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Abstract—The Internet of Health Things (IoHT) is receiving 
more attention from researchers because of its wide use in the 
healthcare field. IoHT refers to medical devices whose main 
purpose is to transmit health data in a secure and lossless 
manner between them and healthcare personnel. However, in a 
medical emergency, sensors transmit vital patient data 
simultaneously and frequently, increasing the risk of congestion 
and packet loss. This problem is highly undesirable in an IoHT 
system, leading to undesirable results. To address this issue, a 
new approach based on Named Data Networking (NDN) (which 
is considered as the most appropriate internet architecture for 
IoT systems) is proposed to control congestion in IoHT systems. 
The proposed approach, Average delay-based early congestion 
Detection (ADCD), detects and controls congestion at consumer 
nodes by calculating the average queuing delay based on the one-
way delay similar to that proposed in Sync-TCP. Then according 
to the calculated value, ADCD divides the network into three 
states: no-congested state, less congested state, and heavily 
congested state. The adjustment of the congestion window size is 
done according to the state of the network. ADCD was 
implemented in ndnSIM and compared to the Interest Control 
Protocol ICP. The results show that ADCD maximizes 
bandwidth utilization compared to ICP and maintains a 
reasonable delay. 

Keywords—Named data networking; internet of health things; 
congestion control; congestion detection 

I. INTRODUCTION 
The Internet of Things (IoT) is a collection of intelligent 

devices that can communicate, interact and exchange 
information with each other [1]. It interconnects billions of 
small devices to deliver information at any time and across the 
world [2]. IoT has been primarily applied in several domains 
like healthcare, smart home, smart cities, industries, 
transportation and logistics, etc. In healthcare, IoHT has been 
proposed as an extended version of IoT to connect people and 
smart objects in the medical field [3]. It refers to medical 
devices, healthcare sensors and intelligent biomedical 
applications that enable the exchange and treatment of various 
types of healthcare data with each other and with healthcare 
people [3], whose main objective is to transmit health data 
securely and without loss. This data can be patient monitoring 
data, patient analyses, consultations or even sensitive data such 
as heart rate and breathing. 

In the case of a medical emergency or patient vital signs 
monitoring, sensors implanted on patients detect and transmit 
vital patient data simultaneously and frequently, which 
increases the risk of congestion and consequently packet loss. 
In IoHT, congestion is highly undesirable and can lead to 
undesirable outcomes such as patient death. However, ensuring 
that packets arrive at their destination in time guarantees 
patients' safety and survival [4]. Due to the importance and 
sensitivity of the transmitted data, congestion should be 
avoided as much as possible and controlled if this is not 
possible. 

However, the IP protocol stack on which the IoT is based 
was designed for a different purpose and cannot handle the 
important challenges caused by the heterogeneity of the 
devices and the importance of the traffic generated, 
highlighting the limitations of IP. However, the current IP 
solutions are working hard to support IoT systems, but the gaps 
in IP are still hard to hide. Along with efforts to adapt IP to the 
IoT and other content-based architectures, Information Centric 
Networking (ICN) [5] promises to support IoT systems and 
emerging internet applications natively. It is a switch from a 
host-centric communication model to a content-centric system, 
caching at intermediate nodes, and the use of multiple paths 
and sources. With its features, ICN has the potential to be a 
reliable framework for IoT by connecting billions of 
heterogeneous constrained objects. Indeed, ICN provides easy 
access to data and reduces data recovery time and the load on 
data producers. NDN [6] is considered as the appropriate ICN 
architecture for IoT systems among several ICN architectures. 

NDN is a new internet architecture based on the content of 
data rather than its IP address. NDN defines three roles: 
Consumer, Router and Producer and offers two types of 
packets; the interest packet, containing the required content 
name and the data packet, containing the required content. 
There are three elements to every NDN node as shown in Fig. 
1; Content Store (CS), Pending Interest Table (PIT) and 
Forwarding Interest Base (FIB). The CS stores copies of the 
content that passes through it so that future demands for the 
same content can be satisfied. The PIT is a table that preserves 
the records of incoming and outgoing interest and data packets. 
The FIB transfers interest and data packets between nodes 
through routing protocols [7]. The data transfer process 
between NDN nodes is as follows, the consumer asks for 
content by sending an interest packet. 
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Fig. 1. NDN Information Distribution in Case of IoHT Environment. 

The routers use FIBs to forward this packet to the content 
producer and create a PIT entry list on each router to define the 
reverse path. Then, the producer transfers the related content 
via the reverse path to the consumer, and the CS saves the 
content that traverses it for future utilization [8]. 

An example of the data transfer process between NDN 
nodes is shown in Fig. 1. Suppose that consumer one starts this 
process and sends an interest packet containing the requested 
name. This interest packet is transferred to the producer using 
the FIB services. The requested content is put into a data 
packet and is stored in the CS of router three and router two for 
future utilization. Subsequently, if consumer two requires the 
same content, its interest packet is locally satisfied from the CS 
of router two without the need to forward this packet to the 
original content producer. In the case of IoHT, the consumer 
can be a doctor, a patient, a nurse, a medical application, a 
hospital or any medical or IoT device that desires to obtain 
data/information concerning the health field. The producer can 
also be a doctor, a patient, a nurse, a medical application, a 
hospital or any medical or IoT device that has data/information 
concerning the health field. The router's mission is to route the 
data/information concerning the health field between the 
consumer and the producer. 

To address the problem of congestion in healthcare field, 
and as NDN congestion control mechanisms that are based on 
the estimation of RTTs as the main indication of congestion are 
not reliable in NDN-IoHT because the RTT value changes 
frequently due to caching or multipath. This paper proposes a 
new approach based on Sync-TCP [9] (which has been 
proposed to control congestion based on measurements of the 
One-way Transit Time (OTT) between senders and receivers of 
packets) to control congestion in NDN-IoHT. OTTs are more 
accurate in reflecting queue delay resulting from network 
congestion than RTTs. 

In our approach, congestion is detected by calculating the 
average queuing delay based on the one-way delay similar to 
that proposed in Sync-TCP [9]. Then according to the 
calculated value, the network is divided into three states; no-
congested state, less-congested state and heavily congested 
state. The adjustment of the congestion window size is made 
according to the state of the network. Increased in case of a no-
congested network and decreased in a less-congested and 
heavily congested network. The choice of congestion control at 
the consumer nodes comes from the fact that the method used 
for congestion detection is based on variations of OTTs which 
is more reliable at the consumer node than at the router node 
because consumers are able to estimate the one-way delay of 
the data packet using the transmission time available in its 
header and the reception time of this packet. The rest of the 
paper is organized as follows: Section II presents background 
and related work, Section III describes the proposed method, 
Section IV presents results and discussion and Section V 
concludes the article. 

II. BACKGROUND AND RELATED WORK 

A. NDN for IoT 
ICN has been proposed as a promising future internet 

architecture to fill the gaps in the CoAP/RPL/6LowPan/ 
802.15.4 protocol stack on which the IoT system is based and 
improve its deployment and data distribution [10]. Among the 
ICN architectures proposed in the literature, NDN is 
considered as the most appropriate ICN architecture for IoT 
systems. In effect, the characteristics of NDN, namely 
hierarchical naming of unique content that is independent of its 
location, caching in intermediate routers, multipath, 
multisource, name-based routing, support for user mobility, the 
use of encryption for better access control, make it a very 
suitable platform for IoT system traffic and applications. 
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Several works have been done on this topic to show that NDN 
is the most suitable and promising architecture for IoT. In [11], 
the authors suggested that NDN can meet IoT requirements and 
is the most suitable architecture for IoT scenarios. In [12], the 
authors showed that the semantics of NDN meets the 
requirements of IoT applications and its main challenges. They 
also showed that the communication model used by NDN 
"based on the content name" allows IoT networks an easy 
deployment and configuration. In [13], the authors proposed a 
comparative study of ICN architectures in an IoT context and 
concluded that NDN is an architecture most suitable for IoT 
systems. In [2], the authors proposed an NDN integration in 
IoT devices and then evaluated this proposal in a Smart 
Farming application scenario to prove that NDN is an 
architecture most suitable for IoT systems. In [14], the authors 
described the advantages of the NDN architecture compared to 
the current IP internet architecture for IoT systems and then 
explained how NDN can be included in an IoT architecture. In 
[15], the authors discussed the main characteristics of NDN in 
IoT, then they proposed an IoT architecture via NDN named 
IoT-NDN for various IoT domains. Some studies have 
discussed the requirements of IoT and how ICN architectures 
support them without examining which of these architectures is 
most appropriate for IoT. 

B. Related Work 
In NDN architecture, the problem of network congestion is 

the subject of much active research focused on minimizing 
transit delays and reducing packet loss caused by the transfer 
capability of routers. In NDN architecture, data packets are the 
leading cause of congestion because they are much larger than 
interest packets. Therefore, to control congestion, many 
research works propose controlling the sending rate of interest 
packets to limit the returning rate of data packets. Several 
congestion control mechanisms have been proposed in the 
literature, classified as receiver-based control, Hop-by-hop 
control, and Hybrid control [16]. In this paper, we present 
some NDN congestion control works. Among the first interest 
control protocols proposed for NDN is the Interest Control 
Protocol (ICP) [17], which detects congestion at the consumer 
node by measuring delay and timer expirations. The window 
size adjustment is made at the receiver level using the AIMD 
(Additive-Increase Multiplicative-Decrease) mechanism. If 
RTO (Retransmission Time-Outs) is triggered, the consumer 
decreases its congestion window by MD (Multiplicative 
Decrease). Otherwise, it increases its congestion window by AI 
(Additive Increase). The authors of [18] proposed DCP 
"Delay-based Congestion Control Protocol" based on the 
window and the receiver. DCP detects congestion based on the 
value of the queue delay. If this delay is below a given 
threshold, DCP considers that the link is not congested. 
Otherwise, DCP considers the link is congested. The 
calculation of queuing delay is done by measuring the delay 
returned by the producer or intermediate nodes along the path 
of the transmitted data packets. DCP uses a linear controller to 
adjust the congestion window. In [19], the authors proposed a 
hop-by-hop congestion control mechanism (HCCM) based on 
explicit notification of interest packet rates. This mechanism 
detects congestion by calculating the queue length of the 
interest packets of the output interface. According to the value 
found, each router between the congested node and the 

consumer can adjust the sending rate of interest packets. The 
authors used two levels in the queue, qmax and qmin, 
representing the maximum and minimum queue occupancy 
thresholds respectively. Once the queue reaches one of the 
levels (qmax or qmin), the router sends a notification to the 
downstream node to inform it of the congestion state and the 
regulation of the sending rate of interest packets. In [7], the 
authors proposed EC-Elastic, an Explicit Congestion Control 
Mechanism that detects congestion at the routers by measuring 
the sojourn time of packets in the queue using CoDel-AQM 
algorithm and then, according to this value, the router marks 
the concerned data packets to inform the consumer nodes to 
reduce their sending rate of interest packets. At the consumer 
node, if the phase is a slow start, the congestion window is 
increased by one and decreased by β1, and if the phase is the 
congestion avoidance, the congestion window is increased by 
𝑊𝑊𝐹
𝑐𝑤𝑛𝑑

 using the Window-correlated Weighting Function WWF 
of Elastic-TCP [20] and decreased by β2. In [21], the authors 
proposed the MPCC Multipath Congestion Control 
mechanism, which is based on two principles: Multipath 
discovery that tags each sub-path with a path tag in the 
forwarding process and then based on these tags, a tag-aware 
forwarding strategy has been proposed to discover and manage 
sub-paths. For multipath congestion control, the authors 
proposed a Multipath Window Adaptation Control (MWAC) 
scheme to control the congestion window. In [22], the authors 
proposed DPCCP Delay-based Path-specified Congestion 
Control Protocol based on three modules, namely: The 
congestion estimation module, which aims to measure the 
number of backlogged packets for every sub-flow using RTT 
and baseRTT, where the number of backlogged packets 
measured for a sub-flow is the product of the sub-flow queuing 
delay and the sub-flow rate. The fairness control module which 
is used to calculate the target number of backlogged packets for 
each sub-flow to equalize the aggregate queuing delay [23] and 
the flow control module, which aims to adjust the rate based on 
the queuing delay and the target number of packets in the 
queue using the Adaptive Additive Increase Additive Decrease 
(A-AIAD) algorithm. 

Different from prior works, this paper proposes a new 
approach that controls congestion by calculating the average 
queuing delay based on the one way delay similar to that 
proposed in Sync-TCP [9]. Then according to the calculated 
value, the network is divided into three states; no-congested 
state, less-congested state and heavily congested state for 
efficient and lossless deployment in an IoHT environment. The 
adjustment of the congestion window size is made according to 
the state of the network. Increased in case of a no-congested 
network and decreased in a less-congested and heavily 
congested network. 

III. THE PROPOSED METHOD 

A. Motivation 
The NDN paradigm has several features, such as caching in 

intermediate routers that serve future requests for the same 
content without going through the content producer. This 
feature reduces the content retrieval time and the charge on the 
content producer. The use of multiple paths and multisource to 
avoid congestion of one path over another and to divert 
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requests in the event of a congested path. However, the use of 
RTT (Round-Trip Time) estimates as a primary indication of 
congestion are unreliable in NDN-IoHT because the value of 
RTT frequently changes due to caching and multipath causing 
problems for congestion control mechanisms that are affected 
by RTT variation particularly in the event of large RTTs which 
are treated as losses despite having no packet losses, thus 
halving the rate of sending packets of interest and consequently 
more time to fully utilize the bandwidth. 

An explicative example of the inefficiency of this 
congestion detection method was discussed in [18]. In this 
article, the authors shows that the increase in RTT along the 
path can be caused by the PIT congestion of one of the routers 
and not by the data path congestion. In addition, when using 
caching, the content retrieved from the cache has a shorter 
RTT. This situation can lead to an erroneous increase in the 
congestion window size because a short RTT value is 
perceived as a sign of bandwidth availability, which can cause 
packet loss [18]. 

Our approach is motivated by these problems of 
considering RTT as an indication of congestion, which is not 
tolerated in an IoHT environment because the transmitted data 
are important and critical and the recovery time plays a crucial 
role in this domain. In an NDN-IoHT environment, a 
congestion control mechanism should achieve the following 
goals: Avoid congestion if possible and, in cases where 
congestion cannot be avoided, control it; Ensure delivery of 
healthy data transmitted in the network and minimize packet 
loss; Utilize available bandwidth and maintain low packet 
delivery delay. 

B. Congestion Detection 
The congestion detection method of ADCD is inspired by 

the Sync-TCP algorithm proposed in [9]. It detects congestion 
based on One-way Transit Time (OTT) measurements. OTTs 
are more accurate in reflecting queue delay resulting from 
network congestion than RTTs. In NDN, each node (router or 
producer) adds the time of its transmission in the header of 
each data packet so that the consumer can estimate the one-
way delays. When the consumer receives this packet, it can 
estimate the one-way delay of the data packet using the 
transmission time available in its header and the reception time 
of this packet by subtracting the reception time of the packet 
from the sending time of that packet as follows: 

𝑂𝑇𝑇 = 𝐴𝑇 −  𝑇𝑇               (1) 

where, 𝐴𝑇  refers to the data packet arrival time and 𝑇𝑇  
refers to the transmission time of this data packet. Similar to 
DCP [18], we are focused only on the measurement of the 
relative delay between data packets to know whether the 
content is served from a new data producer or not. ADCD uses 
changes in queuing delay of a path to detect congestion. For 
each data packet received, the consumer ADCD obtains a new 
estimate of the queuing delay and then calculates it average. 
The average queuing delay is based on the changes in the 
current queuing delay measure as follows: 

𝐴𝑣𝑔𝑄𝐷𝑒𝑙𝑎𝑦 = 0.875 ∗ 𝐴𝑣𝑔𝑄𝐷𝑒𝑙𝑎𝑦 + 0.125 ∗ 𝐶𝑢𝑟𝑟𝑄𝐷𝑒𝑙𝑎𝑦 (2) 

Where CurrQDelay is the current queuing delay, it is 
estimated by taking the minimum observed OTT and 
subtracting it from the current delay as follows: 

𝐶𝑢𝑟𝑟𝑄𝐷𝑒𝑙𝑎𝑦 = Current_delay −  𝑂𝑇𝑇𝑚𝑖𝑛            (3) 

Where Current_delay is the one-way delay incurred by data 
packets and 𝑂𝑇𝑇𝑚𝑖𝑛  is the minimum one-way delay. The 
current queuing delay CurrQDelay is calculated for each 
received data packet once the minimum OTT and 
current_delay are updated, as shown in Algorithm 1. Once 
AvgQDelay is calculated, ADCD situates it in one of the 
network states. 

Algorithm 1 AvgQDelay Estimation Algorithm 

1: Function ONDATA(DataPacket) 
2: Current_delay  CurrentTime 
3: OTTmin  min (OTTmin, Current_delay) 
4: OTTmax  max (OTTmax, Current_delay) 
5: OTTmid (OTTmin + OTTmax) /2 
6: CurrQDelay  Current_delay - OTTmin 

7: AvgQDelay  0.875 *AvgQDelay + 0.125 * CurrQDelay 
8: end function 

ADCD considers three network congestion states; no-
congested state, less-congested state and heavily congested 
state. ADCD determines these three states based on the 
changes in the received OTTs and adjusts the congestion 
window size cwnd according to the degree of congestion in the 
network. The role is as follows: 

𝐴𝑣𝑔𝑄𝐷𝑒𝑙𝑎𝑦 ≤ 𝑂𝑇𝑇𝑚𝑖𝑑 no-congested state 

𝑂𝑇𝑇𝑚𝑖𝑑 < 𝐴𝑣𝑔𝑄𝐷𝑒𝑙𝑎𝑦 < 𝑂𝑇𝑇𝑚𝑎𝑥  less-congested state 

𝐴𝑣𝑔𝑄𝐷𝑒𝑙𝑎𝑦 ≤ 𝑂𝑇𝑇𝑚𝑎𝑥  heavily congested state 

If 𝐴𝑣𝑔𝑄𝐷𝑒𝑙𝑎𝑦 ≤ 𝑂𝑇𝑇𝑚𝑖𝑑 , ADCD considers the network 
non-congested. In this status, ADCD has a low queuing delay, 
a sign of bandwidth availability. In this case, the ADCD 
consumer increases its congestion window according to the 
network phase (Slow Start or Congestion Avoidance) to utilize 
the available bandwidth. 

If 𝑂𝑇𝑇𝑚𝑖𝑑 < 𝐴𝑣𝑔𝑄𝐷𝑒𝑙𝑎𝑦 < 𝑂𝑇𝑇𝑚𝑎𝑥 , ADCD considers 
the network low congested. As the risk of packet loss is low, 
the congestion window is decreased by the factor β1. 

If 𝐴𝑣𝑔𝑄𝐷𝑒𝑙𝑎𝑦 > 𝑂𝑇𝑇𝑚𝑎𝑥 , ADCD considers the network 
heavily congested and decreases its congestion window by the 
factor β2. 

Where, 𝑂𝑇𝑇𝑚𝑎𝑥  is the maximum one-way delay and 
𝑂𝑇𝑇𝑚𝑖𝑑  is the mid-point between 𝑂𝑇𝑇𝑚𝑎𝑥  and 𝑂𝑇𝑇𝑚𝑖𝑛 . The 
values of 𝑂𝑇𝑇𝑚𝑎𝑥 , 𝑂𝑇𝑇𝑚𝑖𝑛 and 𝑂𝑇𝑇𝑚𝑖𝑑 are updated whenever 
a data packet is received by the consumer according to the 
following formulas: 

𝑂𝑇𝑇𝑚𝑖𝑛 = min (Current_delay ,𝑂𝑇𝑇𝑚𝑖𝑛)            (4) 

𝑂𝑇𝑇𝑚𝑎𝑥 = max (Current_delay ,𝑂𝑇𝑇𝑚𝑎𝑥)            (5) 

𝑂𝑇𝑇𝑚𝑖𝑑 == (𝑂𝑇𝑇𝑚𝑖𝑛 +  𝑂𝑇𝑇𝑚𝑎𝑥) /2            (6) 
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C. Adjustment of the Congestion Window 
When the consumer calculates AvgQDelay and locates the 

status of the network, it proceeds to the adjustment of the 
congestion window size. ADCD controls the congestion 
window size in two phases Slow Start and Congestion 
Avoidance. ADCD adopts the Additive Increase mechanism in 
Slow Start phase and increases its congestion window by one 
while cwnd <= ssthresh, where ssthresh is a predefined 
threshold. In the congestion avoidance phase, which 
corresponds to cwnd > ssthresh, ADCD adopts the Window-
correlated Weighting Function WWF of [20] and increases its 
congestion window by 𝑊𝑊𝐹

𝑐𝑤𝑛𝑑
. The objective of using this 

function is to improve bandwidth utilization. Its formula is as 
follows: 

𝑊𝑊𝐹 =  � RTTmax
RTT current 

∗ cwnd             (7) 

where RTTcurrent is the current RTT, RTTmax is the 
maximum RTT and cwnd is the last congestion window size. 

ADCD starts the communication with the Slow Start phase 
and increases its congestion window by one by sending an 
interest packet to the network. Once the corresponding data 
packet is received, the consumer extracts the sending time and 
calculates AvgQDelay according to equation 2. If AvgQDelay 
is less than or equal to OTTmid, the network is considered not 
congested. In this case, the consumer continues to increase the 
congestion window exponentially to use the available 
bandwidth fully. Otherwise, the network is considered less 
congested if AvgQDelay is between OTTmid and OTTmax. In 
this case, the consumer decreases its congestion window by the 
factor β1= 0.8. Otherwise, if AvgQDelay exceeds OTTmax, the 
network is considered heavily congested, and the consumer 
decreases its congestion window by the factor β2 = 0.5 and 
enters into the congestion avoidance phase to slowly increase 
its congestion window. In this phase, the congestion window 
increases by using the WFF function. If the consumer receives 
a NACK packet or TimeOut, The congestion window is 
divided by two using a multiplicative decrease. Algorithm 2 
summarizes the congestion window adjustment steps at the 
consumer node. 

Algorithm 2 CWND Adjustment Algorithm 

1: On data reception do 
2: if slow start then 
3: cwnd  cwnd + 1 
4: else  
5: cwnd  cwnd + 𝑊𝑊𝐹

𝑐𝑤𝑛𝑑
  

6: end if 
7: if NACK or TimeOut received then 
8: cwnd  cwnd / 2  
9: end if 

IV. RESULTS AND DISCUSSION 
In this section, we present the experiment's parameters and 

then evaluate the performance of the proposed mechanism 
ADCD in different scenarios using ndnSIM [24], an NS3-
based simulator that has been proposed for NDN networks. We 

compare the performance of ADCD to that of ICP [17] in terms 
of throughput, delay, and packet loss rate. 

A. Simulation Parameters 
The first scenario is shown in Fig. 2. It represents the ideal 

case of a non-congested network for evaluating the 
performance of ADCD to demonstrate the high bandwidth 
utilization that can be achieved under the optimal conditions. It 
contains a consumer, a router, and a content producer. The 
bandwidth of the consumer-router path is 60 Mbps with a delay 
of 10ms, and the bandwidth of the router-producer path is 100 
Mbps with a delay of 10ms. The second scenario is illustrated 
in Fig. 3. This scenario contains three consumers who request 
the same content, two routers, and two content producers. The 
three consumers have an equal bandwidth of 50Mbps with 
different delays, 10ms for consumer1, 5ms for consumer2, and 
10ms for consumer3. The size of the transmitted data packet is 
1024 bytes, and the simulation time was in the 30s. 

B. Throughput 
Throughput refers to the total number of packets 

successfully transmitted between the source and the destination 
every second. Fig. 4 compares the throughput between ADCD 
and ICP in the first scenario, while Fig. 5 compares ADCD and 
ICP in the second scenario. In both figures, time in seconds is 
defined on the x-axis, and throughput in Mbps is defined on the 
y-axis. 

 
Fig. 2. Topology of the 1st Scenario. 

 
Fig. 3. Topology of 2nd Scenario. 
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Fig. 4. Throughput of the 1st Scenario. 

Fig. 4 shows the ability of the proposed mechanism to use 
the available bandwidth fully in the case of a non-congested 
network. This figure clearly shows that ADCD outperforms 
ICP in terms of throughput. The ADCD consumer could use an 
average throughput of 56.33 Mbps of the link capacity, while 
ICP used 45.63 Mbps. The increase in throughput with ADCD 
compared to ICP is due to the algorithm used by ADCD for 
congestion window adjustment, which rapidly increases its 
congestion window in the slow start phase, and then in the 
congestion avoidance phase, uses a window correlated 
weighting function (WWF) which aims to increase the use of 
the available bandwidth. However, ICP uses the AIMD 
algorithm to increase its congestion window, which rapidly 
increases the congestion window in the slow start phase, but in 
the congestion avoidance phase, it increases the congestion 
window by 1/cwnd, which increases the window slowly and 
consequently, a lower throughput than ADCD. 

Similarly, in Fig. 5, which represents the throughput of the 
second scenario, we observe that the ADCD mechanism 
achieves better throughput than ICP. This is explained by the 
fact that ADCD divides the network into three states; no-
congested state, less congested state, and heavily congested 
state. When it sees an increase in average queuing delay, it 
situates this value in one of the three states and reacts quickly 
by adjusting the size of the congestion window by β1 or β2. 
However, in ICP when a timeout is detected, it divides the 
congestion window by two, dividing the amount of data to be 
transmitted in the network by two, consequently decreasing the 
throughput. 

These results demonstrate the capability of ADCD to 
manage the NDN network by transferring packets over the 
network bandwidth without causing network congestion or 
queue overflow. In the case of a congested network, ADCD 
responds quickly to the congestion problem while maintaining 
an optimal throughput. 

 
Fig. 5. Throughput of 2nd Scenario. 

C. Delay Measurement 
 Delay is an essential factor for healthcare applications. It is 

the time taken for a packet to reach its destination from the 
source. Fig. 6 presents the delay measurements of the first 
scenario, Fig. 7 presents the delay measurements of the second 
scenario, and the average delay of scenarios 1 and 2 is 
presented in Table I. 

In Fig. 6, we observe that ICP has a lower delay than 
ADCD, the consumer ICP has an average delay of 0.054s 
while the consumer ADCD has an average delay of 0.072s. In 
Fig. 7, we observe that ADCD has a lower delay than ICP. The 
consumer ADCD has an average delay of 0.26s while ICP is 
0.42s. This is explained because ICP slowly increases its 
congestion window to transmit packets with lower throughput, 
fewer packets circulate in the network, and a lower 
transmission delay. However, the method used by ADCD to 
adjust the congestion window aims to increase the use of 
available bandwidth, thus allowing medical data to be 
transmitted with higher throughput and a reasonable 
transmission delay. 

 In the second scenario, the number of consumers has 
increased, so more requests for content are circulating in the 
network. ADCD handled this situation by calculating the 
average queuing delay for early congestion detection and 
reacting before overflowing the queue, consequently an 
optimal data transmission delay. 

TABLE I. AVERAGE DELAY OF BOTH SCENARIOS 

Mechanisms  ADCD ICP 

Scenario 1 0,072 0,054 

Scenario 2 0,26 0,42 
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Fig. 6. Delay of the 1st Scenario. 

 
Fig. 7. Delay of 2nd Scenario. 

D. Packet Loss Rate 
The packet loss measurement is the difference between the 

number of packets transmitted and the number of packets 
received by the same node. It represents the number of packets 
abandoned per second. Congestion control mechanisms aim to 
reduce packet loss rate while increasing throughput and the use 
of available bandwidth. The simulation results of packet loss 
rate of the two scenarios are presented in Table II, where it is 
observed that the performance of ADCD and ICP are 
practically similar with a negligible packet loss rate. 

TABLE II. PACKET LOSS RATE OF BOTH SCENARIOS 

Mechanisms ADCD ICP 

Scenario 1 0 0 

Scenario 2 0,042 0,087 

V. CONCLUSION 
This paper proposes a new NDN-based approach, an 

Average delay-based early congestion Detection (ADCD), to 
control congestion in IoHT systems in which congestion is 
highly undesirable and can lead to undesirable results. In this 
approach, congestion is detected and controlled at consumer 
nodes by calculating the average queuing delay based on the 
one-way delay similar to that proposed in Sync-TCP, and then 
according to the calculated value, ADCD divides the network 
into three states: no-congested state, less congested state and 
highly congested state. The adjustment of the congestion 
window size is made according to the network state. The 
different simulations performed show the effectiveness of 
ADCD for early detection and control of congestion while 
improving network bandwidth utilization, maintaining optimal 
delay, and low packet loss rate. 

In future work, we envisage extending the multipath 
analysis to independently managed paths to exploit the 
capability of NDN "multipath" to manage complex 
communication scenarios in IoHT systems. 
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