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Abstract—The field of Digital Pathology (DP) has become 
more interested in automated tissue phenotyping in recent years. 
Tissue phenotyping may be used to identify colorectal cancer 
(CRC) and distinguish various cancer types. The information 
needed to construct automated tissue phenotyping systems has 
been made available by the introduction of Whole Slide Images 
(WSIs). One of the typical pathological diagnosis duties for 
pathologists is the histopathological categorization of epithelial 
tumors. Artificial intelligence (AI) based computational 
pathology approaches would be extremely helpful in reducing the 
pathologists ever-increasing workloads, particularly in areas 
where access to pathological diagnosis services is limited. 
Investigating several deep learning models for categorizing the 
images of tumor epithelium from histology is the initial goal. The 
varying accuracy ratings that were achieved for the deep 
learning models on the same database demonstrated that 
additional elements like pre-processing, data augmentation, and 
transfer learning techniques might affect the models' capacity to 
attain better accuracy. The second goal of this publication is to 
reduce the time taken to classify the tissue and tumor 
Epithelium. The final goal is to examine and fine-tune the most 
recent models that have received little to no attention in earlier 
research. These models were checked by the histology Kather 
CRC image database's nine classifications (CRC-VAL-HE-7K, 
NCT-CRC-HE-100K). To identify and recommend the most 
cutting-edge models for each categorization, these models were 
contrasted with those from earlier research. The performance 
and the achievements of the proposed preprocessing workflow 
and fine-tuned Deep CNN models (Alexnet, GoogLeNet and 
Inceptionv3) are greater compared to the prevalent methods. 
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I. INTRODUCTION 
Historically, pathologists have examined the micro-

anatomy of cells and tissues under a microscope. The 
development of Digital Pathology (DP) imaging in recent years 
has given pathologists an alternative method to perform the 
same analysis on a computer screen [1]. The current inquiry 
methodologies for breast cancer include mammography, 
magnetic resonance imaging (MRI), and pathology 
examinations. The histopathological scans are recognized as a 
golden standard to improve the diagnostic accuracy for patients 
who also had other investigations, such as mammography [2]. 
Additionally, a histopathological examination can offer more 
thorough and trustworthy information to detect cancer and to 
evaluate, how it affects the tissues around it [3]–[5]. The new 

modality, digital pathology imaging, now makes WSI (Whole 
Slide Imaging) a reality. Through WSI, the images may be 
shared, viewed on a digital display, and can be controlled/ 
examined on a screen [6]. Tumor architecture in Colorectal 
Cancer (CRC) evolves as the disease progresses [7] and is 
associated with patient prognosis [8]. Therefore, it is important 
for histopathologists to quantify the tissue composition in 
CRC. Inter-tumor heterogeneity and intra-tumor heterogeneity 
are both forms of tumor heterogeneity. By the different signals 
that cells pick up from their microenvironment, the tumor 
microenvironment (TME) really plays a significant role in the 
establishment of intra-tumor heterogeneity (ITH) [9]. The third 
most common cancer type to cause mortality is colorectal 
cancer (CRC), which is ranked as the fourth most common 
cancer [10]. In fact, treating patients and saving their lives 
depends on early-stage CRC diagnosis [11]. For the 
classification and prognostication of cancer, the study of tumor 
heterogeneity is crucial [12]. In-tumor heterogeneity can help 
to clarify, how TME affects patient prognosis and can also be 
used to spot new aggressive phenotypes that may be potential 
targets for future therapies [13]. Although most present 
histological analysis relies on the pathologists' subjective 
assessments, a critical need for automating the various 
processing techniques arises, that can provide good 
quantitative analysis and throughput of the digital pathology 
images for precise identification and assessment of various 
tumor epitheliums. 

Deep convolutional neural networks (CNNs) algorithms 
automatically analyse images for handling classification and 
detection tasks, reducing the amount of manual labour 
necessary for the feature-extraction operations [14]. The lack 
of a suitably sizable annotated data set for training is a 
significant barrier to applying deep learning to many biological 
domains. Transfer learning, which makes use of deep CNNs 
that have already been trained on a significant amount of 
natural scene data, may be used to circumvent the need for 
sample size, nevertheless. This approach is based on the notion 
that the characteristics discovered by deep CNNs to identify 
classes in a dataset may also be useful for clinical data sets 
with marginally worse performance. 

In medical domain there are currently three approaches in 
deep learning: (i). Acquiring features learned in the training 
phase of deep CNN with numerous natural images, then the 
features acquired are used for classifier training [15], [16], and 
[17], (ii) fine-tuning a small number of network layers are fine 
tuned in the pre-trained CNN on a desired data set [18], (iii) 
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training directly the deep CNN with real-world data. The 
author in [19] suggests categorizing brain tumor based on 
multiphase MRI scans and compares the outcomes to several 
deep learning structure configurations and baseline neural 
networks. 

Based on the findings of this work, the effectiveness of 
identifying tumor epithelial tissues using transfer learning 
approaches in the area:  In what ways, would fine-tuning the 
models in the Validation Frequency, Dropout Layer, and 
Classification Layer improve the classification performance, 
were investigated. 

II. RELATED WORKS 
The classification of the different tissue types in 

histological images is frequently done under supervision [20]. 
Modern approaches for phenotyping CRC tissues under 
supervision can be divided into two groups: learnt methods 
[23,24] and methods based on texture [21]. Additionally, other 
efforts, like [24], integrated shallow and deep characteristics. 
In order to extract certain structures from image areas, hand-
crafted techniques known as "texture approaches" were 
developed [25]. Deep learning techniques, on the other hand, 
have the capacity to directly learn more pertinent and 
sophisticated image characteristics across layers, particularly, 
when the relationship between both the source data as well as 
the expected outcomes is not known in advance. As 
pathological imaging activities are incredibly complex and 
there is little knowledge on which quantitative image 
properties predict the outcomes, deep learning approaches are 
suitable for these activities [26, 27]. In [20], Kather et al. did 
the primary researches to handle CRC multi-class tissue types 
where 5000 histological pictures were used to create a database 
that included eight different CRC types of tissues. Modern 
texture descriptors and classifiers were put to the test by J. N. 
Kather and colleagues. Their suggested strategy is based on a 
promising mix of global lower-order texture metrics along with 
local descriptors from GLCM and LBP. The General Purpose 
(GenP) approach, which Nanni et al. proposed in [24], is based 
on the collection of learned features, hand-crafted, and dense 
sampling. In their proposed method, all features were trained 
using SVM, and the integration were achieved using the sum 
rule. To differentiate between the various CRC tissue types, 
[28] evaluated shallow and deep characteristics. In their 
research, they looked at how dimensionality reduction 
techniques affected accuracy and computing expense. Their 
findings demonstrated that CNN-based features may achieve 
the best accuracy/dimensionality trade-off. In [29], J. N. Kather 
et al. created a dataset consisting of one lakh images which 
categorized eight tissue types using eighty-six H&E slides of 
CRC tissues. They evaluated the AlexNet [31,38], ResNet-50 
[34], GoogLeNet [33], VGG19 [30], and SqueezeNet version-
1.1 [32] pretrained CNN models. They came to the conclusion 
that among the five CNN models, VGG19 was the best. A 
novel CRC-TP database with 280K patches taken from 20 
WSIs of CRC and divided into seven different tissue 
phenotypes was proposed by Javed et al. [22]. They employed 
27 cutting-edge techniques, including texture, CNN, and Graph 
CNN-based approaches (GCN), to categorize different tissue 
types. According to their test findings, the GCN performed 

better than the texturing and CNN approaches. Although hand-
crafted feature-based and deep learning approaches have been 
employed to classify many CRC tissue types, their 
performance still needs to be enhanced. In order to do this, 
deep CNN methods have been enhanced that significantly 
outperformed baseline results on two well-known databases. 

III. MATERIALS AND METHODS 

A. Kather-CRC-Data set 
This dataset contains non-overlapping 100,000 image 

patches, which include histological images of healthy tissue 
and CRC in humans (H&E). Each image is 224x224 pixels 
(px), with a pixel size of 0.5 microns (MPP). Adipose tissue, 
background (no tissue), detritus, lymphocytes, normal mucosa, 
mucus, stroma, muscle, and tumor epithelium were the nine 
types of tissues that were chosen from their database. The NCT 
Biobank and the UMM Pathology Archive provided the 86 
formalin-fixed paraffin-embedded (FFPE) samples from which 
these images were manually retrieved. The tissue samples 
included CRC original tumor slides and tumor tissue from 
CRC liver metastases. To improve variety, non-tumorous 
gastrectomy specimen sections were included to the normal 
tissue classes. 

Five samples of each CRC tissue type are shown in Fig. 2 
from the Kather-CRC-NCT-CRC-HE-100K database. Tenfold 
cross validation was performed by J. N. Kather et al. [12] 
(http://dx.doi.org/10.5281/zenodo.1214456) to assess texturing 
approaches. The image composition of the databases NCT-
CRC-HE-100K and CRC-VAL-HE-7K is shown in Table I. 

TABLE I.  DATABASE COMPOSITION 

Class Number of Images in 
NCT-CRC-HE-100K 

Database 

Number of Images 
in CRC-VAL-HE-

7K Database 
adipose tissue 10,407 1,338 
background (no tissue) 10,566 847 
debris 10,512 339 
lymphocytes 11,557 634 
mucus 8,896 1,035 
muscle 13,536 592 
normal mucosa 8,763 741 
stroma 10,446 421 
tumor epithelium 14,317 1,233 

   
(a) 

 
(b) 

Fig. 1. Empty Patches in Database (b) Proposed Preprocessing Workflow. 

Input Dataset 

1. Local Contrast 
Normalization 

2.OTSU Thresholding 
3. Patch Optimization 
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dataset 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 9, 2022 

308 | P a g e  
www.ijacsa.thesai.org 

 
Fig. 2. Samples from the Kather-CRC- Database [12]. 

B. Preprocessing of Dataset 
By removing the empty tissue patch from the dataset, extra 

computations have been avoided on the non-tissue regions of 
the slide. There are many different techniques to evaluate an 
image's contrast. In deep learning, the standard deviation of an 
image's pixels or a region of an image is commonly referred to 
as contrast in equation (1) and (2). 
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compute the LCN as proposed in [18] which is given in 
equation (3) 

𝑉𝑖,𝑗,𝑘 = 𝑋𝑖,𝑗,𝑘 −� 𝑤𝑝𝑞𝑥𝑖,𝑗+𝑝.𝑘+𝑞
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                                       (3) 

Where 𝑤𝑝𝑞is the Gaussian waiting window. 

The RGB colour scheme of the low-resolution image was 
changed to LAB colour space before applying OTSU's 
threshold. After thresholding, binary morphological techniques 
were carried out to assist in the accurate patch extraction at 
small tissue regions and tissue borders. Fig. 1(a) shows few 

samples of empty patches available in the database and Fig. 
1(b) shows the proposed preprocessing flow for preprocessing 
the database. Even after separating the tissue region there is a 
chance of extracting patches with no information. So, one more 
step of patch optimization has been added to discard empty 
patches as shown in Fig. 1(b). 

C. CNN Architectures 
Three of the most powerful fine-tuned CNN architectures, 

Alexnet, GoogLeNet, and Inception-v3 have been tested. Pre-
trained models have been employed in this instance that was 
developed using the Kather-CRC-database [12]. 

D. Alexnet 
The architecture is made up of eight layers: five 

convolutional layers and three fully connected layers. 
However, this is not what distinguishes AlexNet from other 
convolutional neural networks; rather, they are some of the 
characteristics that are employed. AlexNet uses Rectified 
Linear Units (ReLU) in place of the tanh function, which was 
referred as the industry standard. ReLU outperforms Tanh in 
terms of training velocity. A CNN utilizing ReLU was able to 
achieve a 25% error on the CIFAR-10 dataset six times 
quicker. CNNs frequently "pool" the outputs of neighboring 
neural groups without any overlap. However, after adding the 
overlapping, the error was reduced by roughly 0.5%, and it was 
shown that models with overlapping pooling are often more 
difficult to overfit. Overfitting was a serious concern for 
AlexNet. 

E. GoogLeNet 
The primary design of GoogLeNet [25] enhances 

computational capabilities inside the network model to 
encompass inception layers with the goal of minimizing 
complexity. By adding 1x1 convolutional layers to the network 
and using a different kernel, it not only enhances the depth but 
also the width of the architectural approach. In order to capture 
sparse correlation patterns, this lowers the number of 
computing levels 

F. Inception-v3 
The third iteration of the Inception networks family, which 

was initially introduced in [27], is known as Inception-v3 [34]. 
Inception block uses stacked 1x1 convolutions to reduce 
dimensionality, enabling fast computing and deeper networks. 
Unlike previous CNNs, which stacked kernel filter sizes 
sequentially, Inception architectures run several kernel filters 
with varying size on the same level. Making the networks 
larger rather than deeper is meant by this. The authors in 
[22,23] depicts the architecture of Inception-v3, which differs 
from the original Inception versions in a number of ways. 
These enhancements include propagating label information 
further down the network via an auxiliary classifier, factorized 
7x7 convolutions, and label smoothing. 

G. Fine-Tuning of Selected Models 
Fine-tuning is a transfer learning concept in which 

information gained via training with one kind of difficulty is 
applied to training with another similar task or area [35]. The 
initial layers of deep learning algorithms are instructed to 
identify task-specific traits. The transfer learning phase is used 
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to remove few final layers of learnt network which can then be 
retrained with better task specified layers. Even if fine-tuned 
learning trials involve some learning, they nonetheless proceed 
far more quickly than learning from beginning [36]. 
Additionally, compared to models created from scratch, they 
are more accurate. 

Data augmentation was used to fine-tune CNN Alexnet, 
Inceptionv3, GoogLeNet, and architecture using the Nct-Crc-
He-100k and CRC-VAL-HE-7K datasets. The pretrained 
model has undergone the following adjustment. 

1) The overfitting is greater if the size of the target data set 
is smaller and more comparable to the size of the training data 
set. The amount of overfitting that necessitates fine-tuning the 
data set for the pre-trained model is minimal if the target data 
set is bigger and comparable in size to the training data [37]. 
Therefore, a dropout layer has been added with probability 0.6 
to the network to replace the final dropout layer, "pool5-drop 
7x7 s1," which will randomly set certain features to zero. 

2) Frequency can be modified based on the number of 
images allocated for training as follows. 

 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =  �𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑚𝑎𝑔𝑒𝑠 
𝐵𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒

� 

3) The models were developed and then loaded with 
ImageNet pre-trained weights. As a result, a new fully-
connected layer was developed in order to conduct the 
classification layer. 

IV. EXPERIMENTAL RESULTS 

A. Experimental Setup 
The main components of the hardware environment are an 

Radeon RX 550X video card and an Intel Core i7-85650 CPU 
with 16 GB of RAM. Matlab R2020a is the software 
environment for language programming on a Windows 10 
computer. 

B. Dataset 
To evaluate the fine-tuned pretrained model, two databases 

have been used: CRC-VAL-HE-7K and NCT-CRC-HE-100K. 
The bigger dataset of 100,000 non-overlapping image patches, 
NCT-CRC-HE-100K, and the smaller dataset of 7180, CRC-
VAL-HE-7K, were chosen for testing. The comparison criteria 
used are displayed in Tables II and III. A total of 40% of the 
images in each dataset were used as the training set, 20% as the 
validation set, and 40% as the testing set. 

C. Discussion 
In the area of machine learning for image processing, deep 

learning models have prevailed. The possibility to extend the 
study and application to the identification and categorization of 
tumor epithelium in high resolution images is presented by 

advancements in deep learning and image processing. 
However, the main problem with high quality images is 
training time. 

TABLE II.  PARAMETER VALUES TAKEN FOR COMPARISON (NCT-CRC-
HE-100KDATABASE) 

Fields Size 
Number of Classes 9 
Dropout Probability 0.8 Vs pretrained models 
Batch size 64 
Epoch 15 
Iterations 
Learning rate 

9360 
1e-05 

TABLE III.  PARAMETER VALUES TAKEN FOR COMPARISON (CRC-VAL-
HE-7K DATABASE) 

Fields Size 
Number of Classes 9 
Dropout Probability 0.4 Vs pretrained models 
Batch size 64 
Epoch 15 
Iterations 660 
Learning rate 1e-05 

TABLE IV.  TRAINING, VALIDATION AND TESTING ACCURACY OF NCT-
CRC-HE-100K DATABASE 

(Batch size = 64, Iterations = 9360, Learning rate = 1e-05,Epoch =15) 
Model Training 

Acc. (%) 
Validation 
Acc. (%) 

Training 
Loss 

Testing 
Acc.(%) 

Testing 
Loss 

Alexnet 95 95.03 0.42 94.5 0.39 
GoogLeNet 95 94.08 0.38 94.3 0.29 
InceptionV3 98 97.79 0.21 97.42 0.25 

TABLE V.  TRAINING, VALIDATION AND TESTING ACCURACY OF CRC-
VAL-HE-7K DATABASE 

(Batch size = 64, Iterations = 660, Learning rate = 1e-05, Epoch =15) 
Model Training 

Acc. (%) 
Validation 
Acc. (%) 

Training 
Loss 

Testing 
Acc.(%) 

Testing 
Loss 

Alexnet 93 93.18 0.51 93.2 0.43 
GoogLeNet 92 91.36 0.59 91.4 0.7 
InceptionV3 89.4 89.57 0.71 89 0.73 

The deep learning architectures are adjusted in accordance 
with Section 3.G's instructions. Fig. 3 to 7 displays the 
experiment's findings. The accuracy and dropout probability of 
deep learning models (Alexnet, GoogLeNet and Inceptionv3) 
are shown in Fig. 3 and 4. For the pretrained model the default 
dropout parameter is 0.5 and it has been adjusted to 0.4 (for 
small dataset) and 0.8 (for large dataset) which is shown in 
Fig. 3 and 4. Therefore over fitting issue is properly handled 
using the dropout parameter which results good in both training 
set and the validation set. As the validation frequency has been 
generalized based on the size of the database, the batch loss 
and validation loss are very less which is shown in the Fig. 5, 6 
and 7. Based on the above adjustments, all the models' 
accuracy increased after 15 epochs. 
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Fig. 3. Accuracy Comparison with and without Dropout Layer (CRC-VAL-

HE-7K Database). 

 

 
Fig. 4. Accuracy Comparison with and without Dropout Layer (NCT-CRC-

HE-100K DATABASE). 

 
Fig. 5. Epoch Vs Batch Loss and Validation Loss of Alexnet. 
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Fig. 6. Epoch Vs Batch Loss and Validation Loss of GoogLeNet. 

 
Fig. 7. Epoch Vs Batch Loss and Validation Loss of Inception v3. 
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TABLE VI.  TISSUE AND TUMOR EPITHELIUM CLASSIFICATION  ACCURACY 
USING PRETRAINED MODELS (CRC-VAL-HE-7K DATABASE) 

Tissue Class Alexnet GoogLeNet Inceptionv3 

Adipose 97.8 97.6 94.23 

Background 99.4 99.7 98.4 

Debris 99.2 91.7 99 

Lymphocytes 92.7 92.6 95.1 

Mucus 94.6 92.7 85.4 

Smooth Muscle 81 78.0 86.36 

Normal Colon Mucosa 85.9 93.3 85.98 

Stroma 84.7 88.2 90.26 

Tumor epithelium 88.7 89.9 92.45 

TABLE VII.  TISSUE AND TUMOR EPITHELIUM CLASSIFICATION  ACCURACY 
USING FINE-TUNED MODELS (CRC-VAL-HE-7K DATABASE) 

Tissue Class Alexnet GoogLeNet Inceptionv3 

Adipose 98.5 98.1 95.73 

Background 99.6 99.7 99.9 

Debris 99.5 93.5 99.5 

Lymphocytes 93.1 92.5 96.6 

Mucus 95.2 93.4 86.9 

Smooth Muscle 85.23 84.5 87.86 

Normal Colon Mucosa 89.56 95.2 87.48 

Stroma 90.21 91.78 92.76 

Tumor epithelium 92.24 92.45 95.95 

TABLE VIII.  TISSUE AND TUMOR EPITHELIUM CLASSIFICATION ACCURACY  
USING PRETRAINED MODELS (NCT-CRC-HE-100K DATABASE) 

Tissue Class Alexnet GoogLeNet Inceptionv3 

Adipose 97.5 98.31 99.61 

Background 98.5 99.57 99.4 

Debris 93.5 94.6 95.9 

Lymphocytes 97.6 98.45 99.75 

Mucus 95.4 96.21 97.51 

Smooth Muscle 95.4 96.41 97.71 

Normal Colon Mucosa 91.9 93.8 95.1 

Stroma 88.4 91.3 92.6 

Tumor epithelium 94.9 95.8 97.1 

TABLE IX.  TISSUE AND TUMOR EPITHELIUM CLASSIFICATION  ACCURACY 
USING FINE-TUNED MODELS (NCT-CRC-HE-100K DATABASE) 

Tissue Class Alexnet GoogLeNet Inceptionv3 

Adipose 98.4 99.09 99.5 

Background 99.4 99.35 99.29 

Debris 94.4 95.38 96.79 

Lymphocytes 98.5 99.23 99.64 

Mucus 96.3 96.99 98.4 

Smooth Muscle 96.3 97.19 98.6 

Normal Colon Mucosa 92.8 94.58 95.99 

Stroma 89.3 92.08 93.49 

Tumor epithelium 95.8 96.58 97.99 

TABLE X.  TRAINING TIME FOR FINE-TUNED MODELS 

 

Training Time CRC-
VAL-HE-7K Database 

in Seconds 

Training Time CRC-VAL-
HE-7K Database 

in Seconds 

Models 

No 
preproces

sing 

Proposed 
preproces

sing  

No 
preprocessi

ng  
Proposed 

preprocessing 

Alexnet 3060 2564 307380 256897 

GoogLeNet 8520 6295 83880 51520 

Inception V3 41520 11265 110735 92545 

The validation accuracy of the proposed finetuned Alexnet 
is better when compared to the validation accuracy proposed in 
[38]. The later achieved 91.8% accuracy with 25 epoch 
whereas this work achieved 93.18 % (Table V) and 95.03 
(Table IV) in 15 epochs using the same database. The author in 
[39] claimed, that the network they developed, SCDNet, 
achieved an accuracy of 96.91%   which is 4% more than the 
pretrained inception v3 model. The proposed fine-tuned 
inceptionv3 model achieves 97.79% accuracy which is better 
when compared to SCDNet. Additionally, as shown in Fig. 5 to 
7, good accuracy results were obtained for all the chosen 
models even after the 30th training iteration with much reduced 
batch and validation loss. 

GoogLeNet and Inceptionv3 models regularly outperform 
Alexnet among the three models chosen. Tables VI, VII, VIII, 
and IX shows the accuracy of nine tissue classes mentioned in 
Table I. As shown in Tables VI, VII, VIII, and IX, the accuracy 
of the tumor epithelium classification is higher in inceptionv3. 
Table X shows the training time required to execute the 
finetuned models based on the experimental setup. As 
indicated in Table X, training time has been reduced by at least 
30% using the suggested preprocessing workflow.  Overall, 
Alexnet fared badly, having the least accuracy and having the 
largest batch and validation loss, whereas finetuned 
inceptionv3 performed well, having the highest accuracy and 
the lowest batch and validation loss. 

V. CONCLUSION 
A workflow has been suggested to preprocess the dataset in 

this article. Additionally, the most advanced deep 
convolutional neural network for classifying tissues and tumor 
epithelium is being tuned and evaluated. The architectures 
under consideration are Inceptionv3, GoogLeNet, and Alexnet. 
According to the experiment, Inceptionv3 tends to provide a 
cogent accuracy increase with increasing epochs, without 
showing any signs of overfitting or performance degradation. 
Additionally, Inceptionv3 performs better in classification 
exhibitions with few parameters and fair processing time. 
Inceptionv3 outperforms the other architectures with a test 
accuracy score of 97.42% for the 15 epoch. Thus, Inceptionv3 
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is a promising design for the goal of identifying tumor 
epithelium. The proposed parameters can be extended with 
other pretrained models and the performance can be compared 
with the parameters F1-score, AUC, Recall and Precision. 
Also, a new generalized Deep CNN model can be designed 
which satisfies the proposed adjustment parameters. 
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