
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Average Delay-based early Congestion Detection in
Named Data of Health Things

Asmaa EL-BAKKOUCHI1*, Mohammed EL GHAZI2
Anas BOUAYAD3, Mohammed FATTAH4, Moulhime EL BEKKALI5

Artificial Intelligence, Data Sciences and Emerging Systems Laboratory

Sidi Mohamed Ben Abdellah University, Fez, Morocco 1,2,3,5
IMAGE Laboratory, Moulay Ismail University, Meknes, Morocco4

Abstract—The Internet of Health Things (IoHT) is receiving
more attention from researchers because of its wide use in the
healthcare field. IoHT refers to medical devices whose main
purpose is to transmit health data in a secure and lossless
manner between them and healthcare personnel. However, in a
medical emergency, sensors transmit vital patient data
simultaneously and frequently, increasing the risk of congestion
and packet loss. This problem is highly undesirable in an IoHT
system, leading to undesirable results. To address this issue, a
new approach based on Named Data Networking (NDN) (which
is considered as the most appropriate internet architecture for
IoT systems) is proposed to control congestion in IoHT systems.
The proposed approach, Average delay-based early congestion
Detection (ADCD), detects and controls congestion at consumer
nodes by calculating the average queuing delay based on the one-
way delay similar to that proposed in Sync-TCP. Then according
to the calculated value, ADCD divides the network into three
states: no-congested state, less congested state, and heavily
congested state. The adjustment of the congestion window size is
done according to the state of the network. ADCD was
implemented in ndnSIM and compared to the Interest Control
Protocol ICP. The results show that ADCD maximizes
bandwidth utilization compared to ICP and maintains a
reasonable delay.

Keywords—Named data networking; internet of health things;
congestion control; congestion detection

I. INTRODUCTION
The Internet of Things (IoT) is a collection of intelligent

devices that can communicate, interact and exchange
information with each other [1]. It interconnects billions of
small devices to deliver information at any time and across the
world [2]. IoT has been primarily applied in several domains
like healthcare, smart home, smart cities, industries,
transportation and logistics, etc. In healthcare, IoHT has been
proposed as an extended version of IoT to connect people and
smart objects in the medical field [3]. It refers to medical
devices, healthcare sensors and intelligent biomedical
applications that enable the exchange and treatment of various
types of healthcare data with each other and with healthcare
people [3], whose main objective is to transmit health data
securely and without loss. This data can be patient monitoring
data, patient analyses, consultations or even sensitive data such
as heart rate and breathing.

In the case of a medical emergency or patient vital signs
monitoring, sensors implanted on patients detect and transmit
vital patient data simultaneously and frequently, which
increases the risk of congestion and consequently packet loss.
In IoHT, congestion is highly undesirable and can lead to
undesirable outcomes such as patient death. However, ensuring
that packets arrive at their destination in time guarantees
patients' safety and survival [4]. Due to the importance and
sensitivity of the transmitted data, congestion should be
avoided as much as possible and controlled if this is not
possible.

However, the IP protocol stack on which the IoT is based
was designed for a different purpose and cannot handle the
important challenges caused by the heterogeneity of the
devices and the importance of the traffic generated,
highlighting the limitations of IP. However, the current IP
solutions are working hard to support IoT systems, but the gaps
in IP are still hard to hide. Along with efforts to adapt IP to the
IoT and other content-based architectures, Information Centric
Networking (ICN) [5] promises to support IoT systems and
emerging internet applications natively. It is a switch from a
host-centric communication model to a content-centric system,
caching at intermediate nodes, and the use of multiple paths
and sources. With its features, ICN has the potential to be a
reliable framework for IoT by connecting billions of
heterogeneous constrained objects. Indeed, ICN provides easy
access to data and reduces data recovery time and the load on
data producers. NDN [6] is considered as the appropriate ICN
architecture for IoT systems among several ICN architectures.

NDN is a new internet architecture based on the content of
data rather than its IP address. NDN defines three roles:
Consumer, Router and Producer and offers two types of
packets; the interest packet, containing the required content
name and the data packet, containing the required content.
There are three elements to every NDN node as shown in Fig.
1; Content Store (CS), Pending Interest Table (PIT) and
Forwarding Interest Base (FIB). The CS stores copies of the
content that passes through it so that future demands for the
same content can be satisfied. The PIT is a table that preserves
the records of incoming and outgoing interest and data packets.
The FIB transfers interest and data packets between nodes
through routing protocols [7]. The data transfer process
between NDN nodes is as follows, the consumer asks for
content by sending an interest packet.

*Corresponding Author.

335 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Fig. 1. NDN Information Distribution in Case of IoHT Environment.

The routers use FIBs to forward this packet to the content
producer and create a PIT entry list on each router to define the
reverse path. Then, the producer transfers the related content
via the reverse path to the consumer, and the CS saves the
content that traverses it for future utilization [8].

An example of the data transfer process between NDN
nodes is shown in Fig. 1. Suppose that consumer one starts this
process and sends an interest packet containing the requested
name. This interest packet is transferred to the producer using
the FIB services. The requested content is put into a data
packet and is stored in the CS of router three and router two for
future utilization. Subsequently, if consumer two requires the
same content, its interest packet is locally satisfied from the CS
of router two without the need to forward this packet to the
original content producer. In the case of IoHT, the consumer
can be a doctor, a patient, a nurse, a medical application, a
hospital or any medical or IoT device that desires to obtain
data/information concerning the health field. The producer can
also be a doctor, a patient, a nurse, a medical application, a
hospital or any medical or IoT device that has data/information
concerning the health field. The router's mission is to route the
data/information concerning the health field between the
consumer and the producer.

To address the problem of congestion in healthcare field,
and as NDN congestion control mechanisms that are based on
the estimation of RTTs as the main indication of congestion are
not reliable in NDN-IoHT because the RTT value changes
frequently due to caching or multipath. This paper proposes a
new approach based on Sync-TCP [9] (which has been
proposed to control congestion based on measurements of the
One-way Transit Time (OTT) between senders and receivers of
packets) to control congestion in NDN-IoHT. OTTs are more
accurate in reflecting queue delay resulting from network
congestion than RTTs.

In our approach, congestion is detected by calculating the
average queuing delay based on the one-way delay similar to
that proposed in Sync-TCP [9]. Then according to the
calculated value, the network is divided into three states; no-
congested state, less-congested state and heavily congested
state. The adjustment of the congestion window size is made
according to the state of the network. Increased in case of a no-
congested network and decreased in a less-congested and
heavily congested network. The choice of congestion control at
the consumer nodes comes from the fact that the method used
for congestion detection is based on variations of OTTs which
is more reliable at the consumer node than at the router node
because consumers are able to estimate the one-way delay of
the data packet using the transmission time available in its
header and the reception time of this packet. The rest of the
paper is organized as follows: Section II presents background
and related work, Section III describes the proposed method,
Section IV presents results and discussion and Section V
concludes the article.

II. BACKGROUND AND RELATED WORK

A. NDN for IoT
ICN has been proposed as a promising future internet

architecture to fill the gaps in the CoAP/RPL/6LowPan/
802.15.4 protocol stack on which the IoT system is based and
improve its deployment and data distribution [10]. Among the
ICN architectures proposed in the literature, NDN is
considered as the most appropriate ICN architecture for IoT
systems. In effect, the characteristics of NDN, namely
hierarchical naming of unique content that is independent of its
location, caching in intermediate routers, multipath,
multisource, name-based routing, support for user mobility, the
use of encryption for better access control, make it a very
suitable platform for IoT system traffic and applications.

336 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Several works have been done on this topic to show that NDN
is the most suitable and promising architecture for IoT. In [11],
the authors suggested that NDN can meet IoT requirements and
is the most suitable architecture for IoT scenarios. In [12], the
authors showed that the semantics of NDN meets the
requirements of IoT applications and its main challenges. They
also showed that the communication model used by NDN
"based on the content name" allows IoT networks an easy
deployment and configuration. In [13], the authors proposed a
comparative study of ICN architectures in an IoT context and
concluded that NDN is an architecture most suitable for IoT
systems. In [2], the authors proposed an NDN integration in
IoT devices and then evaluated this proposal in a Smart
Farming application scenario to prove that NDN is an
architecture most suitable for IoT systems. In [14], the authors
described the advantages of the NDN architecture compared to
the current IP internet architecture for IoT systems and then
explained how NDN can be included in an IoT architecture. In
[15], the authors discussed the main characteristics of NDN in
IoT, then they proposed an IoT architecture via NDN named
IoT-NDN for various IoT domains. Some studies have
discussed the requirements of IoT and how ICN architectures
support them without examining which of these architectures is
most appropriate for IoT.

B. Related Work
In NDN architecture, the problem of network congestion is

the subject of much active research focused on minimizing
transit delays and reducing packet loss caused by the transfer
capability of routers. In NDN architecture, data packets are the
leading cause of congestion because they are much larger than
interest packets. Therefore, to control congestion, many
research works propose controlling the sending rate of interest
packets to limit the returning rate of data packets. Several
congestion control mechanisms have been proposed in the
literature, classified as receiver-based control, Hop-by-hop
control, and Hybrid control [16]. In this paper, we present
some NDN congestion control works. Among the first interest
control protocols proposed for NDN is the Interest Control
Protocol (ICP) [17], which detects congestion at the consumer
node by measuring delay and timer expirations. The window
size adjustment is made at the receiver level using the AIMD
(Additive-Increase Multiplicative-Decrease) mechanism. If
RTO (Retransmission Time-Outs) is triggered, the consumer
decreases its congestion window by MD (Multiplicative
Decrease). Otherwise, it increases its congestion window by AI
(Additive Increase). The authors of [18] proposed DCP
"Delay-based Congestion Control Protocol" based on the
window and the receiver. DCP detects congestion based on the
value of the queue delay. If this delay is below a given
threshold, DCP considers that the link is not congested.
Otherwise, DCP considers the link is congested. The
calculation of queuing delay is done by measuring the delay
returned by the producer or intermediate nodes along the path
of the transmitted data packets. DCP uses a linear controller to
adjust the congestion window. In [19], the authors proposed a
hop-by-hop congestion control mechanism (HCCM) based on
explicit notification of interest packet rates. This mechanism
detects congestion by calculating the queue length of the
interest packets of the output interface. According to the value
found, each router between the congested node and the

consumer can adjust the sending rate of interest packets. The
authors used two levels in the queue, qmax and qmin,
representing the maximum and minimum queue occupancy
thresholds respectively. Once the queue reaches one of the
levels (qmax or qmin), the router sends a notification to the
downstream node to inform it of the congestion state and the
regulation of the sending rate of interest packets. In [7], the
authors proposed EC-Elastic, an Explicit Congestion Control
Mechanism that detects congestion at the routers by measuring
the sojourn time of packets in the queue using CoDel-AQM
algorithm and then, according to this value, the router marks
the concerned data packets to inform the consumer nodes to
reduce their sending rate of interest packets. At the consumer
node, if the phase is a slow start, the congestion window is
increased by one and decreased by β1, and if the phase is the
congestion avoidance, the congestion window is increased by
𝑊𝑊𝐹
𝑐𝑤𝑛𝑑

 using the Window-correlated Weighting Function WWF
of Elastic-TCP [20] and decreased by β2. In [21], the authors
proposed the MPCC Multipath Congestion Control
mechanism, which is based on two principles: Multipath
discovery that tags each sub-path with a path tag in the
forwarding process and then based on these tags, a tag-aware
forwarding strategy has been proposed to discover and manage
sub-paths. For multipath congestion control, the authors
proposed a Multipath Window Adaptation Control (MWAC)
scheme to control the congestion window. In [22], the authors
proposed DPCCP Delay-based Path-specified Congestion
Control Protocol based on three modules, namely: The
congestion estimation module, which aims to measure the
number of backlogged packets for every sub-flow using RTT
and baseRTT, where the number of backlogged packets
measured for a sub-flow is the product of the sub-flow queuing
delay and the sub-flow rate. The fairness control module which
is used to calculate the target number of backlogged packets for
each sub-flow to equalize the aggregate queuing delay [23] and
the flow control module, which aims to adjust the rate based on
the queuing delay and the target number of packets in the
queue using the Adaptive Additive Increase Additive Decrease
(A-AIAD) algorithm.

Different from prior works, this paper proposes a new
approach that controls congestion by calculating the average
queuing delay based on the one way delay similar to that
proposed in Sync-TCP [9]. Then according to the calculated
value, the network is divided into three states; no-congested
state, less-congested state and heavily congested state for
efficient and lossless deployment in an IoHT environment. The
adjustment of the congestion window size is made according to
the state of the network. Increased in case of a no-congested
network and decreased in a less-congested and heavily
congested network.

III. THE PROPOSED METHOD

A. Motivation
The NDN paradigm has several features, such as caching in

intermediate routers that serve future requests for the same
content without going through the content producer. This
feature reduces the content retrieval time and the charge on the
content producer. The use of multiple paths and multisource to
avoid congestion of one path over another and to divert

337 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

requests in the event of a congested path. However, the use of
RTT (Round-Trip Time) estimates as a primary indication of
congestion are unreliable in NDN-IoHT because the value of
RTT frequently changes due to caching and multipath causing
problems for congestion control mechanisms that are affected
by RTT variation particularly in the event of large RTTs which
are treated as losses despite having no packet losses, thus
halving the rate of sending packets of interest and consequently
more time to fully utilize the bandwidth.

An explicative example of the inefficiency of this
congestion detection method was discussed in [18]. In this
article, the authors shows that the increase in RTT along the
path can be caused by the PIT congestion of one of the routers
and not by the data path congestion. In addition, when using
caching, the content retrieved from the cache has a shorter
RTT. This situation can lead to an erroneous increase in the
congestion window size because a short RTT value is
perceived as a sign of bandwidth availability, which can cause
packet loss [18].

Our approach is motivated by these problems of
considering RTT as an indication of congestion, which is not
tolerated in an IoHT environment because the transmitted data
are important and critical and the recovery time plays a crucial
role in this domain. In an NDN-IoHT environment, a
congestion control mechanism should achieve the following
goals: Avoid congestion if possible and, in cases where
congestion cannot be avoided, control it; Ensure delivery of
healthy data transmitted in the network and minimize packet
loss; Utilize available bandwidth and maintain low packet
delivery delay.

B. Congestion Detection
The congestion detection method of ADCD is inspired by

the Sync-TCP algorithm proposed in [9]. It detects congestion
based on One-way Transit Time (OTT) measurements. OTTs
are more accurate in reflecting queue delay resulting from
network congestion than RTTs. In NDN, each node (router or
producer) adds the time of its transmission in the header of
each data packet so that the consumer can estimate the one-
way delays. When the consumer receives this packet, it can
estimate the one-way delay of the data packet using the
transmission time available in its header and the reception time
of this packet by subtracting the reception time of the packet
from the sending time of that packet as follows:

𝑂𝑇𝑇 = 𝐴𝑇 − 𝑇𝑇 (1)

where, 𝐴𝑇 refers to the data packet arrival time and 𝑇𝑇
refers to the transmission time of this data packet. Similar to
DCP [18], we are focused only on the measurement of the
relative delay between data packets to know whether the
content is served from a new data producer or not. ADCD uses
changes in queuing delay of a path to detect congestion. For
each data packet received, the consumer ADCD obtains a new
estimate of the queuing delay and then calculates it average.
The average queuing delay is based on the changes in the
current queuing delay measure as follows:

𝐴𝑣𝑔𝑄𝐷𝑒𝑙𝑎𝑦 = 0.875 ∗ 𝐴𝑣𝑔𝑄𝐷𝑒𝑙𝑎𝑦 + 0.125 ∗ 𝐶𝑢𝑟𝑟𝑄𝐷𝑒𝑙𝑎𝑦 (2)

Where CurrQDelay is the current queuing delay, it is
estimated by taking the minimum observed OTT and
subtracting it from the current delay as follows:

𝐶𝑢𝑟𝑟𝑄𝐷𝑒𝑙𝑎𝑦 = Current_delay − 𝑂𝑇𝑇𝑚𝑖𝑛 (3)

Where Current_delay is the one-way delay incurred by data
packets and 𝑂𝑇𝑇𝑚𝑖𝑛 is the minimum one-way delay. The
current queuing delay CurrQDelay is calculated for each
received data packet once the minimum OTT and
current_delay are updated, as shown in Algorithm 1. Once
AvgQDelay is calculated, ADCD situates it in one of the
network states.

Algorithm 1 AvgQDelay Estimation Algorithm

1: Function ONDATA(DataPacket)
2: Current_delay  CurrentTime
3: OTTmin  min (OTTmin, Current_delay)
4: OTTmax  max (OTTmax, Current_delay)
5: OTTmid (OTTmin + OTTmax) /2
6: CurrQDelay  Current_delay - OTTmin

7: AvgQDelay  0.875 *AvgQDelay + 0.125 * CurrQDelay
8: end function

ADCD considers three network congestion states; no-
congested state, less-congested state and heavily congested
state. ADCD determines these three states based on the
changes in the received OTTs and adjusts the congestion
window size cwnd according to the degree of congestion in the
network. The role is as follows:

𝐴𝑣𝑔𝑄𝐷𝑒𝑙𝑎𝑦 ≤ 𝑂𝑇𝑇𝑚𝑖𝑑 no-congested state

𝑂𝑇𝑇𝑚𝑖𝑑 < 𝐴𝑣𝑔𝑄𝐷𝑒𝑙𝑎𝑦 < 𝑂𝑇𝑇𝑚𝑎𝑥 less-congested state

𝐴𝑣𝑔𝑄𝐷𝑒𝑙𝑎𝑦 ≤ 𝑂𝑇𝑇𝑚𝑎𝑥 heavily congested state

If 𝐴𝑣𝑔𝑄𝐷𝑒𝑙𝑎𝑦 ≤ 𝑂𝑇𝑇𝑚𝑖𝑑 , ADCD considers the network
non-congested. In this status, ADCD has a low queuing delay,
a sign of bandwidth availability. In this case, the ADCD
consumer increases its congestion window according to the
network phase (Slow Start or Congestion Avoidance) to utilize
the available bandwidth.

If 𝑂𝑇𝑇𝑚𝑖𝑑 < 𝐴𝑣𝑔𝑄𝐷𝑒𝑙𝑎𝑦 < 𝑂𝑇𝑇𝑚𝑎𝑥 , ADCD considers
the network low congested. As the risk of packet loss is low,
the congestion window is decreased by the factor β1.

If 𝐴𝑣𝑔𝑄𝐷𝑒𝑙𝑎𝑦 > 𝑂𝑇𝑇𝑚𝑎𝑥 , ADCD considers the network
heavily congested and decreases its congestion window by the
factor β2.

Where, 𝑂𝑇𝑇𝑚𝑎𝑥 is the maximum one-way delay and
𝑂𝑇𝑇𝑚𝑖𝑑 is the mid-point between 𝑂𝑇𝑇𝑚𝑎𝑥 and 𝑂𝑇𝑇𝑚𝑖𝑛 . The
values of 𝑂𝑇𝑇𝑚𝑎𝑥 , 𝑂𝑇𝑇𝑚𝑖𝑛 and 𝑂𝑇𝑇𝑚𝑖𝑑 are updated whenever
a data packet is received by the consumer according to the
following formulas:

𝑂𝑇𝑇𝑚𝑖𝑛 = min (Current_delay ,𝑂𝑇𝑇𝑚𝑖𝑛) (4)

𝑂𝑇𝑇𝑚𝑎𝑥 = max (Current_delay ,𝑂𝑇𝑇𝑚𝑎𝑥) (5)

𝑂𝑇𝑇𝑚𝑖𝑑 == (𝑂𝑇𝑇𝑚𝑖𝑛 + 𝑂𝑇𝑇𝑚𝑎𝑥) /2 (6)

338 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

C. Adjustment of the Congestion Window
When the consumer calculates AvgQDelay and locates the

status of the network, it proceeds to the adjustment of the
congestion window size. ADCD controls the congestion
window size in two phases Slow Start and Congestion
Avoidance. ADCD adopts the Additive Increase mechanism in
Slow Start phase and increases its congestion window by one
while cwnd <= ssthresh, where ssthresh is a predefined
threshold. In the congestion avoidance phase, which
corresponds to cwnd > ssthresh, ADCD adopts the Window-
correlated Weighting Function WWF of [20] and increases its
congestion window by 𝑊𝑊𝐹

𝑐𝑤𝑛𝑑
. The objective of using this

function is to improve bandwidth utilization. Its formula is as
follows:

𝑊𝑊𝐹 = � RTTmax
RTT current

∗ cwnd (7)

where RTTcurrent is the current RTT, RTTmax is the
maximum RTT and cwnd is the last congestion window size.

ADCD starts the communication with the Slow Start phase
and increases its congestion window by one by sending an
interest packet to the network. Once the corresponding data
packet is received, the consumer extracts the sending time and
calculates AvgQDelay according to equation 2. If AvgQDelay
is less than or equal to OTTmid, the network is considered not
congested. In this case, the consumer continues to increase the
congestion window exponentially to use the available
bandwidth fully. Otherwise, the network is considered less
congested if AvgQDelay is between OTTmid and OTTmax. In
this case, the consumer decreases its congestion window by the
factor β1= 0.8. Otherwise, if AvgQDelay exceeds OTTmax, the
network is considered heavily congested, and the consumer
decreases its congestion window by the factor β2 = 0.5 and
enters into the congestion avoidance phase to slowly increase
its congestion window. In this phase, the congestion window
increases by using the WFF function. If the consumer receives
a NACK packet or TimeOut, The congestion window is
divided by two using a multiplicative decrease. Algorithm 2
summarizes the congestion window adjustment steps at the
consumer node.

Algorithm 2 CWND Adjustment Algorithm

1: On data reception do
2: if slow start then
3: cwnd  cwnd + 1
4: else
5: cwnd  cwnd + 𝑊𝑊𝐹

𝑐𝑤𝑛𝑑

6: end if
7: if NACK or TimeOut received then
8: cwnd  cwnd / 2
9: end if

IV. RESULTS AND DISCUSSION
In this section, we present the experiment's parameters and

then evaluate the performance of the proposed mechanism
ADCD in different scenarios using ndnSIM [24], an NS3-
based simulator that has been proposed for NDN networks. We

compare the performance of ADCD to that of ICP [17] in terms
of throughput, delay, and packet loss rate.

A. Simulation Parameters
The first scenario is shown in Fig. 2. It represents the ideal

case of a non-congested network for evaluating the
performance of ADCD to demonstrate the high bandwidth
utilization that can be achieved under the optimal conditions. It
contains a consumer, a router, and a content producer. The
bandwidth of the consumer-router path is 60 Mbps with a delay
of 10ms, and the bandwidth of the router-producer path is 100
Mbps with a delay of 10ms. The second scenario is illustrated
in Fig. 3. This scenario contains three consumers who request
the same content, two routers, and two content producers. The
three consumers have an equal bandwidth of 50Mbps with
different delays, 10ms for consumer1, 5ms for consumer2, and
10ms for consumer3. The size of the transmitted data packet is
1024 bytes, and the simulation time was in the 30s.

B. Throughput
Throughput refers to the total number of packets

successfully transmitted between the source and the destination
every second. Fig. 4 compares the throughput between ADCD
and ICP in the first scenario, while Fig. 5 compares ADCD and
ICP in the second scenario. In both figures, time in seconds is
defined on the x-axis, and throughput in Mbps is defined on the
y-axis.

Fig. 2. Topology of the 1st Scenario.

Fig. 3. Topology of 2nd Scenario.

339 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Fig. 4. Throughput of the 1st Scenario.

Fig. 4 shows the ability of the proposed mechanism to use
the available bandwidth fully in the case of a non-congested
network. This figure clearly shows that ADCD outperforms
ICP in terms of throughput. The ADCD consumer could use an
average throughput of 56.33 Mbps of the link capacity, while
ICP used 45.63 Mbps. The increase in throughput with ADCD
compared to ICP is due to the algorithm used by ADCD for
congestion window adjustment, which rapidly increases its
congestion window in the slow start phase, and then in the
congestion avoidance phase, uses a window correlated
weighting function (WWF) which aims to increase the use of
the available bandwidth. However, ICP uses the AIMD
algorithm to increase its congestion window, which rapidly
increases the congestion window in the slow start phase, but in
the congestion avoidance phase, it increases the congestion
window by 1/cwnd, which increases the window slowly and
consequently, a lower throughput than ADCD.

Similarly, in Fig. 5, which represents the throughput of the
second scenario, we observe that the ADCD mechanism
achieves better throughput than ICP. This is explained by the
fact that ADCD divides the network into three states; no-
congested state, less congested state, and heavily congested
state. When it sees an increase in average queuing delay, it
situates this value in one of the three states and reacts quickly
by adjusting the size of the congestion window by β1 or β2.
However, in ICP when a timeout is detected, it divides the
congestion window by two, dividing the amount of data to be
transmitted in the network by two, consequently decreasing the
throughput.

These results demonstrate the capability of ADCD to
manage the NDN network by transferring packets over the
network bandwidth without causing network congestion or
queue overflow. In the case of a congested network, ADCD
responds quickly to the congestion problem while maintaining
an optimal throughput.

Fig. 5. Throughput of 2nd Scenario.

C. Delay Measurement
 Delay is an essential factor for healthcare applications. It is

the time taken for a packet to reach its destination from the
source. Fig. 6 presents the delay measurements of the first
scenario, Fig. 7 presents the delay measurements of the second
scenario, and the average delay of scenarios 1 and 2 is
presented in Table I.

In Fig. 6, we observe that ICP has a lower delay than
ADCD, the consumer ICP has an average delay of 0.054s
while the consumer ADCD has an average delay of 0.072s. In
Fig. 7, we observe that ADCD has a lower delay than ICP. The
consumer ADCD has an average delay of 0.26s while ICP is
0.42s. This is explained because ICP slowly increases its
congestion window to transmit packets with lower throughput,
fewer packets circulate in the network, and a lower
transmission delay. However, the method used by ADCD to
adjust the congestion window aims to increase the use of
available bandwidth, thus allowing medical data to be
transmitted with higher throughput and a reasonable
transmission delay.

 In the second scenario, the number of consumers has
increased, so more requests for content are circulating in the
network. ADCD handled this situation by calculating the
average queuing delay for early congestion detection and
reacting before overflowing the queue, consequently an
optimal data transmission delay.

TABLE I. AVERAGE DELAY OF BOTH SCENARIOS

Mechanisms ADCD ICP

Scenario 1 0,072 0,054

Scenario 2 0,26 0,42

340 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

Fig. 6. Delay of the 1st Scenario.

Fig. 7. Delay of 2nd Scenario.

D. Packet Loss Rate
The packet loss measurement is the difference between the

number of packets transmitted and the number of packets
received by the same node. It represents the number of packets
abandoned per second. Congestion control mechanisms aim to
reduce packet loss rate while increasing throughput and the use
of available bandwidth. The simulation results of packet loss
rate of the two scenarios are presented in Table II, where it is
observed that the performance of ADCD and ICP are
practically similar with a negligible packet loss rate.

TABLE II. PACKET LOSS RATE OF BOTH SCENARIOS

Mechanisms ADCD ICP

Scenario 1 0 0

Scenario 2 0,042 0,087

V. CONCLUSION
This paper proposes a new NDN-based approach, an

Average delay-based early congestion Detection (ADCD), to
control congestion in IoHT systems in which congestion is
highly undesirable and can lead to undesirable results. In this
approach, congestion is detected and controlled at consumer
nodes by calculating the average queuing delay based on the
one-way delay similar to that proposed in Sync-TCP, and then
according to the calculated value, ADCD divides the network
into three states: no-congested state, less congested state and
highly congested state. The adjustment of the congestion
window size is made according to the network state. The
different simulations performed show the effectiveness of
ADCD for early detection and control of congestion while
improving network bandwidth utilization, maintaining optimal
delay, and low packet loss rate.

In future work, we envisage extending the multipath
analysis to independently managed paths to exploit the
capability of NDN "multipath" to manage complex
communication scenarios in IoHT systems.

REFERENCES
[1] K. Das, S. Zeadally, and D. He, “Taxonomy and analysis of security

protocols for Internet of Things,” Futur. Gener. Comput. Syst., vol. 89,
pp. 110–125, 2018.

[2] A. Abane, M. Daoui, S. Bouzefrane, S. Banerjee, and P. Muhlethaler,
“A realistic deployment of named data networking in the internet of
things,” J. Cyber Secur. Mobil., vol. 9, no. 1, 2020.

[3] Aroosa, S. S. Ullah, S. Hussain, R. Alroobaea, and I. Ali, “Securing
NDN-Based Internet of Health Things through Cost-Effective
Signcryption Scheme,” Wirel. Commun. Mob. Comput., vol. 2021, no.
April, 2021.

[4] A. A. Rezaee, M. H. Yaghmaee, A. M. Rahmani, and A. H.
Mohajerzadeh, “HOCA: Healthcare aware optimized congestion
avoidance and control protocol for wireless sensor networks,” J. Netw.
Comput. Appl., vol. 37, no. 1, pp. 216–228, 2014.

[5] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,
“A survey of information-centric networking,” IEEE Commun. Mag.,
vol. 50, no. 7, pp. 26–36, 2012.

[6] P. Zhang, L., Afanasyev, A., Burke, J., Jacobson, V., claffy, k., Crowley,
P. and B. C., Wang, L., Zhang, “Named data networking,” ACM
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 66–73.

[7] A. EL-BAKKOUCHI, M. EL GHAZI, A. BOUAYAD, M. FATTAH,
and M. EL BEKKALI, “EC-Elastic an Explicit Congestion Control
Mechanism for Named Data Networking,” Int. J. Adv. Comput. Sci.
Appl., vol. 12, no. 11, pp. 594–603, 2021.

[8] A. El-bakkouchi, A. Bouayad, and M. ELBekkali, “A hop-by-hop
Congestion Control Mechanisms in NDN Networks – A Survey,” 2019
7th Mediterr. Congr. Telecommun., pp. 1–4, 2019.

[9] M. C. Weigle, K. Jeffay, and F. D. Smith, “Delay-based early
congestion detection and adaptation in TCP: Impact on web
performance,” Comput. Commun., vol. 28, no. 8, pp. 837–850, 2005.

[10] B. Alahmri, S. Al-Ahmadi, and A. Belghith, “Efficient Pooling and
Collaborative Cache Management for NDN/IoT Networks,” IEEE
Access, vol. 9, pp. 43228–43240, 2021.

[11] M. Amadeo, C. Campolo, A. Iera, and A. Molinaro, “Named data
networking for IoT: An architectural perspective,” EuCNC 2014 - Eur.
Conf. Networks Commun., no. July 2015, 2014.

[12] W. Shang et al., “Named data networking of things (invited paper),”
Proc. - 2016 IEEE 1st Int. Conf. Internet-of-Things Des.
Implementation, IoTDI 2016, pp. 117–128, 2016.

[13] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira, and S. Al-
Ahmadi, “Named data networking: A promising architecture for the
internet of things (IoT),” Int. J. Semant. Web Inf. Syst., vol. 14, no. 2,
pp. 86–112, 2018.

341 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

[14] S. K. Datta and C. Bonnet, “Integrating Named Data Networking in
Internet of Things architecture,” 2016 IEEE Int. Conf. Consum.
Electron. ICCE-TW 2016, 2016.

[15] M. A. Hail, “IoT-NDN: An IoT architecture via named data netwoking
(NDN),” Proc. - 2019 IEEE Int. Conf. Ind. 4.0, Artif. Intell. Commun.
Technol. IAICT 2019, no. July, pp. 74–80, 2019.

[16] Y. Ren, J. Li, S. Shi, L. Li, G. Wang, and B. Zhang, “Congestion control
in named data networking – A survey,” Comput. Commun., vol. 86, pp.
1–11, Jul. 2016.

[17] G. Carofiglio, M. Gallo, and L. Muscariello, “ICP: Design and
evaluation of an Interest control protocol for content-centric
networking,” in 2012 Proceedings IEEE INFOCOM Workshops, 2012,
pp. 304–309.

[18] A. A. Albalawi and J. J. Garcia-Luna-Aceves, “A Delay-Based
Congestion-Control Protocol for Information-Centric Networks,” 2019
Int. Conf. Comput. Netw. Commun. ICNC 2019, pp. 809–815, 2019.

[19] S. Mejri, H. Touati, N. Malouch, and F. Kamoun, “Hop-by-hop
congestion control for named data networks,” Proc. IEEE/ACS Int.

Conf. Comput. Syst. Appl. AICCSA, vol. 2017-Octob, pp. 114–119,
2018.

[20] M. A. Alrshah, M. A. Al-Maqri, and M. Othman, “Elastic-TCP: Flexible
Congestion Control Algorithm to Adapt for High-BDP Networks,” IEEE
Syst. J., pp. 1–11, 2019.

[21] F. Wu, W. Yang, M. Sun, J. Ren, and F. Lyu, “Multi-Path Selection and
Congestion Control for NDN: An Online Learning Approach,” IEEE
Trans. Netw. Serv. Manag., vol. 18, no. 2, pp. 1977–1989, 2021.

[22] Y. Ye, B. Lee, R. Flynn, J. Xu, G. Fang, and Y. Qiao, “Delay-Based
Network Utility Maximization Modelling for Congestion Control in
Named Data Networking,” IEEE/ACM Trans. Netw., pp. 1–14, 2021.

[23] Y. Cao, M. Xu, and X. Fu, “Delay-based Congestion Control for
Multipath TCP,” 20th IEEE Int. Conf. Netw. Protoc., pp. 1–10, 2012.

[24] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM 2 :
An updated NDN simulator for NS-3,” Dept. Comput. Sci., Univ.
California, Los Angeles, Los Angeles, CA, USA, Tech. Rep. NDN-
0028, no. November, pp. 1–8, 2016.

342 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Background and Related Work
	A. NDN for IoT
	B. Related Work

	III. The Proposed Method
	A. Motivation
	B. Congestion Detection
	C. Adjustment of the Congestion Window

	IV. Results and Discussion
	A. Simulation Parameters
	B. Throughput
	C. Delay Measurement
	D. Packet Loss Rate

	V. Conclusion

