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Abstract—The usage of the point cloud surface reconstruction 

to generate high-precision 3D models has been widely applied in 

various fields. In order to deal with the problems of insufficient 

accuracy, pseudo-surfaces and high time cost caused by the 

traditional surface reconstruction algorithms of the point cloud 

data, this paper proposes an improved Poisson surface 

reconstruction algorithm based on the boundary constraints. For 

large density point cloud data obtained from 3D laser scanning, 

the proposed method firstly uses an octree instead of the KD-tree 

to search the near neighborhood; then, it uses the Open Multi-

Processing (OpenMP) to accelerate the normal estimation based 

on the moving least squares algorithm;  meanwhile,  the least-

cost spanning tree is employed to adjust the consistency of the 

normal direction; and finally a screened Poisson algorithm with 

the Neumann boundary constraints is proposed to reconstruct 

the point cloud. Compared with the traditional methods, the 

experiments on three open datasets demonstrated that the 

proposed method can effectively reduce the generation of pseudo-

surfaces. The reconstruction time of the proposed algorithm is 

about 16% shorter than that of the traditional Poisson 

reconstruction algorithm, and produce better reconstruction 

results in the term of quantitative analysis and visual 

comparison. 
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I. INTRODUCTION 

With the popularity of 3D reconstruction technology, the 
surface reconstruction has been widely applied in various 
fields, such as the mapping [1], driverless [2], medical 
technology [3], robotics [4]. For the methods of reconstructing 
surfaces based on the 3D point cloud data, they can be 
generally divided into two schemes: the local methods and the 
global methods. The local reconstruction methods divide all 
the point clouds into small blocks of data, which are then 
reconstructed locally and finally connect them together by 
using some kinds of stitching functions [5, 6]. This scheme 
retains the surface texture features well, but it is heavily 
sensitive to the noise. The global surface reconstruction is an 
approximation of all the point clouds, and the implicit surface 
is optimally reconstructed by solving extreme values and other 
methods [7]. It is under a high overall smoothness and is 

suitable for the interpolation and the whole repair of irregular, 
non-uniform scattered data. As an implicit function-based 
surface reconstruction method, Poisson reconstruction method 
reconstructs a model with watertight closure features, 
geometric surface properties and detail characteristics [8]. 
After normal estimation on the input point cloud data, the 
objective of this algorithm is to estimate the indicator function 
of the model and extract the isosurface, and then complete the 
surface reconstruction using the moving cube algorithm based 
on the indicator function and isosurface [9]. Compared to the 
other algorithms, it allows a hierarchy of local basis functions 
to be divided and the reconstruction is projected to be a 
Poisson space problem, combining both of the advantages of 
the global and the local methods. 

Recently, a large number of good works on the Poisson 
reconstruction has been reported by the famous scholars. For 
example, Kazhdan et al. proposed a screened Poisson surface 
reconstruction algorithm to keep the sparse point structure, 
and solved it by using a multiple mesh algorithm [10].  Z. Xu 
et al. proposed an adaptive bandwidth Gaussian kernel density 
estimator that facilitates the removal of the noise and 
anomalies in the 3D reconstruction process [11]. F. Gao et al. 
proposed a Poisson reconstruction algorithm based on the 
improved isosurface extraction, which can effectively 
eliminate the problems of surface holes and disconnect the 
surface features [12]. B. Ummenhofer et al. proposed a 
generalized convolutional kernel for 3D reconstruction with 
ConvNets from point clouds [13]. Though the above 
reconstruction methods have made great breakthroughs in this 
field, there still are some drawbacks to overcome. For 
example, the traditional Poisson reconstruction is prone to 
pseudo surface and normal inconsistencies. The time 
complexity of reconstruction method for improved isosurface 
extraction is too high. The method based on an adaptive 
bandwidth Gaussian kernel density estimator is not effective 
for the reconstruction of point cloud data with small density 
variation. Considering the entire above problem to deal with, 
this paper proposes an improved Poisson reconstruction 
algorithm and reduces the reconstruction time of the model to 
improve the reconstruction efficiency. 
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Fig. 1. The flowchart of the improved reconstruction algorithm 

The remainder of this paper is organized as follows. 
Section II presents the proposed method of reconstruction for 
3D point cloud. In Section III, the experiments are 
implemented to evaluate the method. Conclusions are given in 
Section IV. 

II. WHOLE METHOD 

In Fig. 1, the proposed improved reconstruction algorithm 
consists the following steps: the set of gradients of the indicator 
function is determined by the normal vector of the point cloud 
data, so the accuracy of the normal estimation has a significant 
impact on the surface reconstruction results. Compared to the 
traditional Poisson algorithm which mostly uses principal 
component analysis for normal estimation, this paper proposes 
an improved method. Firstly, an octree is used instead of a KD-
tree to search the nearest neighborhood; then the normal of the 
point cloud is estimated by moving least squares and 
accelerated by OpenMP [14], and then the normal direction is 
adjusted consistently by a least-cost spanning tree. The 
traditional Poisson reconstruction algorithm is prone to 
generate pseudo-surfaces. In this paper, the screened Poisson 
algorithm is implemented by introducing constraints on the 
location and gradient of the points to constrain the surface 
reconstruction process; and adding Neumann boundary 
constraints to make the solution of the indicator function more 
accurate and generate more accurate surface models. The 
whole flow of the specific algorithm is shown in Fig. 1. 

A. Octree and the Moving Least Squares 

The octree is used to represent a three-dimensional space, 
and is a spatial extension of the quadtree [15]. The geometric 
entities in the three-dimensional space are first dissected into 
cubes, each with the same time and space complexity, and then 
the geometric objects in the three-dimensional space of size 
(2n*2n*2n) are dissected by a circular recursive partitioning 
method to construct a directional graph with a root node [16]. 
In the octree structure if the cubes being divided have the same 
properties, the cube forms a leaf node [17]; otherwise the 

dissection of the cube into eight sub-cubes continues[18]. For 
(2n*2n*2n) size space objects are dissected at most n times, 
and the structure is shown in Fig. 2 [19]. The octree algorithm 
is more efficient than the KD-tree in searching point cloud data 
with high data volumes and is more automated, allowing 
optimization of the time for 3D reconstruction of point clouds 
[20, 21]. 

The Moving Least Squares algorithm is simple and easy to 
implement as a method for interpolating discrete data, with 
high fitting accuracy [22]. When a large amount of discrete 
data is distributed in a heterogeneous manner, the use of 
traditional least squares algorithms often requires the fitting of 
segments to the data, in addition to avoiding the problem of 
discontinuous and unsmooth fitting curves on adjacent 
segments [23]. Moving least squares introduces the concept of 
tight branches and the fitting function is constructed 
differently. 

1) The fitting function: The fitting function [24] for the 

moving least squares in the local area is shown in Eq. (1). 

( )  ∑   ( )  ( )    ( ) ( ) 
    (1) 

 
Fig. 2. The flowchart of the improved reconstruction algorithm 
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where  ( )     ( )   ( )     ( )   is the coefficient 
to be found;  ( )     ( )   ( )    ( )   is a polynomial 
of order k as a basis function; and the number of terms in the 
basis function is n. The basis functions for the linear and 
quadratic bases are 
 ( )          and ( )                   . 

In this paper, the quadratic basis is used to improve the 
accuracy of surface fitting and normal estimation [25]. The 
squared weight of the difference between the local 
approximation of  (  ) and the nodal value    is minimized, 
the weighted residual equation is shown in Eq. (2). 

  ∑  (    )    ( )     
  

   =∑  (    )     (  ) ( )     
  

    

 (2) 

where   is the number of nodes in the area of influence; 
 (    )  is the weight function of node   . In order to 
determine the coefficient  ( ) , it must be made to take a 
minimal value. The derived equation is shown in Eq. (3). 

  

  
  ( ) ( )   ( )    (3) 

where  ( )  ∑  (    ) (  ) 
 (  )

 
   ;  ( )  

  (    ) (  )  (    ) (  )    (    ) (  ) ; 
               . 

The coefficients of the fitting equation are shown in the 
following equation. 

 ( )     ( ) ( )   (4) 

Substitute Equation (4) into Eq. (1) and let   ( )  
   

    
       

      ( )   ( ) ( ), the fitted function of 
the moving least squares is obtained as shown in Eq. (5). 

 ( )  ∑   
 ( )     ( )  

    (5) 

where   ( ) is the shape function;   is the order of the 
basis function. 

2) The selection of the weight function: The weight 

function  (    ) in Eq. (2) is compactly supported in the 

moving least squares algorithm, that is, the weight function is 

only affected by the subdomain near  , which is called the 

influence region of point  . Beyond this region, its weight is 

small and the influence can be ignored. As an indispensable 

part of the moving least square method, the selection of 

weight function is very important to the fitting accuracy 

[26,27]. Generally speaking, the circle is chosen as the support 

domain of the weight function, and its radius is denoted as 

    , as shown in Fig. 3. 
The common weight functions include the spline weight 

function and the Gaussian weight function [28,29]. When 
Gaussian weight function is used for the moving least squares 
surface fitting, the width of a single kernel is difficult to meet 
the feature requirements of the whole model. It needs to be 
selected according to the point cloud density and curvature 
distribution in the local neighborhood, and the kernel width is 
not easy to be determined. As reported in literature [30], the 
cubic spline weight function has continuity. Therefore, the 
cubic spline weight function is selected in this paper. Denoting 

      ,   ̅        , the cubic spline weight function is 
shown as follows: 

 
Fig. 3. The area of the impact region 
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B. The Normal Estimation and Direction Consistency 

Define a local quadratic surface as 
 (   )   (     (   )). The first order partial derivative of 
the surface at a point is then calculated as shown in the 
following equation. 

{
   (            )
   (            )

  (7) 

where  (   )                      . So the 
normal direction of the surface at this point is calculated by 
the following formula. Where,  ,  ,  ,  ,   and f are the 
coefficients of the surface equation. 

  
     

|     |
 

(                     )

√(        )  (        )   
 (8) 

The normal direction calculated based on the moving least 
square method is ambiguous, that is, only the line where the 
normal line is located is obtained, but the direction of the 
normal line is not determined. Therefore, it is necessary to 
carry out direction consistency processing for the normal in 
the model to ensure its accuracy [31]. In this paper, the 
minimum spanning tree (MST) is used to adjust the normal 
direction uniformly [32,33]. Firstly, the algorithm defines a 
cost function for the point cloud in the model, as shown in the 
following equation. 

    (   )  |         | (9) 

Where   is the unit vector pointing from point   to point 
 .   and   are adjacent points, and    and    are normal to 

points   and  , respectively. 

C. Screening Factors 

Because Poisson equation is a partial differential equation, 
some errors will cause the indicator function to shift, resulting 
in a large number of pseudo-closed surfaces at the edges of 
non-watertight surface connections [34,35]. In this paper, the 
process of surface reconstruction is constrained by introducing 
the position and gradient constraints, and then the screened 
Poisson reconstruction algorithm is implemented. 
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In the process of solving the Poisson equation, the 
indicator function        is solved for the directed point 

set  ⃗       , so that the gradient of the function and the 
directed point set form the best approximation, that is, the 

scale function is minimized to solve the problem     ‖    ⃗⃗ ‖, 

 ( )  ∫‖  ( )   ⃗ ( )‖
 
  . In this paper, a point set 

         with weight   is given, and some gradient 
constraints and value constraints of discrete points are added 
to minimize the scale function to recalculate the sample point 
function. The constraint equation is shown in Eq. (10). 

 ( )  ∫‖ ⃗ ( )    ( )‖
 
   

      ( )

∑  ( )   
∑  ( )     ( )

 (10) 

where,   is the sample point of the input point set,    is the 
gradient of the indicator function,     ( )  is the surface 
region to be reconstructed,   is the screening factor, which is 
used to measure the fitting gradient and the fitting value, and 
 ( )  is the sample point weight. For the convenience of 
calculation, the weight  ( ) of each sample point is set as 1 in 
this paper. Eq. (11) can be obtained by simplified to be: 

 ( )    ⃗      ⃗             (   )(   ) (11) 

where,             represents the standard inner product on 

the space of functions in the unit cube (scalar and vector 
values).  (   )(   ) is the representation of the unit cube on 

the function space. This value is obtained from the weighted 
summation of the functions of the sampling points, as shown 
in Equation (12). 

     (   ) 
      ( )

∑  ( )   
∑  ( )    ( ) ( ) (12) 

D. The Neumann Boundary Constraint 

In order to satisfy the solution of the shielded Poisson 
equation and the boundary conditions in a given region, the 
algorithm bias error is reduced by introducing boundary 
constraints for solving the partial differential equation. There 
are three main types of boundary constraints: the Dirichlet 
boundary constraint [36], the Neumann boundary constraint 
and the Robin boundary constraint [37,38]. At the endpoints it 
is generally written in the form Ay + By' = C. 

a) If B = 0 and A ≠ 0, it is called the Dirichlet boundary 

condition, also called the first type of boundary condition, and 

gives the corresponding value of the unknown function on the 

boundary. 

b) If B ≠ 0, A = 0, then it is called Neumann boundary 

condition, also called the second type of boundary condition, 

and gives the directional derivative of the unknown function 

normal to the boundary outside. 

c) If B ≠ 0, A ≠ 0, then it is called Robin boundary 

condition, also called the third type of boundary condition, 

and gives a linear combination of the value of the function of 

the unknown function on the boundary and the directional 

derivative of the outer normal. 

The Neumann boundary constraint is added to the Poisson 
reconstruction process to force the normal derivative of the 
implicit function to be zero at the boundary, which makes the 

solution of the indicator function more accurate. Both the 
Dirichlet and Neumann boundary constraints require the 
implicit function to take a negative value outside the model. 
Since the gradient of the indicator function is equal to the 
vector field, Neumann boundary conditions are more 
conducive to the solution of the indicator function than 
Dirichlet. Neumann boundary conditions constrain the 
watertight surface and require the derivative of the implicit 
function to be zero on the boundary of the integral domain. 
This property is compatible with the gradient of the indicator 
function, since the vector field V is numerically set to zero in 
the region far from the point cloud sample. When the surface 
exceeds the boundary of the integral domain, the Neumann 
boundary constraint creates a deviation across the boundary of 
the domain. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

To verify the effectiveness, accuracy and feasibility of the 
proposed algorithm, it is compared with the traditional 
Poisson reconstruction algorithm and greedy projection 
triangulation algorithm [39,40]. The 3D scanning datasets 
from Stanford University and GeometryHub are used in this 
paper. All experiments are performed on a computer with a 
quad-core AMD Ryzen 3 3100 CPU and 16GB RAM 
configured at 3.59 GHz. And the parallel acceleration is 
implemented by the OpenMP. 

A. Results 

In Fig. 4, the original point cloud data of Model 1, Model 
2 and Model 3 are shown from left to right. Fig. 5 shows the 
normal estimation of the MLS algorithm for the three data 
respectively, and the calculated normal is ambiguous. Fig. 6 
shows the initial normal is estimated by the moving least 
squares algorithm for three data, and then the minimum 
spanning tree is used to redirect the normal. Based on the 
point cloud data in Fig. 6, the proposed algorithm is compared 
with the traditional Poisson reconstruction algorithm, the 
greedy projection triangulation algorithm. 

 
Fig. 4. The normal before redirection 

 
Fig. 5. The normal after redirection 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 1, 2023 

229 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 6. The original point cloud data 

In Fig. 7, Fig. 7(a), 7(d) and 7(g) show the model 
generated by the traditional Poisson reconstruction algorithm, 
Fig. 7(b), 7(e) and 7(h) show the model generated by the 
greedy projection triangulation algorithm, and Fig. 7(c), 7(f) 
and 7(i) show the model generated by the proposed algorithm 
in this paper. 

In order to further optimize the reconstruction effect, the 
different parameters of the proposed algorithm are analyzed 
and compared with the point cloud data of the above models.      
The effect diagram of model 1 is shown in Fig. 8. Then the 
above point cloud data were reconstructed with three types of 
boundary conditions respectively. The experimental results are 
shown in Fig. 9 and Table II. Fig. 9(a), 9(d) and 9(g) is the 
surface reconstruction under Neumann boundary constraints, 
while Fig. 9(b), 9(e) and 9(h) is the surface reconstruction 
under Dirichlet boundary constraints. Fig. 9(c), 9(f) and 9(i) 
shows the surface reconstruction under Robin boundary 
constraints. 

B. Discussions 

It can be seen from Fig. 5, the normal direction is confused, 
someone pointing to the inner side, and someone pointing to 
the outer side. If there is no redirection, further processing will 
lead to many reconstruction errors. Fig. 6 shows the use of 
normal redirection optimizes the consistency of the normal 
direction and provides a more accurate normal input for later 
reconstruction. As can be seen from the comparison of several 
groups of models in Fig. 7, the surface features of the 
traditional Poisson algorithm have poor sealing property, and it 
is easy to generate pseudo surfaces by misconnecting the 
regions that do not belong to morphological features at the 
edges, among which Fig. 7(g) is the most obvious. The model 
reconstructed by greedy projection triangulation algorithm has 
many small holes, and the model surface is rough. Compared 
with the former, the proposed algorithm can effectively solve 
the whole problem by introducing shielding factor and 
boundary constraint.   And the overall model is more perfect in 
reduction and surface smoothness. 

Based on the data in Table I, the reconstruction time of the 
traditional Poisson reconstruction algorithm, greedy projection 
triangulation algorithm and the proposed algorithm is 
compared. The reconstruction time of the proposed algorithm 
is about 16% shorter than that of the traditional Poisson 
reconstruction algorithm, but the reconstruction time is longer 
than that of the greedy projection triangulation algorithm.     
This is because the proposed algorithm uses the moving cube 
algorithm to extract the isosurface, which consumes a long 
time and needs further improvement. When calculating the 
point cloud model with larger data volume, the algorithm in 
this paper has higher reconstruction efficiency. 

 
Fig. 7. The surface reconstruction results based on different algorithms 

In Fig. 8, the higher the value of the screening factor, the 
more detailed the reconstructed model will be, but the longer it 
will take. At the screening factor of 4, the detailed features are 
well represented and take a moderate amount of time. As can 
be seen from Fig. 9, the accuracy of the reconstruction model 
under Dirichlet boundary constraint is low, and many detailed 
features are lost. Although Robin boundary constraint is a 
combination of Dirichlet boundary constraint and Neumann 
boundary constraint, it takes the longest time and has a poor 
reconstruction effect on the edge, as shown in the Fig. 9(c) for 
the pseudo-surface marked by the red circle. The 
reconstruction time under the constraint of Neumann boundary 
is the shortest.    Compared with the traditional Poisson surface 
reconstruction, the pseudo-surface is significantly reduced, and 
the effect is more ideal. 

TABLE I.  THE COMPARISON OF RECONSTRUCTION EFFECTS BASED ON DIFFERENT ALGORITHMS 

The 

experimental 

data 

Traditional Poisson reconstruction 

algorithm 

Greedy projection triangulation 

algorithm 

The proposed algorithm  

 

Vertices Patches Time/s Vertices Patches Time/s Vertices Patches Time/s 

Model 1 99723 199446 12.6 51424 102848 5.1 82571 165138 9.8 

Model 2 379188 758372 50.2 300643 601374 23.8 356274 712543 42.1 

Model 3 548685 1097370 76.6 446261 892541 35.4 523165 1046297 63.3 
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Fig. 8. The surface reconstruction with different screening factors 

 
Fig. 9. The Surface reconstruction with different boundary constraints 

TABLE II.  THE COMPARISON OF RECONSTRUCTION EFFECTS BASED ON DIFFERENT BOUNDARY CONSTRAINTS 

The 

experimental 

data 

Neumann Dirichlet Robin 

Vertices Patches Time/s Vertices Patches Time/s Vertices Patches Time/s 

Model 1 82571 165138 9.8 83626 167248 10.2 84509 169082 10.9 

Model 2 356274 712543 42.1 358823 717646 45.4 359716 719432 46.8 

Model 3 523165 1046297 63.3 529371 1058741 66.9 530805 1061610 68.3 
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IV. CONCLUSION 

In this paper, we propose an improved Poisson surface 
reconstruction algorithm based on the Boundary Constraints.  
Firstly, octree is used to replace KD-tree for nearest neighbor 
search.   Secondly, the normal vector is estimated by moving 
least square method, and the redirection based on minimum 
cost spanning tree is used to reduce the error.  Finally, on the 
basis of traditional Poisson reconstruction, screening factor and 
Neumann boundary constraint are introduced to further 
improve the reconstruction effect. 

The experimental results on different data show that the 
proposed algorithm achieves more accurate reconstruction 
results, which can effectively reduce the generation of pseudo-
surfaces and also reduce the running time to a certain extent. 
The further work is to improve the extraction of isosurface on 
the basis of the proposed algorithm, and try to apply the 
modified algorithm to other fields to obtain high-quality 
reconstructed models. 
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