
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

111 | P a g e

www.ijacsa.thesai.org

Risk Prediction Applied to Global Software

Development using Machine Learning Methods

Hossam Hassan1, Manal A. Abdel-Fattah2, Amr Ghoneim3

Information Systems Department, Helwan University, Egypt1, 2

Computer Sciences Department, Helwan University, Egypt3

Abstract—Software companies aim to develop high-quality

software projects with the best global resources at the best cost.

To achieve this global software development (GSD), an approach

should be used which adopts work on projects across multiple

distributed locations, and this is also known as distributed

development. When companies attempt to implement GSD, they

face numerous challenges owing to the nature of GSD and its

differences from traditional methods. The objectives of this study

were to identify the top software development factors that affect

the overall success or failure of a software project using

exploratory data analysis to find relationships between these

factors, and to develop and compare risk prediction models that

use machine learning classification techniques such as logistic

regression, decision tree, random forest, support vector machine,

K-nearest neighbors, and Naive Bayes. The findings of this study

are as follows: in GSD, the top 18 factors influencing the software

project are listed; and experiments show that the logistic

regression and random forest models provide the best results,

with an accuracy of 89% and 85%, respectively, and an area

under the curve of 73% and 71%, respectively.

Keywords—Global software development; distributed

development; risk prediction model; machine learning

I. INTRODUCTION

The entire software development approach has permanently
changed in the last two decades to support distributed
development environments with distributed teams [1]. This
strategy can be described as a contract between two parties,
with the client representing advanced countries and the vendor
representing developing countries, with the goal of achieving
mutual interests [2]. Therefore, the main reason for the
widespread use of global software development (GSD) is that
clients worldwide need highly specialized resources and tools
at a reasonable price [3].

In addition, GSD has seen a considerable increase in
contracts and business in recent years. The use of distributed
development teams in various time zones and geographic
locations may be referred to as the ‘new age’ of development
projects employing GSD [4]. The affordable price of GSD is a
significant factor contributing to its appeal. Consequently,
there has been great success in the mutual benefit between
clients and vendors [5], [6]. Some benefits of adopting GSD
include sharing knowledge, using the most recent technologies,
access to resources, economic benefits, lower expenses, and
successful overall project completion [7], [8].

In addition, the challenges and limitations that have a
significant effect on GSD should be pointed out. For example,

it can be difficult for distributed teams to communicate with
each other and work together due to language barriers, cultural
norms and limits, time zones, leadership, team capabilities, and
project management [9]–[11]. One of the most serious issues
confronting GSD is the location, distance, and communication
between the distributed teams [12]. In addition, the problem of
team communication has been solved owing to the benefits of
using agile methods such as scrum [8].

However, risks remain when clients attempt to adopt and
use this approach in their projects. It can also yield the opposite
results if it is misused. In the beginning, the term "risk" can be
identified as a collection of software project characteristics,
situations, and regulations that present a hazard to a project's
overall success. It is also important to determine how often
these risks occur, and how to prepare for them [13].

The Project Management Institute (PMI) shows that most
risk management methods and procedures are ignored and
thrown out, especially in the IT industry, because they are too
general or only work in a specific situation [14]. Despite this,
software projects that use techniques and tools to predict risk
can detect approximately 70% and avoid 90% of harmful risks
[15].

So, companies need to know the benefits and the risks of
adopting the GSD approach, in an early stage of the
development, to avoid any financial loss. In addition,
companies need to also know if adopting GSD approach is
suitable for their project or it will have negative results.
Therefore, a software risk prediction model using the machine
learning classification techniques was provided in this study, to
make a prediction of the success or failure of the software
project in the domain of GSD.

In this study, the following are discussed: First, previous
systematic literature reviews were reviewed to identify the top
software risk factors affecting GSD. Second, a dataset was
collected from software projects in various regions of the
world. Third, exploratory data analysis (EDA) was conducted
to find different insights and correlations between these factors
and each other. Fourth, software risk prediction models were
built using different supervised machine learning classification
techniques. Finally, software risk prediction models were
evaluated and represented to determine the best model suitable
for the GSD approach.

As a result, this study answers two main questions in the
section between parentheses. RQ1: Which software risk factors

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

112 | P a g e

www.ijacsa.thesai.org

are essential to the GSD domain and significantly affect the
software risk prediction? (Section III-A)

RQ2: What are the best machine learning techniques for
software risk prediction in GSD? (Section V)

The remainder of this paper is organized as follows.
Section II presents related work. The methodology is described
in detail in Section III. Section IV presents an examination and
measurement of the precision. Section V presents the results of
the proposed model. Section VI discusses the validity threats.
In Section VII the conclusion is presented, finally, in Section
VIII, additional work is listed to be considered in the future.

II. RELATED WORKS

This section presents two types of studies. The first one
concerns a systematic literature review related to GSD factors,
and the second one is related to software risk prediction using
machine learning and other techniques.

A. Systematic Literature Review for GSD Factors:

In [5], an empirical investigation was conducted to figure
out the top requirements of engineering (RE) practices in GSD.
Among the 66 practices, the results showed that only six key
factors play an important role in GSD, as listed below:

1) Identify and consult with system stakeholders.

2) Prioritize requirements.

3) Define system boundaries.

4) Define standard templates for requirements.

5) Check if requirements document meet your standards.

6) Uniquely identify each requirement.

The dataset was collected by conducting an online survey
questionnaire. For the evaluation of these factors, 56 experts
from GSD were involved. Limitation and future work: the
questionnaire relied only on closed questions and focused only
on the company size, testing these factors, and trying to
develop a framework to be used in the future.

In [16], the authors tried to prioritize the success factors
that affect requirement change management (RCM) in the
GSD. Fuzzy logic analytical hierarchy progress (FAHB) was
used to conduct the prioritization. The result of this study was
to find out the RCM success factors and categorize them into
four groups: team, technology, process, and organizational
management. The dataset was collected by conducting a
questionnaire survey and retrieved around 81 responses.
Evaluation metrics for the prioritization were conducted by
using experts’ responses. Limitations and future work: sample
size of the dataset needs to be widened, and organization size
and types should be considered, in addition, success factors,
barriers, and best practices need more investigation and
analysis.

The authors in [17], focused on scaling agile projects in the
domain of GSD. They mapped 44 agile practices to the SAFe
Framework. Instructions were given for how the SAFe
practices can be used in agile global software development
(AGSD) projects. The dataset was collected by reviewing 86
studies. Of these studies, only 24 papers discussed the scaling
of agile, from which the authors selected 44 practices to be
mapped on the SAFe Framework. Limitations and future work:

(AGSD) practices need to be evaluated and should also be
tested in the real industry. In addition, the mapped process of
these practices needs to be evaluated.

B. Software Risk Prediction Models:

In [15], a software risk prediction model was created based
on risk analysis of the project by using its context history and
project characteristics in the software development life cycle
(SDLC) as shown in Fig. 1. The model is called the Atropos
model and consisted of six main phases listed below:

1) Data Gathering through interface and bulk uploading.

2) Similarity by characteristics of the project.

3) Store context histories of the project.

4) Similarities by context histories.

5) Recommendation of any potential risks.

6) Risk management and monitoring.

The dataset was collected based on 153 software projects
from a financial company. Evaluation metrics of the model
showed an acceptance rate of 73% and an accuracy rate of
83%, and these results were assessed by 18 experts.
Limitations and Future work for the model are to improve the
model’s accuracy, to improve the proposed model and
methodology, additional use of prototype, the number of
practitioners, and the duration of the study (5 weeks only).

In [9], artificial neural network (ANN) model was created
to predict the risk factors in GSD. The model used algorithms
such as Levenberg–Marquardt, Bayesian Regularization, and
Scaled Conjugate Gradient. The dataset was collected by
sending 760 questionnaires to companies. 390 were received,
and 116 were rejected, leaving 274 responses that were used as
the primary data set. Evaluation metrics of the model were
conducted by using least mean square error (MSE), and the
results showed that Bayesian Regularization gave better results
as compared with the other two approaches and matched the
results from these studies [18], [19]. Limitations and Future
work for the model are the sample dataset needs to include
many companies and random data collection should be used to
generalize the model, also the author recommended to use deep
learning to get more insights and accurate results in the future.

Fig. 1. Shows the Atropos Six-Stage Model [15].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

113 | P a g e

www.ijacsa.thesai.org

In [20], the authors provided a software reliability
prediction algorithm. They used fuzzy logic and ANN in their
model. The dataset was collected from John Musa of Bell
Laboratories and received from the IEEE repository.
Evaluation metrics of the model were conducted by using root
mean square deviation error (RMSE) and showed that the
fuzzy-neural method was the best compared to other
algorithms. Limitations and future work for the model: the
model is restricted to one factor (time to failure). In addition,
many software risk factors should be used to evaluate this
model better.

The authors in [21]developed a fuzzy logic hybridized
framework for software risk prediction models during the
decision-making process. Technique for order of preference by
similarity to ideal solution (IF-TOPSIS), fuzzy decision-
making trial and evaluation laboratory (DEMATEL), and crow
search algorithm (CSA), optimized adaptive neuro-fuzzy
inference system (ANFIS) were used for the software model
prediction. The dataset consisted of 93 software projects, 70%
used for training and the remaining used for testing and
validating the model. The results showed that integrated fuzzy
was accurate in software risk prediction.Limitations and future
work: make a set of decisions and use many software factors
and advanced machine learning techniques to improve and
validate the results.

To reduce cost risks, the authors of [22] amplified the
constructive cost model (COCOMO-II) in the GSD context.
The dataset was collected by conducting a questionnaire and

receiving around 175 responses. Evaluation metrics of the
model were conducted by using Magnitude of Relative
Estimates (MRE) and experts’ judgment. Limitations and
Future Work: the model is in an early stage and needs more
validation and evaluation. In addition, mathematical or
machine learning (ML) techniques may be used in the future.

In [23], the authors developed ML models for defect
prediction in the domain of software reliability and
performance. The models were built using ANN, random forest
(RF), random tree (RT), decision table (DT), linear regression
(LR), Gaussian processes (GP), SMOreg, and M5P. The
dataset for these models was from the NASA promise
repository. The results showed that the combination of
different ML algorithms is effective in the prediction of
software defects. Evaluation matrices used were correlation
coefficient (R²), mean absolute error (MAE), (RMSE), relative
absolute error (RAE), and root relative squared error (RRSE).
Limitation and Future works: different datasets and ML
algorithms can be used to evaluate the results. In addition,
more investigation into software factors should be conducted to
improve these results.

Most previous studies concentrated on a limited number of
factors, as summarized in Table I. In addition, the dataset needs
to be enlarged to include more regions, and (ML) techniques
need to be improved and evaluated using real data from
software companies, as will be provided in the subsequent
section.

TABLE I. OVERVIEW OF PREVIOUS RESEARCH STUDIES FOR SOFTWARE PREDICTION MODELS

Reference Dataset ML Techniques and algorithms Evaluation metrics Limitation and Future work

(Filippetto

et al,

2021) [15]

The dataset was collected based on

153 software projects from a financial

company.

Risk analysis of the project by

using its context history and

project characteristics in the

(SDLC).

Acceptance rate of 73%

and an Accuracy rate of

83%, and these results

were assessed by

experts

1. Improve the proposed model

methodology and accuracy.

2. Additional use of prototype.

3. Number of practitioners and the

duration of the case study should be

increased.

 (Iftikhar

et al,

2021)

 [9]

The dataset was collected by sending

760 questionnaires to companies. 390

were received, and 116 were rejected,

leaving 274 valid responses.

(ANN) model was created to

predict the risk factors in GSD

such as: Levenberg–Marquardt,

Bayesian Regularization, and

Scaled Conjugate Gradient.

 MSE

1. the sample dataset needs to include

many companies and random data

collection should be used to generalize

the model.

2. Deep learning should be used to get

more accurate results.

(Sahu et

al, 2018)

[20]

The dataset was collected from John

Musa of Bell Laboratories and

received from the IEEE repository.

Fuzzy logic and ANN were used

for building a software reliability

prediction model.

RMSE

1. Model was restricted to one factor

(time to failure).

2. Many software risk factors should be

used to evaluate this model better.

(Suresh et

al,2021)

[21]

The dataset consisted of 93 software

projects, 70% used for training and

the remaining used for testing and

validating the model.

Fuzzy logic hybridized framework

for software risk prediction

models during the decision-

making process.

CSA

1. Make a group of decisions making

and use sophisticated ML techniques

2. Use many software factors

(Khan et

al,2021)

[22]

The dataset was collected by

conducting a questionnaire and

receiving around 175 responses

Amplified COCOMO-II Model in

the context of GSD.

 (MRE, experts’

judgment

1. The model is in an early stage and

needs more validation.

2. Mathematical or ML techniques may

be used in the future.

(Assim et

al,2020)

[23]

The dataset for these models was from

the NASA promise repository

ANN, RF, RT, DT, LR, GP,

SMOreg, and M5P were used.

(R²), (MAE), (RMSE),

(RAE) and (RRSE)

1. different datasets and ML algorithms

can be used to evaluate the results.

2. Investigation into more software

factors to improve these results.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

114 | P a g e

www.ijacsa.thesai.org

III. RESEARCH METHODOLOGY

This section describes the methodology used to develop the
GSD-applicable software risk-prediction model. Fig. 2
illustrates the six phases of the proposed model. Systematic
Literature review (SLR) analysis (Section III-A), dataset
selection (Section III-B), dataset preprocessing (Section III-C),
modeling (Section III-D), experimental evaluation (Section
IV), and risk prediction results (Section V).

A. Systematic Literature Review Analysis:

The proposal to build the software risk prediction model
was based on many systematic literature reviews (SLR) that
collected the software risk factors that affect the software in
GSD. SLRs included empirical studies published between 2018
and 2022. After reviewing these studies, a list of 145 factors
essential to software project success was created. (Available in
Appendix “I”).

Then, these factors were analyzed and reprocessed to
determine the most significant factors in the GSD domain. To
do this, the following three steps were followed:

1) Merging step: There were several duplicates; therefore,

the first step in removing these duplicated factors was to

merge the duplicates, which helped lower the total number by

more than half.

2) Filtration step: After the merging stage, the factors

were ranked and filtered by selecting only those with a

frequency rate of greater than 50 percent. In this manner, the

top 18 factors that affect software in the GSD domain can be

collected.

3) Categorization step: In this phase, the top 18 factors

were categorized into four categories: requirements,

management, technical, and cultural, as shown in Table II to

answer RQ1.

B. Dataset Selection

This subsection describes the data collection procedure and
descriptive analysis of the dataset used to construct the model.
The dataset was collected through a questionnaire survey and
interviews with software companies and experts from various
global regions. The main target was to focus on organizations
that had extensive experience with outsourcing and were
already using the GSD method. The dataset consists of
information from 140 software projects in the GSD domain.
Then, the data was gathered by conducting a questionnaire
survey and interviews with companies and experts. The
questionnaire is based on the top 18 factors listed in Table II.
The data were collected from various regions that support a
wide range of clients and vendors, including western Europe,
central and eastern Europe, Africa, and the Middle East.

The dataset attributes were project ID, region, job,
experience, company type, requirement clarity, project scope,
requirement changes, project planning, project size, project
management, communication, cost, commitment, modern
technologies, roles and responsibilities, skilled staff,
organizational stability, language and culture, time difference,
progress, team size, methodology, and project status.

Then, the attributes were classified into numerical and
categorical categories. The independent and dependent
attributes were then determined. The dependent attribute is
"Project Status." The remaining 23 attributes were independent
attributes. Table III presents a more detailed description of the
attributes of the dataset. In addition, Appendix “II” provides a
sample of the questionnaire with attributes represented as
questions.

Fig. 2. A Proposed Model for Software Risk Prediction.

TABLE II. TOP 18 SOFTWARE FACTORS THAT AFFECT GSD

Requirement Factors

1. Requirement ambiguity

2. Requirement changes

3. Requirements scope

4. New technologies

5. Project size

Management Factors

6. Competence level of project manager

7. No planning or inadequate planning

8. Low commitment of stockholders

9. Progress measure

10. Cost balance

11. Lack of roles and responsibilities

12. Team size

Technical factors

13. Staff does not have required skills

14. Unstable organizational environment

15. Methodology followed

16. Communication infrastructure and process

Cultural factors

17. Language and culture differences

18. Time zone difference

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

115 | P a g e

www.ijacsa.thesai.org

TABLE III. DATASET VARIABLES AND DESCRIPTIVE STATISTICS

n Attributes Type Description Mean Std Min 50% Max

1 Project ID Numerical (int64)
Project unique ID, which starts with one and

ends by 140
___ ___ 1 ___ 140

2 Region Categorical (object)

Region attributes lie in 5 main regions:

Western Europe, Central, and Eastern

Europe, Asia, Africa, and the Middle East.

___ ___ ___ ___ ___

3 Job Categorical (object)
The job role of the person/company

developer who filled the form
___ ___ ___ ___ ___

4 Experience Numerical (int64)
Team/individual experience measured in

years
3.925 4.171 1 3 30

5 Company Type Numerical (int64)
company types measured by (national,

international, and startup)
0.535 0.528 0 1 2

6 Requirement Clarity Numerical (int64)

the level of requirements clearness is

measured as (clear, moderate, unclear, and

ambiguous)

2.1 0.798 1 2 4

7 Project Scope Numerical (int64)
the project scope is measured as (clear,

moderate, unclear, and ambiguous)
2.071 0.810 1 2 4

8 Requirement Changes Numerical (int64)
the project scope is measured as (minor,

normal, heavy, and messy)
2.55 0.798 1 2 4

9 Project Planning Numerical (int64)
the project planning is measured as (clear,

moderate, unclear, and ambiguous)
2.214 0.863 1 2 4

10 Project Size Numerical (int64)
the project size is measured as (Enterprise,

large, medium, and small)
2.185 0.918 1 2 4

11 Project Management Numerical (int64)
Project manager’s quality is measured as

(Expert, Moderate, Basic, and None)
2.142 0.844 1 2 4

12 Communication Numerical (int64)
communication is measured as (Excellent,

Moderate, need enhancements, and worst)
2.028 0.804 1 2 4

13 Cost Numerical (int64)
cost is measured as (balanced, moderate, and

not balanced)
1.842 0.626 1 2 3

14 Commitment Numerical (int64)
stakeholders’ commitment is measured as

(High, moderate, and low)
1.75 0.669 1 2 3

15 Modern Technologies Numerical (int64)
modern technologies are measured as (many,

normal, and few)
1.75 0.613 1 2 3

16
Roles and

Responsibilities
Numerical (int64)

responsibilities are measured as (clear,

moderate, and unclear)
1.721 0.74 1 2 3

17 Skilled Staff Numerical (int64)
skilled staff are measured as (Agree,

moderate, and disagree)
1.485 0.64 1 1 3

18 Organization Stability Numerical (int64)
organizational stability is measured as (stable,

normal, and unstable)
1.607 0.716 1 1 3

19 Language and Culture Numerical (int64)

language and culture are measured as

(reasonable, can be handled, and

unreasonable)

1.55 0.627 1 1 3

20 Time Difference Numerical (int64)
Time Difference is measured as (reasonable,

can be handled, and unreasonable)
1.7 0.675 1 2 3

21 Progress Categorical (object)
Progress level Measured by (task level,

module level, sprint level, and delivery level)
___ ___ ___ ___ ___

22 Team Size Numerical (int64) Team size measured by team members 0.807 0.855 0 1 4

23 Methodology Categorical (object)

the methodology was measured as (waterfall,

scrum, Kanban, extreme programming,

feature-driven, lean development, crystal, and

dynamic system development, and rapid

development)

___ ___ ___ ___ ___

24 Project status Numerical (int64)
Project status represents this project is

success or failed
0.814 0.39 0 1 1

C. Dataset Preprocessing

In this subsection, the data preprocessing techniques are
presented. This phase can be considered as the initial phase for
building the machine learning model. Real-world data are often
incomplete, inconsistent, or incorrect (because they have
outliers or mistakes). Thus, preprocessing techniques must be
conducted to help refactor the dataset to keep it clean,
formatted, and organized [24]. This subsection includes four
steps of dataset preprocessing: identifying the dataset, finding,

and handling missing values, encoding categorical attributes,
and feature selection.

1) Identify dataset: During data preparation, it is essential

to identify insights into the dataset because improper handling

may lead to misleading software model results and serious

model risks. Table III shows that the dataset is divided into

two main types: categorical and numerical. It also provides a

full picture of the dataset's characteristics, such as its type,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

116 | P a g e

www.ijacsa.thesai.org

description, mean, standard deviation (Std), and minimum and

maximum values.

2) Finding and handling missing attributes: Incomplete

data can lead to inaccurate results. Consequently, these

situations may be addressed by finding the mean of the

attributes using numerical data. This is more efficient than the

usual methods of treating missing values, which include

omitting the entire row or column, as this might lead to data

misrepresentation or bias in the dataset. Alternatively, mean,

median, or mode can be used.

3) Encoding categorical data: As it is known, machine

learning deals with numerical attributes only. Thus,

categorical attributes can't be used until they are transformed

into numerical data. As a result, only four categorical

attributes which are: "Region," "Job," "Progress," and

"Methodology" should be transformed into numerical

attributes. The Python scikit-learn library label encoder

technique was used to transform the categorical attributes into

numerical attributes. In this technique, each label is assigned a

unique integer based on the alphabetical ordering [25].

4) Feature selection: From the list of 24 attributes in

Table III, Independent attributes that are significant to the

model must be chosen. Therefore, weak attributes or attributes

that do not have a relationship with the model should be

excluded. To determine these relationships, a correlation

analysis was conducted, which is a common multivariate

(EDA) that relies on statistical techniques to measure the

linear relationship between attributes and each other to obtain

a better insight into the factors and their relationships [26].

The correlation coefficient is the unit of measurement used to

calculate the intensity between the two variables. It has three

types:

a) Positive correlation: (0 to 1) means that both

attributes are in the same direction; an increase in one will

increase the other, and vice versa

b) Negative correlation: (-1 to 0) means that both

attributes move in the opposite direction; an increase in one

will decrease the other, and vice versa.

c) Weak/zero correlation: (0) means that the two

attributes do not affect each other.

The formula for the correlation coefficient can be written
as:

𝑹 =
𝜮(𝒙𝒊−𝒙̅) (𝒚𝒊−𝒚̅)

√𝜮(𝒙𝒊−𝒙̅)𝟐 𝜮(𝒚𝒊−𝒚̅)𝟐
 (1)

where R is the correlation coefficient, usually from -1 to 1,

𝒙𝒊 is the value from the X dataset, 𝒙 is the mean value of the X

dataset, 𝒚𝒊 is the value from the Y dataset, and 𝒚 is the mean
value of the Y dataset. More details regarding the dataset
attribute correlation are presented in Fig. 3.

Fig. 3. Correlation Analysis for Dataset Attributes.

Fig. 4 represents the independent attributes that have R >=
0.4 (“Project Scope,” “Project Planning,” “Responsibilities,”
“and Skilled Staff”) and independent attributes that have R <=
0 (“Region” and “Experience”), which will be excluded from
the dataset so as not to affect the proposed model.

Fig. 4. Correlation Coefficient (R) between Attributes.

D. Machine Learning Model Builder

In this subsection, the implementation of ML models is
discussed. The category for the proposed ML model is called a
"supervised problem" because the dataset is labeled (one with
the correct answer) which can be used to teach the model how
to predict software risk [27]. The model is based on the top six
machine-learning classification algorithms: logistic regression,
(DT), (RF), support vector machine (SVM), K-nearest
neighbor (KNN), and naïve Bayes.

1) Logistic regression: The logistic regression algorithm

is a classification technique based on statistical procedures.

Logistic regression is a widely used ML algorithm for binary

classification that makes predictions based on the sigmoid

function [28].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

117 | P a g e

www.ijacsa.thesai.org

The sigmoid function can be defined as a mathematical
procedural function that takes any real number and maps it to a
probability between one and zero. The formula for the sigmoid
function can be expressed as:

σ(x) =
1

1+e−x
 (2)

where 𝝈(𝒙) is the sigmoid function that returns values
ranging from zero to one, 𝒙 represents the sample, 𝒆−𝒙

represents the inverse of the exponential function
 𝟏

 𝒆𝒙

2) Decision tree (DT): The decision tree algorithm can be

represented as a hierarchical or flowchart which represents the

data with decisions [25]. The decision tree has many branches

created by splitting the dataset into subsets based on the

essential attributes, and each branch can be considered as an

if-else statement. To create the hierarchical structure in the

decision tree, the Gini index algorithm was used to select the

best attribute selection measures (ASM) to split the data. The

Gini index algorithm can be written as:

𝑮𝒊𝒏𝒊(𝑫) = 𝟏 − ∑ 𝑷𝒊𝟐𝒄
𝒊=𝟏 (3)

where 𝒄 is the total number of classes, and 𝑷𝒊 is the
probability of picking the data point with class 𝒊

3) Random forest (RF): An RF is a collection of decision

trees. It is a common ensemble method that aggregates the

results of multiple models. RF uses the bagging technique,

which allows each tree to be trained on random dataset

sampling and takes the majority vote from the trees [25].

4) Support Vector machine (SVM): SVM is a machine

learning algorithm that can be used for classification and

regression analysis [26]. The purpose of SVM is to classify

data based on hyperplanes in an N-dimensional (number of

attributes) space, which is the border between positive and

negative classes, maximizing the distance between data points

from different classes.

5) K-Neatest Neighbour (KNN): The KNN is an analogy-

based ML algorithm. In general, it uses the Euclidean distance

to calculate the distance between points and each other and

then assigns the label of new data based on the labels of the

nearest data points. The Euclidean distance can be written as

𝒅 (𝒚, 𝒙) = √∑ (𝒙𝒊 − 𝒚𝒊)
𝟐𝒏

𝒊=𝟏 (4)

where d is the Euclidean distance; (𝒚, 𝒙) is the two-point
Euclidean N-space; 𝒙𝒊, 𝒚𝒊 represent the Euclidean vectors; n =
N-space (attribute numbers).

6) Naïve bays: The naive Bayes algorithm depends on

Bayes’ theorem, which describes the probability of an event

based on prior knowledge. Naive Bayes assumes that each

feature is independent of the other [27]. The calculation of

naïve Bayes can be represented as:

𝑷(𝑨|𝑩) =
P(B | A) * P(A)

P(B)
 (5)

where 𝑃(𝐴|𝐵) is a conditional probability, that is, the
probability of an event A occurring given that B is true.

𝑃(𝐵|𝐴) is also a conditional probability: the probability of
event B occurring given that A is true, P(A) and P(B) are the
probabilities of observing A and B, respectively, without any
conditions.

IV. EXPERIMENTAL EVALUATION

For model evaluation, different techniques and algorithms
are described in this section. The essential part of any model is
to determine whether it is accurate. Five evaluation metrics
were used to measure the confusion matrix, accuracy, recall,
precision, and area under the curve (AUC).

1) Confusion matrix: A confusion matrix is the best way

to solve binary classification problems [35] because it shows

the actual and predicted values and summarizes them in a

matrix, as shown in Table IV.

2) Accuracy: Accuracy is the most important indicator for

measuring a model's performance [29]. The purpose of the

accuracy was to measure the percentage of the total number of

correctly classified examples predicted over the total number

of examples. The metric equation can be written as.

𝑨𝑪𝑪 =
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
 (6)

3) Recall: The recall evaluation metric, also known as the

true positive rate (TPR), is used to determine the proportion of

correctly classified positive classes [29]. The metric equation

can be written as

𝑹(𝑻𝑷𝑹) =
𝑻𝑷

𝑻𝑷+𝑻𝑵
 (7)

4) Precision: The primary purpose of precision metrics is

to measure the positive patterns from the total predicted

patterns in a positive class [29]. The metric equation can be

written as

𝑷 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
 (8)

5) AUC: The area under the ROC curve (AUC) is a

popular metric for comparing and optimizing machine-

learning models [25]. A higher AUC indicates a better model

performance. For classification evaluation, the AUC is more

accurate than the accuracy metric, although the computational

cost is high compared to the accuracy metric [25]. The AUC

metric equation can be expressed as follows:

𝑨𝑼𝑪 =
𝑺𝑷− 𝑻𝒑(𝑻𝒏 + 𝟏) / 𝟐

𝑻𝒑𝑻𝒏
 (9)

where 𝐒𝑷 is the summation of all the positive examples, 𝐓𝑷
is the number of positive examples, and 𝐓𝒏 is the number of
negative examples.

TABLE IV. CONFUSION MATRIX VALUE SUMMARIZATION

 Predicted (0) Predicted (1)

Actual (0) True Negative (TN) False Positive (FP)

Actual (1) False Negative (FN) True Positive (TP)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

118 | P a g e

www.ijacsa.thesai.org

V. RESULT AND DISCUSSION

In this section, the results of the software risk prediction
model were discussed using six classification machine learning
algorithms: logistic regression, DT, RF, SVM, (KNN), and
naïve Bayes, and by using the dataset of 140 software projects
in the real industry of global software development. Algorithm
I present the pseudocode for the risk-prediction model using
training data of 80% and 20% of the testing data.

Algorithm I: Pseudo-Code for Risk Prediction Model

Input: Import the dataset from a CSV File.

1: Data Preprocessing Phase: [data cleaning, missing

values]

2: Feature Transformation and Categorical Feature

Encoding:

3: Apply EDA and Feature Selection

4: Dataset split: 80% for training and 20% for testing.

5: Set: Model = Logistic Regression, SVM, KNN, DT, RF,

and Naïve Bayes

7: for each Model do

8: Select: the ML model to use

9: Use: the training dataset to feed the proposed model

10: Apply: Testing the model using a training dataset

11: Calculate: confusion matrix

12: Calculate: The Accuracy metrics

13: Calculate: The Recall metrics

14: Calculate: The Precision metrics

15: Calculate: the AUC metrics

16:end for

The software risk prediction model was constructed using
the top six classification techniques: logistic regression, SVM,
KNN, DT, RF, and naïve Bayes. Five evaluation metrics were
used to find the most optimal ML algorithms to fit the risk
prediction model. The model was conducted using the
programming language Python and other third-party packages
such as NumPy, Pandas, Scikit-Learn, Pandas, Matplotlib, and
Seaborn, running on the MacBook Pro with the following
specifications: Intel Core i5, 2.0Ghz, 16GB, and 512GB SSD.
Table V presents a comparison of the six ML classification
techniques using different evaluation metrics. Finally, the
following research question was answered:

RQ2: What are the best machine learning techniques for
software risk prediction in GSD?

Table V indicates that the top three techniques with the
highest accuracy, AUC, recall, and precision were logistic
regression, random forest, and SVM, with accuracy
percentages of 89%, 85%, and 82%; AUC percentages of 73%,
71%, and 48%; recall percentages of 96%, 92%, and 96%; and
precision percentages of 92%, 92%, and 85%, respectively.

TABLE V. SUMMARIZATION OF CONFUSION MATRIX VALUES

Model Name Accuracy AUC RECALL Precision

Logistic Regression 0.89 0.73 0.96 0.92

SVM 0.82 0.48 0.96 0.85

KNN 0.71 0.52 0.79 0.86

DT 0.71 0.62 0.75 0.90

Random Forest 0.85 0.71 0.92 0.92

Naïve Bayes 0.71 0.62 0.75 0.90

Therefore, logistic regression can be considered the
optimum ML algorithm for software risk prediction in the
domain of GSD, with an accuracy rate of approximately 90%.
Further details regarding the algorithm’s confusion matrix
showing the four values of true positives, true negatives, false
positives, and false negatives are shown in Fig. 5.

Fig. 5. The ML Confusion Matrix for the Six Algorithms.

In addition, to improve the results of other algorithms,
another technique was applied for splitting the dataset called
cross-validation, which is a statistical method for splitting data
to test and train a model on different iterations. In other words,
cross-validation split the training dataset into k smaller sets.
This technique helped us improve the accuracy of most of the
six algorithms, obtain better insights, and solve overfitting
classification problems.

Table VI Shows a comparison of the six ML classification
techniques after applying the cross-validation technique using
five k-fold; four of them were used for the model training, and
the remaining fold was used for validating the model.

TABLE VI. ML ALGORITHMS ARE SUBJECTED TO CROSS-VALIDATION

Model Name Accuracy AUC RECALL Precision

Logistic Regression 0.80 0.72 0.92 0.85

SVM 0.81 0.75 1 0.81

KNN 0.80 0.74 0.93 0.85

DT 0.78 0.65 0.85 0.90

Random Forest 0.80 0.81 0.92 0.84

Naïve Bayes 0.80 0.84 0.84 0.91

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

119 | P a g e

www.ijacsa.thesai.org

After applying the cross-validation technique, the accuracy
of the KNN, DT, and naïve Bayes were increased by 9% to
reach 80%. Thus, from Table VI can be observed that the
accuracy of the six algorithms is approximately 80%, and the
top three algorithms are Support Vector Machine, KNN, and
logistic regression, with accuracy percentages of 81, 80, and
80%, respectively.

VI. THREATS TO VALIDITY

This section discusses the reality of the study, based on
internal and external threats and construct validity [30].

Internal validity relates to whether the investigated software
risk prediction model is affected by other factors, such as
Python Scikit-learn library parameters. Unfortunately, there is
no standard method to choose this parameter, but the standard
parameters and best practices was used in the Scikit-learn
library to solve this problem [25]. The standard parameters,
best practices, and configuration related to ML implementation
for the six classification algorithms are provided in Appendix
“III”. Another internal threat is the split of the dataset; the
dataset was divided into training and test sets at proportions of
80% and 20%, respectively. Random assignments were
avoided to avoid influencing the model results. In addition,
another preferred technique was used, called cross-validation,
which splits the dataset into smaller datasets to train and test
the model and calculate the average of these results to
determine the most accurate result for the risk prediction
model.

External validity is related to the generalization of the
software risk-prediction model [30]. Dataset samples were
tried to obtain from most of the companies that outsource and
apply the GSD concept in different regions; however, with a
limited number of datasets, some difficulties in generalizing
the findings appear. In addition, there were difficulties in
obtaining the data set because outsourcing companies often had
to pay for their data, which limited the size of the dataset that
could use.

The final threat is related to the reliability of the proposed
model, this point was considered when conducting the model
to validate and analyze its performance using the confusion
matrix, accuracy indicator, recall metric, precision metrics, and
AUC metrics. Also, these results were compared with those of
the top six classification algorithms to determine the best one
for the proposed model.

VII. CONCLUSION

Obtaining a solid and accurate software risk-prediction
model has always been difficult in global software
development. The applied model will help software companies,
experts, project managers, and developers predict software risk,
which will reduce the amount of time and money spent on this
approach.

A dataset of 140 software projects in different regions was
used to build the model, and was collected using 18 software
factors, which were carefully collected from past studies and
reviewed by experts. The data preprocessing phase consisted of
four steps: identifying the dataset, handling missing values,

encoding categorical attributes, feature selection, and
conducting EDA analysis. Two techniques were used for the
dataset splitting. The first technique is the common traditional
technique, which uses 80% for training and 20% for testing
without using any random or shuffle to avoid influencing the
results of the model. The other technique is cross-validation
using 5-k folds, with 4-folds used for model training and the
remaining used to validate the model.

The results show that the top two algorithms were logistic
regression and random forest with accuracy percentages of
89% and 85%, respectively. Also, cross-validation was used
technique to improve the accuracy of the other models by
approximately 80% and obtained better results.

VIII. FUTURE WORK

Below are suggestions to improve the proposed model and
the dataset that can be considered in the future:

1) The dataset needs to be expanded, by gathering the

dataset from distributed locations that adopt the GSD

approach.

2) Generalization of the findings.

3) Enhancing the accuracy of the ML algorithms.

REFERENCES

[1] J. Menezes, C. Gusmão, and H. Moura, “Risk factors in software
development projects: a systematic literature review,” Software Quality
Journal, vol. 27, no. 3. Springer New York LLC, pp. 1149–1174, Sep.
01, 2019. doi: 10.1007/s11219-018-9427-5.

[2] S. Ali, H. Li, S. U. Khan, M. F. Abrar, and Y. Zhao, “Practitioner’s view
of barriers to software outsourcing partnership formation: An empirical
exploration,” Journal of Software: Evolution and Process, vol. 32, no. 5,
May 2020, doi: 10.1002/smr.2233.

[3] A. Iftikhar, S. Musa, M. Alam, M. M. Su’ud, and S. M. Ali, “A Survey
of Soft Computing Applications in Global Software Development,” in
2018 IEEE International Conference on Innovative Research and
Development (ICIRD), 2018, pp. 1–4.

[4] University of Management and Technology (Pakistan), Institute of
Electrical and Electronics Engineers. Lahore Section., and Institute of
Electrical and Electronics Engineers, 3rd International Conference on
Innovative Computing (ICIC) : (IC)2 2019 : 1st-2nd November 2019,
Lahore, Pakistan.

[5] J. A. Khan, S. U. R. Khan, J. Iqbal, and I. U. Rehman, “Empirical
Investigation about the Factors Affecting the Cost Estimation in Global
Software Development Context,” IEEE Access, vol. 9, pp. 22274–
22294, 2021, doi: 10.1109/ACCESS.2021.3055858.

[6] M. A. Akbar, J. Sang, Nasrullah, A. A. Khan, M. Shafiq, and Fazal-E-
Amin, “Towards the Guidelines for Requirements Change Management
in Global Software Development: Client-Vendor Perspective,” IEEE
Access, vol. 7, pp. 76985–77007, 2019, doi:
10.1109/ACCESS.2019.2918552.

[7] M. A. Akbar, M. Shafiq, T. Kamal, and M. Hamza, “Towards the
successful requirements change management in the domain of offshore
software development outsourcing: Preliminary results,” International
Journal of Computing and Digital Systems, vol. 8, no. 3, pp. 205–215,
May 2019, doi: 10.12785/ijcds/080301.

[8] M. Rizwan, J. Qureshi, A. Al-Zaidi, and R. Qureshi, “Global Software
Development Geographical Distance Communication Challenges Article
in International Arab Journal of Information Technology,” 2017.
[Online]. Available:
https://www.researchgate.net/publication/308952993

[9] A. Iftikhar, M. Alam, R. Ahmed, S. Musa, and M. M. Su’ud, “Risk
Prediction by Using Artificial Neural Network in Global Software
Development,” Comput Intell Neurosci, vol. 2021, pp. 1–25, Dec. 2021,
doi: 10.1155/2021/2922728.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

120 | P a g e

www.ijacsa.thesai.org

[10] M. Yaseen and Z. Ali, “Success Factors during Requirements
Implementation in Global Software Development: A Systematic
Literature Review,” International Journal of Computer Science and
Software Engineering (IJCSSE), vol. 8, no. 3, 2019, [Online]. Available:
www.IJCSSE.org

[11] B. J. Galli, “Addressing Risks in Global Software Development and
Outsourcing,” Int J Risk Conting Manag, vol. 7, no. 3, pp. 1–41, May
2018, doi: 10.4018/ijrcm.2018070101.

[12] Asim Iftikhar, Muhammad Alam, Shahrulniza Musa, and Mazliham
Mohd Su’ud, “Trust Development in Virtual teams to Implement Global
Software Development (GSD): A Structured Approach to Overcome
Communication Barriers,” in 2017 IEEE 3rd International Conference
on Engineering Technologies and Social Sciences (ICETSS), 2017, pp.
1–5.

[13] B. G. Tavares, C. E. S. da Silva, and A. D. de Souza, “Risk management
analysis in Scrum software projects,” International Transactions in
Operational Research, vol. 26, no. 5, pp. 1884–1905, Sep. 2019, doi:
10.1111/itor.12401.

[14] Project Management Institute, A guide to the Project Management Body
of Knowledge (PMBOK guide), 6th ed. Newton Square, PA: Project
Management Institute, 2017.

[15] A. S. Filippetto, R. Lima, and J. L. V. Barbosa, “A risk prediction model
for software project management based on similarity analysis of context
histories,” Inf Softw Technol, vol. 131, Mar. 2021, doi:
10.1016/j.infsof.2020.106497.

[16] M. A. Akbar, M. Shameem, A. A. Khan, M. Nadeem, A. Alsanad, and
A. Gumaei, “A fuzzy analytical hierarchy process to prioritize the
success factors of requirement change management in global software
development,” Journal of Software: Evolution and Process, vol. 33, no.
2, Feb. 2021, doi: 10.1002/smr.2292.

[17] M. Marinho, R. Camara, and S. Sampaio, “Toward unveiling how safe
framework supports agile in global software development,” IEEE
Access, vol. 9, pp. 109671–109692, 2021, doi:
10.1109/ACCESS.2021.3101963.

[18] S. K. Niranjan, V. N. M. Aradhya, Amity University, IEEE-USA,
Institute of Electrical and Electronics Engineers. Uttar Pradesh Section,
and Institute of Electrical and Electronics Engineers, Proceedings of the
2016 2nd International Conference on Contemporary Computing and
Informatics (IC3I) : 14-17 December 2016, Noida, India.

[19] A. N. Okon, S. E. Adewole, and E. M. Uguma, “Artificial neural
network model for reservoir petrophysical properties: porosity,
permeability and water saturation prediction,” Model Earth Syst
Environ, vol. 7, no. 4, pp. 2373–2390, Nov. 2021, doi: 10.1007/s40808-
020-01012-4.

[20] K. Sahu and R. K. Srivastava, “Soft computing approach for prediction
of software reliability,” ICIC Express Letters, vol. 12, no. 12, pp. 1213–
1222, Dec. 2018, doi: 10.24507/icicel.12.12.1213.

[21] K. Suresh and R. Dillibabu, “An integrated approach using IF-TOPSIS,
fuzzy DEMATEL, and enhanced CSA optimized ANFIS for software
risk prediction,” Knowl Inf Syst, vol. 63, no. 7, pp. 1909–1934, Jul.
2021, doi: 10.1007/s10115-021-01573-5.

[22] J. A. Khan, S. U. R. Khan, T. A. Khan, and I. U. R. Khan, “An
Amplified COCOMO-II Based Cost Estimation Model in Global
Software Development Context,” IEEE Access, vol. 9, pp. 88602–
88620, 2021, doi: 10.1109/ACCESS.2021.3089870.

[23] M. Assim, Q. Obeidat, and M. Hammad, “Software Defects Prediction
using Machine Learning Algorithms,” Oct. 2020. doi:
10.1109/ICDABI51230.2020.9325677.

[24] Jacqueline Kazil and Katharine Jarmul, Data Wrangling with Python:
Tips and Tools to Make Your Life Easier. O’Reilly Media, Inc. 2016.

[25] E. Bisong, Building Machine Learning and Deep Learning Models on
Google Cloud Platform. Apress, 2019. doi: 10.1007/978-1-4842-4470-8.

[26] H. D. P. de Carvalho, R. Fagundes, and W. Santos, “Extreme Learning
Machine Applied to Software Development Effort Estimation,” IEEE
Access, vol. 9, pp. 92676–92687, 2021, doi:
10.1109/ACCESS.2021.3091313.

[27] R. Saravanan and Pothula Sujatha, “A State of Art Techniques on
Machine Learning Algorithms: A Perspective of Supervised Learning
Approaches in Data Classification,” 2018.

[28] Hilbe and J.M, Practical Guide to Logistic Regression; Chapman and
Hall/CRC: Boca Raton, FL, USA. 2016.

[29] H. M and S. M.N, “A Review on Evaluation Metrics for Data
Classification Evaluations,” International Journal of Data Mining &
Knowledge Management Process, vol. 5, no. 2, pp. 01–11, Mar. 2015,
doi: 10.5121/ijdkp.2015.5201.

[30] D. A. Broniatowski and C. Tucker, “Assessing causal claims about
complex engineered systems with quantitative data: internal, external,
and construct validity,” Systems Engineering, vol. 20, no. 6, pp. 483–
496, Nov. 2017, doi: 10.1002/sys.21414.

APPENDIX

1) factors that affect software in the GSD and explaining

the three steps [collected, merged, and filtered] applied to

these factors: https://github.com/Al3ameed/ML_Classification

_GSD/blob/main/software%20factors.docx

2) An Example of the Questionnaire form (published on

GitHub): https://github.com/Al3ameed/ML_Classification_

GSD/blob/main/questionnaire_samples.zip

3) ML classification and a sample of the dataset that used

for model prediction: https://github.com/Al3ameed/ML_

Classification_GSD

