Autonomous Robot", 7th International Conference on
Control, Automation and Robotics (ICCAR),Singapore,
DOI:10.1109/ICCAR52225.2021.9463494, 2021.

[6] J. H. Kim, and P. H. Seong, “Experiments on orientation recovery and
steering of autonomous mobile robot using encoded magnetic compass
disc”, IEEE Transactions on Instrumentation and Measurement vol. 45,
no. 1, pp. 271-273. https://doi.org/10.1109/19.481346, 1996.

[7] P. Artiemjew dan K. Ropiak, "Robot Localization in the Magnetic
Unstable Environment", 2019 Third IEEE International Conference on
Robotic Computing (IRC), Naples, Italy, doi: 10.1109/IRC.2019.00105,
2019.

[8] K. T. Song, and Y. H. Suen, “Design and implementation of a path
tracking controller with the capacity of obstacle avoidance”, Journal of
Control Systems and Technology , Vol. 4, No. 3, pp.151-160. Taipei,
Taiwan, 1996.

[9] T. D. Kwon, and J. S. Lee, “A stochastic map building method for
mobile robot using 2-d laser range finder”, 7th Autonomous Robots, 1-
18. Kluwer Academic Publishers. Boston. https://doi.org/10.1023/
A:1008966218715, 1999.

[10] C. C. Hsu, H. C. Chen,C. C. Wong, and C. Y. Lai, “Omnidirectional
Ultrasonic Localization for Mobile Robots”, Sensors and Materials, Vol.
34, No. 2, https://doi.org/10.18494/SAM3419, Tokyo, 2022.

[11] B. Tao, H. Wu, Z. Gong, Z. Yin, and H. Ding, “An RFID-Based Mobile
Robot Localization Method Combining Phase Difference and
Readability”, IEEE Transactions on Automation Science and
Engineering, Vol. 18, doi: 10.1109/TASE.2020.3006724, 2021.

[12] P. Jensfelt, and H. Christensen, “Laser based position acquisition and
tracking in an indoor environment”, Proc. of the Intl. Symposium on
Robotics and Automation, 1(May), pp. 331–338, Available
at: https://www.researchgate.net/publication/238648464, 1998.

[13] G. A. Borges, and M. J. Aldon, “Line extraction in 2D range images for
mobile robotics”, Journal of Intelligent and Robotic Systems: Theory
and Applications, 40(3), pp. 267–297. doi: 10.1023/B:JINT.0000038
945.55712.65, 2004.

[14] A. Siadat, A. Kaske, S. Klausmann, M. Dufaut, and R. Husson, “An
optimized segmentation method for a 2D laser-scanner applied to mobile
robot navigation”, IFAC Proceedings Volumes, 30(7), pp. 149–154. doi:
10.1016/s1474-6670(17)43255-1, 1997.

[15] K. J. Lee, “Reactive navigation for an outdoor autonomous vehicle”,
Master Thesis. University of Sydney, Department of Mechanical and
Mechatronic Engineering. Australia, 2001.

[16] K. C. J. Dietmayer, J. Sparbert, and D. Streller, ”Model based object
classification and object tracking in traffic scenes from range images”,
In: Proceedings of IV IEEE Intelligent Vehicles Symposium, Tokyo,
2001.

[17] S. Santos, J. E. Faria, F. Soares, R. Araujo, and U. Nunes, “Tracking of
multi-obstacles with laser range data for autonomous vehicles”, In: Proc.
3rd National Festival of Robotics Scientific Meeting (ROBOTICA), pp.
59-65, 2003.

[18] N. Certad, R. Acuna, A. Terrones, D. Ralev, J. Cappelletto, and J. C.
Grieco, ”Study and improvements in landmarks extraction in 2D range
images based on an Adaptive Curvature Estimation”, Andean Region
International Conference (ANDESCON) VI. Cuenca,
Ecuador. https://doi.org/10.1109/Andescon.2012.31, 2012.

[19] S. Y.An, J. G.Kang, L. K. Lee, and S. Y. Oh, “Line segment-based
indoor mapping with Salient Line Feature Extraction”, Advanced
Robotics, 26(5–6), pp. 437–460. doi: 10.1163/156855311X617452,
2012.

[20] T. Weerakoon, K. Ishii, and A. A. F. Nassiraei, “Geometric feature
extraction from 2D laser range data for mobile robot navigation”, 2015
IEEE 10th International Conference on Industrial and Information
Systems, ICIIS 2015 - Conference Proceedings, pp. 326–331. doi:
10.1109/ICIINFS.2015.7399032, 2016.

[21] J. Dingyao, C. Jin, and X. Yuan, “An Extracting Method of Corner
Points from Laser Sensor Readings”, Proceedings of the 37th Chinese
Control Conference, Wuhan, China, doi:10.23919/ChiCC.2018.84825
34, 2018.

[22] V. Nguyen, A. Martinelli, N. Tomatis, and R. Siegwart, “A comparison
of line extraction algorithms using 2D laser rangefinder for indoor
mobile robotics”, in 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, pp. 1929–1934. doi:
10.1109/IROS.2005.1545234, 2005.

[23] J. Vandorpe, H. V. Brussel, and H. Xu, “Exact dynamic map building
for a mobile robot using geometrical primitives produced by a 2D range
finder”, Proceedings of IEEE International Conference on Robotics and
Automation. pp.901-908. Minnesota, USA. https://doi.org/10.1109/RO
BOT.1996.503887, 1996.

[24] G. A. Borges, and M. J. Aldon, “A Split-and-Merge Segmentation
Algorithm for Line Extraction in 2-D Range Images”, Proceedings 15th
International Conference on Pattern Recognition, ICPR-2000.
Barcelona, Spain. https://doi.org/10.1023/B:JINT.0000038945.55712.6
5, 2000.

[25] R. O. Duda RO and P. E. Hart, “Pattern Classification and Scene
Analysis”, John Wiley and Sons, Hoboken, 1973.

[26] M. Fischler and R. Bolles, “Random sample consensus: A paradigm for
model fitting with application to image analysis and automated
cartography”, Communications of the ACM, 24(6):381–
395. https://doi.org/10.1145/358669.358692, 1981.

[27] D. A. Forsyth and J. Ponce, “Computer Vision: A Modern Approach”,
Prentice Hall, 2003.

[28] KRPAI 2019 Guide, [online] Available: https://kontesrobotindonesia.id
/data/2019/Panduan_KRPAI2019.pdf.

[29] M. A. Saifudin, and R. H. Triharjanto, ”Algoritma pengenalan pola
bintang untuk deteksi posisi bintang pada star sensor satelit LAPAN”,
Jurnal Teknologi Dirgantara, 8(1), pp. 36–42, Indonesia, 2010.

250 | P a g e
www.ijacsa.thesai.org

https://doi.org/10.1109/19.481346
https://doi.org/10.1023/%20A:1008966218715
https://doi.org/10.1023/%20A:1008966218715
https://www.researchgate.net/publication/238648464
https://doi.org/10.1109/Andescon.2012.31
https://doi.org/10.1109/RO%20BOT.1996.503887
https://doi.org/10.1109/RO%20BOT.1996.503887
https://doi.org/10.1023/B:JINT.0000038945.55712.6%205
https://doi.org/10.1023/B:JINT.0000038945.55712.6%205
https://doi.org/10.1145/358669.358692
https://kontesrobotindonesia.id/

	I. Introduction
	II. Related Work
	A. Line Tracking Method
	1) Begin with two points of measurement, then draw a line between them.
	2) Insert the next point to make a new line model.
	3) Reprocess the line's parameters.
	4) If the result of the generated line is satisfactory, continue (repeat to step 2).
	5) If the result is not satisfactory, make the last point the line segment's end point, re-process the line's parameters, and make it as one line segment.
	6) Go back to step 2 after completing the next two points.

	B. Adaptive Breakpoint Detector Method
	1) Line extraction: The ABD method generates breakpoints only at the ends of segments, which we refer to as terminal breakpoints in our research. As a result, another algorithm, Line Extraction, is required to reprocess existing data into new segments that�

	III. The Proposed Adaptive Line Tracking Breakpoint Detector Method
	A. Propose a New Method (Adaptive Line Tracking Breakpoint Detector)

	IV. Methodology
	A. Materials and Tools
	B. Stages of Research
	1) LiDAR data acquisition: The next stage is LiDAR data acquisition, which is done to create a LiDAR sensor noise model. The distance between the LiDAR sensor and the wall was varied from 15 to 225 cm with 5 cm intervals to obtain appropriate data. For eac�
	2) Design of noisi model for the RpLiDAR A1: The simulation module use the noise model to verify that the generated data is as close to the real LiDAR data as possible. Residual noise will be added at random and generated using a normal distribution. The m�
	3) Design of a LiDAR data generator simulation module: The arena simulation module is used to test the ALTBD method. A square-shaped arena with four rooms and multiple tunnels is used for simulation testing. That's the 2.4 m by 2.4 m arena for the Indonesi�
	4) Testing: The tests were analyzed by comparing three Breakpoint Detector methods: the one we developed (ALTBD), the LT method, and the ABD IEPF method from the Weerakoon et al. [20] research. In this research, the computing time, percentage of distance �
	a) Breakpoint Extraction: This module sorts breakpoints, namely corner breakpoints, corner breakpoint terminal points, and other points that form only one side of the wall. This module also removes breakpoints that are overlapping. The breakpoint extractio�
	b) Breakpoint Pattern Recognition: The closest or adjacent star methodology is used in this research’s breakpoint pattern identification method, which is based on the concept of a star pattern recognition algorithm using a satellite star sensor [29]. The m�

	V. Result and Discussion
	A. Noise Data Model Design of RpLidar A1
	B. Adaptive Line Tracking Breakpoint Detector (ALTBD)
	C. Adaptive Breakpoint Detector (ABD) and IEPF
	D. Testing
	E. Breakpoint Extraction
	F. Breakpoint Pattern Recognition

	VI. Conclusion
	Acknowledgment
	References

