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Abstract—Cloud computing and artificial intelligence have a 
deeper and closer connection with daily life. To ensure 
information security, most companies or individuals choose to 
pay a simple fee to store a large amount of data on cloud servers 
and hand over a large number of complex calculations of 
machine learning to cloud servers. To eliminate the security risks 
of data stored in the cloud and ensure that private data is not 
leaked, this paper proposes a collusion-resistant distributed 
machine learning scheme. Through homomorphic encryption 
algorithm and differential privacy algorithm, the security of data 
and model in machine learning framework is guaranteed. The 
distributed machine learning framework is adopted to reduce the 
data computing time and improve the data training efficiency. 
The simulation results show that the computational efficiency is 
improved while the user privacy security is guaranteed. The 
accuracy of model training is not reduced due to the 
improvement of privacy data security and computational 
efficiency. Through this study, we can further propose effective 
measures for the privacy protection of outsourced data and the 
data integrity of machine learning, which is of great significance 
to the security research of cloud intelligent big data. 

Keywords—Big data; cloud computing; information security; 
distributed machine learning; differential privacy algorithms 

I. INTRODUCTION 
The core technology of artificial intelligence is machine 

learning. Machine learning is mainly through the analysis of a 
large number of data, statistics, calculations, and other 
operations, from which to learn experience, build models, and 
step by step improve the accuracy of model training. In 
practice, machine learning is widely used for model prediction 
in medicine, banking, recommendation systems, threat analysis, 
and authentication technology. Over time, large amounts of 
data are collected to provide new solutions to old problems [1]. 
Large-scale Internet companies collect users' online activities 
and recommend services of interest to users in the future 
through the analysis of big data. Health data from different 
hospitals and government agencies can be used to produce new 
diagnostic models, while financial companies and payment 
networks can also combine transaction history, merchant data, 
and account holder information to train more accurate fraud 
detection engines [2]. Although the progress of technology at 
this stage makes the processing and computing of big data 
more efficient, it is still an important challenge to ensure the 
privacy and security of cloud data. Competitive advantages, 
privacy concerns, laws and regulations, and issues surrounding 
data sovereignty and jurisdiction have hindered the 
development of data training techniques by many outsourcing 

companies [3]. The algorithm workflow of distributed machine 
learning can be summarized as follows: the system receives 
large-scale data and stores them in the cloud, and then 
communicates data in the distributed network. Each distributed 
computing node performs the corresponding computing task 
after receiving the required data, and the system aggregates the 
sub-models trained by each node [4]. The main bottleneck in 
the work is the privacy security during data training and the 
model security after each node trains the sub-model, and the 
efficiency and accuracy of model training cannot be reduced by 
improving the security. McMahan et al. employed a differential 
privacy technique on a distributed parallel architecture to 
enable a trusted server to add noise to the weighted average of 
user updates to guarantee the user-level privacy [5]. The 
aggregation scheme of Adadi et al. is proved to be secure in the 
semi-honest adversary environment, especially when the secure 
multi-party computation (MPC) computes the sum of 
individual local user model updates at the cost of 
computational cost and communication overhead [6]. Shakeel 
P. et al. proved that when the server is not trusted, differential 
privacy cannot rely on the server to complete the task of adding 
noise, and a small part of the original gradient can be used to 
explain the local data [7]. Li et al. used the federated learning 
method to protect the user's privacy, but it increased the cost of 
computation and storage while protecting the privacy security 
[8]. Elgabli et al. combined the distributed differential privacy 
with a three-layer encryption protocol and proposed an 
unbiased coding algorithm to reduce the mean square error to 
achieve a better trade-off and combination of security and 
efficiency [9]. This paper is based on the data analysis and 
calculation of cloud server ciphertext transmission and 
machine learning distributed training platform. A distributed 
machine learning scheme (Distributed Machine Learning 
Privacy-protection Against Collusion Attacks, ACA-DMLP) 
against collusion attacks is proposed. This comprises the 
following steps of: adding the Laplace noise disturbance to a 
ciphertext of a user by a cloud end, and performing disturbance 
processing on each piece of ciphertext data distributed to a 
training platform through a differential privacy algorithm. 
Through the unsolvability of the system of indeterminate 
equations in the algorithm, the collusion attack of the adversary 
is prevented. The security evaluation and efficiency 
performance analysis of the scheme is carried out through 
simulation experiments. The main innovations of this paper 
are: 

1) This paper proposes a private data encryption scheme 
that supports multiple users to encrypt private data with 
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different public keys at any time and upload it to the cloud 
server to encrypt user data efficiently. 

2) Establish a mechanism for the cloud server to add noise 
to the ciphertext data to efficiently protect the transmitted 
data. 

3) An efficient distributed machine learning scheme is 
designed, and an anti-collusion attack algorithm is proposed to 
protect the privacy of each training node, which ensures the 
security of user privacy data and the training model of each 
node. 

II. RELATED WORK 

A. Distributed Machine Learning 
Distributed Machine Learning is mainly used to study how 

to use multiple computers to train large-scale data models. Big 
data has a large volume of data, many types of data, and high 
commercial value. Big data and cloud computing cannot be 
separated. With the rise of big data, cloud computing is bound 
to develop. However, big data cannot be processed by a single 
computer, so users have to adopt a distributed computing 
architecture. Therefore, distributed machine learning has also 
been developed rapidly. However, before the theory and 
technology related to big data were proposed, there had been a 
lot of related research work in the industry. In order to make 
the speed of data calculation and model training faster in 
machine learning, multiple computers or servers are used to 
run at the same time. Parallel processing is generally called 
"parallel computing" or "parallel machine learning". Its main 
purpose is to decompose a large computing task into multiple 
small computing tasks, and then distribute them to multiple 
computers or processing nodes in a distributed architecture for 
processing and computing. Nowadays, under the dual 
challenges of large-scale data and large-scale models, there are 
newer and higher standards and requirements for the 
computing power and storage capacity of servers used in 
machine learning: 

1) The calculation is more difficult and more complex, so 
that the previous simple parallel calculation may take a lot of 
time. Therefore, there is an urgent need for a processor or 
computer cluster with higher parallelism and computing 
power to complete the data training task. 

2) The volume of data is large and the required storage 
capacity is large, which leads to the fact that a single machine 
cannot meet the data storage needs at all, so more and more 
schemes have to adopt the distributed cluster architecture for 
data storage. 

B. Differential Privacy Technology 
Because of its strong background assumptions, differential 

privacy has become a mainstream security algorithm in the 
privacy protection schemes related to machine learning. It can 
even be said that in the field of cryptography, any algorithm 
related to privacy protection can use differential privacy [10]. 
Generally speaking, the most powerful thing about differential 
privacy is that as long as every step in the algorithm meets the 
requirements of differential privacy, it can ensure that the final 
output of the algorithm still meets the requirements of 

differential privacy [11]. 

1m  and 2m  are two adjacent data sets with different 
records, which are called adjacent data sets (also known as 
brother data sets). Differential privacy uses the Laplace 
mechanism to add measurable disturbance to the ciphertext to 
ensure the security of data distributed by cloud servers [12]. 

Definition 1: DPε −  : DPε −  means that if there is a 

pair of adjacent data sets 1m  and 2m , and K is within the 
range of R, then the mechanism R belongs to DPε − , then 
the following holds: 

[ ] [ ]1 2Pr ( ) Pr ( )R m K e R m Kε= ≤ =  (1) 

Where ε  is the privacy budget, which refers to the 
number of bits of information that the data analyst DA can 
obtain. The smaller ε  is, the less bits of information that the 
data analyst DA can obtain. The stronger the secrecy of 

DPε −  is, and the randomness of differential privacy ensures 
the robustness of differential privacy [13]. 

Definition 2: Sensitivity: f is a function in the input space 

of the data set, i.e., : df m R→ , which is used to describe the 
mapping function of a data set m to a d-dimensional space 
[14].  f∆ represents the sensitivity of two adjacent data sets, 
and has the following calculation formula: 

1 2
1 2,

max ( ) ( )
m m

f f m f m∆ = −
   (2) 

Where, on 
dR  with at most one different piece of data, 

the maximum value is on the pair of 1m  and 2m . 

1 2( ) ( )f m f m−  represents the Manhattan distance from a 
point in the data set in the real domain to a point in the data set 

2m , which is called the 1-norm. For various different pairs of 
1m  and 2m  data sets, finding the maximum distance is the 

sensitivity [15]. Differential privacy means that for a data set 
with only one record difference, the probability obtained by 
query is close. The closer the probability is, the stronger the 
confidentiality of the algorithm to the private data is. If the 
results of two data queries are completely consistent, the data 
set has been completely randomized [16]. In this way, the data 
will lose its availability again and again to improve security. 
Privacy protection will lose its original role and significance. 
Most of the schemes make the query probability close, not 
exactly the same, hoping to find a balance between the security 
and availability of private data [17]. 

III. BIG DATA INFORMATION SYSTEM SCHEME 

A. System Model 
The system model diagram of the ACA-DMLP scheme is 

shown in Fig. 1. 
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Fig. 1. System Model of the ACA-DMLP Scheme. 

A DP is a group of a plurality of different data providers 
{ }1 2, , , nDP DP DP DP=   in the scheme model, and 

provides data from a plurality of different sources for a cloud 
server. The data providers encrypt their own private data and 
submit the data to a cloud server CS. The cloud server adds a 
noise mask to ciphertext data and distributes the ciphertext data 
according to the requirements of a data analyst. Before the 
private data set is outsourced to the cloud server for storage, 
each data provider will use its own public key 

( 1,2, , )
iDPpk i n= 

 to encrypt the sensitive data in its data 
set, and then entrust it to the cloud server for storage and 
computation [18]. 

B. Scheme Described 
While the efficient training is distributed in the working 

nodes, the privacy data security and the sub-models trained by 
each distributed node are protected [19]. Fig. 2 is a system flow 
chart of that ACA-DMLP scheme. 

The data provider DP uploads a large number of ciphertext 
data sets to the cloud server. The cloud server adds noise 
disturbance to the ciphertext data sets through the differential 
privacy scheme based on the Laplace mechanism and trains the 
logistic regression model through multiple iterations of 
multiple training nodes on the cloud platform. At the same 
time, it ensures that the adversary colludes with one or more 
computers in the distributed cluster and will not leak the 
encrypted data set distributed by the cloud server to the data 
analyst and the sub-model that has been trained by the 
computing nodes [20]. 

To improve the real-time and dynamic performance of data 
uploaded by users and ensure the security of data, this paper 
proposes a homomorphic encryption privacy protection 
scheme, in which each data provider has a public key. The 
privacy data is dynamically encrypted in real-time by 
combining the XOR operator of homomorphic encryption and 
the Diffie-Hellman theory of separable computation. Then 
upload it to the cloud server. Even if an adversary steals the 
cloud data, the plaintext cannot be cracked. A hash function is 
added to the algorithm to ensure the security of the ciphertext. 
Finally, through the security analysis and proof of the scheme, 
the feasibility and data security of the scheme are theoretically 
explained. 

 
Fig. 2. System Flow Chart of the ACA-DMLP Scheme. 

C. Programme Framework Structure 
The main content of the ACA-DMLP scheme is that the 

cloud server adds noise to the ciphertext data and then 
distributes the disturbing data to each working node of the data 
analyst. Due to the unsolvability of the indeterminate equations 
used by differential privacy to add noise, the adversary cannot 
theoretically steal the disturbed data through a reverse attack. 
Because of the particularity of the distributed architecture, the 
adversary cannot steal the trained sub-model of working nodes 
by conspiring with one or more hosts [21]. 

On the coordinate plane, the Manhattan distance between 

point i with coordinate 1 1( , )x y  and point y with coordinate 
2 2( , )x y  is calculated as: 

1 2 1 2( , )d i j x x y y= − + −   (3) 

If the scheme satisfies differential privacy, if and only if the 
following expression holds: 

( ) ( ) fC d f d Lap
ε

∆ = +  
    (4) 

( )C d  is the output function encrypted by the differential 
privacy algorithm, that is, each data set of the differential 
privacy algorithm outputs a ciphertext. ( )f d  is the 
ciphertext data received by the cloud server, that is, the cloud 
server adds noise to the ciphertext to execute the input function 

( )1 2( ) , , , T
nf d x x x=   of the differential algorithm. T 
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represents the transpose of the vector [22]. Converts the input 

data set to a vector. 

fLap
ε

∆ 
 
   is the noise perturbation 

added by the cloud server to the encrypted data. It is added in 
the form of a vector in the scheme. The form of adding noise 
disturbance is the vector addition operation between the vector 
of the original ciphertext data set and the noise vector, as 
shown in Formula 5: 

1 2( ) ( ) , , ,
T

n
f f fC d f d Lap Lap Lap

ε ε ε
 ∆ ∆ ∆     = +       

      


 (5) 

Formula (4) is an algorithm formula for the cloud server to 
add noise to each piece of ciphertext data (n pieces of data in 
total) in the scheme. In differential privacy, as usual 

0, fbµ
ε

∆
= =

, the Laplace function is written as: 

( )
( )/1

2 /

x
ffLap e

f
ε

ε ε

−
∆∆  =  ∆   (6) 

Simplified as follows: 

exp( )
2

xfLap
f f

εε
ε

−∆  =  ∆ ∆   (7) 

The initial ciphertext ( )1 2( ) , , , T
nf d x x x=   is 

differenced, that is, summed with the Laplace noise vector, to 
give the following equation: 

( )1 2 1 2( ) , , , , , ,
T

T
n n

f f fC d x x x Lap Lap Lap
ε ε ε

 ∆ ∆ ∆     = +       
      

 
(8) 

The following formula can be obtained by substituting the 
above formula (5) into the vector addition formula (6) and then 
transposing and expanding it: 

1
11

1 1
1

2
2 2 2

2 2

exp( )
2

exp( )
( )2

 

exp( )
2

n
n

n n
n n

xf xLap f f
x

xfx Lap x
C df f

x
f xLap x

f f

εε
ε

εε
ε

εε
ε

 − ∆  +    ∆ ∆         −∆    +    + = =∆ ∆               ∆ −  
+       ∆ ∆   


 

 (9) 

Assume that there are N computing nodes in total in the 
data analyst, and each node allocates i (i is a random number in 
1,2, ,n ) pieces of encrypted data. Then the noisy ciphertext 
data allocated by each working node is: 

( )
( )

1
1 1 1

2
2 2 2

( ) ( )

( ) ( )

( ) ( ) i
i i i

fC d f d Lap

fC d f d Lap

fC d f d Lap

ε

ε

ε

∆ = +


∆ = +




∆  = +    



 (10) 

( )NC d  is a noise data set allocated by the cloud server to 
each work node and added with the Laplace noise through 
differential privacy. Each work node in the data analyst 
executes related machine learning algorithms such as query, 
classification, calculation, statistics and the like on the noise 
data set, and trains a sub-model of each work node with the 
allocated data. Then the sub-models are submitted to the data 
center in the cloud server by the working nodes, and the next 
sub-model is trained, and finally all the sub-models of all the 
nodes are summarized by the data center to form a complete 
machine learning model to complete the machine learning task 
outsourced by the user. 

IV. SAFETY ANALYSIS 

A. Data Integrity Analysis 

The adversary trA  attacks the ciphertext and training 
nodes distributed to the training nodes after the cloud server 
adds noise. Fig. 3 shows the security model of the ACA-DMLP 
scheme. 

 
Fig. 3. Security Model of ACA-DMLP Scheme. 
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Setup: trB  submits a public parameter 
1 2 3 4 0 1( , , , , , , , , )q G g H H H H e e  to trA .  trB  uses the list 

1 2 3
( , , )H H HL L L

 to simulate the random oracle model of 
1 2 3, ,H H H  respectively, and guarantees their consistency. 

trB  prepares a table  kL  for the public and private keys. 

Lemma 2: examine that communication between trA  and 

the algorithm  trB  of the scheme in this paper according to 
the IND-PRE-CCA game. 

Phase 1: the adversary trA  issues a series of queries, and 

the algorithm trB  responds to these queries according to the 
scheme algorithm. 

Challenge: The adversary trA  challenges trB  to request 

a ciphertext message ( )f d  from the cloud server. trB  

responds to a series of queries from trA  with a ciphertext 

( )NC d  that contains nx  and 
exp( )

2
n

n n

x
f f

εε −
∆ ∆ . Due to 

the unsolvability of the indeterminate system of equations, the 
adversary cannot infer the initial ciphertext ( )f d  from 

( )NC d . 

Phase 2: trA  continues to issue attack queries as in Phase 

1, and algorithm trB  continues to respond to adversary L's 
queries in the challenging manner described above. 

Guess: trB  returns a solution to the DCDH instance. In 
the random oracle model, the scheme is secure under the 

IND-PRE-CCA property. If an adversary trA  corrupts CS or 

DA to obtain the outsourced data, trA  cannot get the plaintext 
due to the IND-PRE-CCA nature of the scheme. In addition, if 

trA  gains access to some data, the scheme achieves DPε −  
due to the Laplace mechanism adding noise and the 
unsolvability of the algorithm equations. Therefore, the scheme 
is secure under the random DPε −  model. 

B. Collusion-Resistant Analysis 
Due to the semi-honesty of the training nodes in the data 

analyst, suppose that there are (1 )Nδ δ≤ ≤  training nodes 
in the data analyst who collude with their training submodel 

iR  to steal 1 2( , , , )eR R R Rδ=  . Due to the strong 
background assumption of differential privacy, at least one 
training node does not participate in the collusion attack, and 
the adversary solves the logarithmic equation 

( ) ( ) ( / )C d f d Lap f ε= + ∆ . Because of its difficulty, the 

adversary cannot solve 1 i n≤ ≤  and if∆ . Assume that the 

adversary guesses if∆  after several repetitions with a very 
low probability. According to equation (7), the adversary 
conspires to construct a system of equations with δ  equations 
and 1δ +  unknowns: 

1
1 1

1 1

2
2 2

2 2

( ) exp( )
2

( ) exp( )
2

( ) exp( )
2

x
C d x

f f
x

C d x
f f

x
C d x

f f
δ

δ δ
δ δ

εε

εε

εε

 −
= + ∆ ∆

 −
 = +

∆ ∆


 −

= +
∆ ∆



 (11) 

Since Equation (9) is an indeterminate equation system 
with infinitely many solutions, the adversary cannot solve all 
equation unknowns through the limited unknowns. The 
adversary cannot conspire to calculate all initial ciphertexts 

( )f d  and all sub-models iR  through Equation (7). 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Setup 
In the scheme, the data set is stored in the cloud server, so 

the user's local storage cost is small. The main analysis is not 
done in the scheme. The cost of the scheme depends on the 
time overhead, including encoding time, communication time, 
and computation time. To evaluate the time cost of the scheme 
in this paper, the test platform is shown in Table I. 

The experiment examines the running time of the relevant 
scheme on the MNIST data set of size 
( , ) (12396,1568)m d = , where m is the sample size of the 
training data set and d is the test sample size. The distributed 
computing is simulated by the platform without considering the 
network delay. The time cost and accuracy of the proposed 
scheme are compared with the schemes in [23], [24] and [25]. 

B. Efficiency Analysis 
In the experiment, the total time cost of the scheme in this 

paper and the schemes in [23], [24] and [25] is simulated and 
analyzed by setting the number of training nodes 

(5,10,15,20,25,30,35,40)N = . Fig. 4 compares the data 
calculation efficiency of the four schemes under different 
numbers of training nodes. 

TABLE I. TEST PLATFORM CONFIGURATION 

Type Settings 

CPU Intel(R) Core(TM) i7-10700 4.8GHZ 

RAM 32G DDR4 

Hard disk 1T SSD 

Operating system Windows10 

Data set MNIST 

Simulation platform Python 
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In the experiment, the training time of different schemes is 
measured while the number of nodes is gradually increased. 
The following conclusions can be drawn: when 5N = , due to 
the small number of nodes and the small degree of parallelism 
between hosts, all schemes have almost the same performance; 
With the increase in the number of nodes, the difference in the 
time spent by different schemes to process the same amount of 
data sets is increasing, and the performance comparison 
between schemes is more obvious. Due to the distributed 
nature of the proposed scheme, the total amount of data sets are 
evenly distributed in each node. The more the number of 
training nodes is, the less time it takes to process the same task, 
and the shorter the total running time is. Thus, the time to 
process data sets decreases with the increase of the number of 
nodes. Compared with the scheme in the reference, the time 
cost of the scheme in this paper is smaller. Therefore, through 
the comparison of Fig. 4, it can be seen intuitively that the 
scheme adopted in this paper has obvious computational 
advantages. In the MPC scheme of [25], no matter how many 
hosts there are, each host repeatedly computes the entire data 
set to meet the needs of processing all tasks, so the computing 
time tends to increase. Through analysis, when the number of 
hosts is 40N = , it is found that the scheme in this paper has a 
significant improvement in efficiency compared with the 
schemes in [23], [24] and [25]. Fig. 5 shows the comparison of 
communication time (Comm), encoding time (Enco), 
computation time (Comp) and total time (Total) between the 
proposed scheme and the reference scheme when 40N = . 

It can be seen from the images that the running time of each 
part of this scheme has been significantly improved compared 
with the reference schemes [23], [24] and [25]. The main 
reason is that the user encrypts the private data through the 
homomorphism in the scheme, which simplifies the algorithm 
and reduces the complexity. In the reference scheme [25], the 
data set size of each host is the same as the original data set, 
while the data set of each host in the present scheme is only 
1/40 of the original data set. This is because the distributed 
machine learning provides a large parallelization gain for the 
scheme, while the reference scheme has a large computational 
overhead. 

C. Accuracy Analysis 
MNIST data set is set in the experiment (12396 samples are 

used in the training set, and 1568 samples are used in the test 
set). Since [24] does not discuss the problem of training 
accuracy, the accuracy of this scheme is compared with that of 
the schemes in [23] and [25]. When the number of hosts is 

40N = , the accuracy of this scheme is compared with that of 
the schemes in [23] and [25] under different iterations. Fig. 6 
illustrates the experimental comparison results of the three 
schemes. 
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Fig. 4. Comparison of Running Time of Different Schemes. 

Literature [24]Literature [23]

Algorithm Literature [25]

Comm Enco Total

50

100

150

200

250

Machine learning

T
im

e 
/m

s

Comp0

 
Fig. 5. Time Comparison of each Link of Different Schemes. 

75

80

85

90

95

100

Iterative number

Ac
cu

ra
cy

 /%

15100 25205

Literature [25]

Algorithm

Literature [23]

30

 
Fig. 6. Comparison of Accuracy of the Three Schemes. 
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It can be seen from Fig. 6 that during model training, 
compared with the reference schemes [23] and [25], this 
scheme has the same number of iterations, and the accuracy of 
model training of the two schemes is the same. When the 
number of iterations is five, there is a slight difference in the 
training accuracy of the scheme in this paper. The training 
accuracy of the scheme in this paper is slightly different from 
that of the comparison scheme, but the difference is kept within 
2%. With the increase in the number of iterations, the accuracy 
between the schemes is getting closer and closer. The 
difference between the training accuracy of the scheme in this 
paper and that of the scheme in the reference is only 0.2%. 
This result shows that the scheme used in this paper almost 
guarantees the same accuracy as the reference scheme when 
the data set is unchanged and the number of iterations of the 
three schemes is the same. This scheme does not reduce the 
accuracy of model training because of the improvement of 
computational efficiency and data security. 

D. Discussion 
By comparing the functions of each scheme, it can be seen 

that [23] uses distributed architecture to improve the 
efficiency of data training, and uses homomorphic encryption 
algorithm and differential privacy to ensure the security of 
user privacy, and supports the public verification of ciphertext 
by each entity in the model. Appropriate measures are not 
taken to defend against the collusion between the adversary 
and the training nodes. The author in [24] uses a distributed 
model to speed up data analysis and improve the efficiency of 
training, but does not take security algorithms to protect the 
security of user data. The scheme in [25] can resist the 
collusion attack of the adversary and the training nodes in the 
distributed scheme, but it does not support ciphertext 
operation and public verification, and does not use differential 
privacy technology to protect the security of user privacy data. 
This scheme uses distributed structure to shorten the time of 
data analysis and improve the efficiency of machine learning, 
and uses homomorphic encryption algorithm to support the 
training platform to train on the ciphertext, uses differential 
privacy to strictly prevent the user's private data from being 
leaked in the process of transmission and training, and 
prevents the collusion theft of adversaries and distributed 
training nodes. At the same time, each role in the model is 
supported to download and publicly verify the data in the 
ciphertext domain at any time to ensure the integrity of user 
privacy data. Through the above analysis and comparison, the 
scheme in this paper has high feasibility, and strictly 
guarantees the integrity of user data, and improves the training 
efficiency of machine learning. 

VI. CONCLUSION 
In this paper, a collusion-resistant distributed machine 

learning privacy- preserving (ACA-DMLP) scheme is 
proposed. 

1) The scheme adopts the architecture of distributed 
machine learning and improves the efficiency of data training 
through the cluster parallel systems. 

2) A differential privacy encryption algorithm and a 
Laplace mechanism are used to add noise disturbance to the 

ciphertext data in the cloud server to ensure data security in the 
ciphertext domain. 

3) The feasibility and high efficiency of the scheme are 
objectively proved by simulation experiments on relevant 
platforms. The scheme in this paper improves the security and 
analysis efficiency of user private data in machine learning and 
can prevent adversaries from colluding with semi-honest 
working nodes within data analysts to steal data. The scheme in 
this paper only considers the safety of the model before 
training and the sub-model of the training node in machine 
learning but does not make an effective scheme analysis and 
demonstration of the data processing, model combination, and 
the safety of the overall model after machine learning. In future 
work, the data after training will be processed safely and the 
outsourcing agencies will be guaranteed to submit the machine 
learning results to users safely. 
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