
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

465 | P a g e

www.ijacsa.thesai.org

Queueing Model based Dynamic Scalability for

Containerized Cloud

Ankita Srivastava*, Narander Kumar

Department of Computer Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India

Abstract—Cloud computing has become a growing technology

and has received wide acceptance in the scientific community and

large organizations like government and industry. Due to the

highly complex nature of VM virtualization, lightweight

containers have gained wide popularity, and techniques to

provision the resources to these containers have drawn

researchers towards themselves. The models or algorithms that

provide dynamic scalability which meets the demand of high

performance and QoS utilizing the minimum number of

resources for the containerized cloud have been lacking in the

literature. The dynamic scalability facilitates the cloud services in

offering timely, on-demand, and computing resources having the

characteristic of dynamic adjustment to the end users. The

manuscript has presented a technique which has exploited the

queuing model to perform the dynamic scalability and scale the

virtual resources of the containers while reducing the finances

and meeting up the user’s Service Level Agreement (SLA). The

paper aims in improving the usage of virtual resources and

satisfy the SLA requirements in terms of response time, drop

rate, system throughput, and the number of containers. The

work has been simulated using Cloudsim and has been compared

with the existing work and the analysis has shown that the

proposed work has performed better.

Keywords—Cloud computing; scalability; containers;

containerized cloud models; queueing model

I. INTRODUCTION

Cloud computing has evolved into a highly dynamic
computing model. It has gained attraction from various
organizations due to its cost, availability, scalability, and
security. It is an internet-based computing technology that
provides higher-end computation and a shared pool of
resources which are accessible on demand [1]. It has
revolutionized the internet world through its hosting services
and computational ability. Its unique technology has
facilitated the user to pay for only those services and resources
which have been demanded by them and further these
resources can be increased and decreased depending upon the
requirement. The potential and high capabilities have led to
amplified productivity with reduced costs and flexibility as
against the other IT industries [2]. The prime technology
working behind the cloud is virtualization which enabled the
cloud to instantiate various Virtual Machines (VMs) on one
single physical machine (PM). Virtualization can occur at
various levels like desktop, network, storage, and application
[3]. It can affirm high performance, confidentiality, reliability,
and security among VMs. One VM is isolated from the other
VM on the same PM making it securely isolated. Despite
various benefits exhibited through virtualization, applications
demanding less isolation and maximum flexibility at runtime,

VM virtualization may not be sufficient enough to satisfy all
the QoS standards [4]. The container-based virtualization is
gaining more popularity these days because of the more
dynamic and flexible nature of the workload which varies
highly with time. It expedites the seamless movement of
applications from one architecture to another as against the
VMs virtualization. Container executes on a kernel with the
equivalent performance as VMs but with lesser cost than
expensive VM runtime management overhead [5]. Containers
provide a good platform to execute microservices on the cloud
and they provide good support for the technologies such as fog
computing, and the Internet of Things (IoT) [6]. As container
technology gained popularity various large-scale IT industries
providing cloud services have come up with their container-
based cloud services.

The most renowned service models available in the cloud
are Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS) with various energy
efficient datacenters (DC) which are solely responsible for
managing the scalability through resource management and
load optimization [7]. With the PaaS service, the users can
deploy any applications on the cloud. This model encapsulates
the underlying infrastructure and facilitates the user to deploy
the applications anywhere without giving a single thought
about infrastructure management. One of the components of
the PaaS service is containers and they are its enablers [8]. So,
a user application can be deployed on a single cloud
infrastructure as a unique block or deployed separately in
different cloud infrastructures.

The key characteristic of the cloud to scale up has attracted
a lot of users. The variation and fluctuation in workload have
compelled the cloud providers to scale up the resources (VMs
or containers) dynamically as per the requirement. The cloud
has eased the process of obtaining and releasing resources but
it can be challenging to decide how many resources are
needed to handle a fluctuating workload. There is an urgent
demand for a model which can provision and de-provision the
resources dynamically at the burst of demands. Despite the
development of container technology and harassing its
potential, there is still room for the improvement in dynamic
scaling of cloud resources. Insufficient scalability which is not
competent enough to confront the variation in the workload
intensity may lead to under-provisioning (UP) or over-
provisioning (OP) of the resources. In the UP scenario, the
performance of the cloud degrades and SLA is violated. While
in OP there is low consumption of resources that are allocated
resulting in a higher cost for the providers. As a result, in
response to dynamic changes in the global arrival rate during

*Corresponding Author.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

466 | P a g e

www.ijacsa.thesai.org

runtime, adaptation mechanisms are coveted for polished
dynamic scalability. Appropriate dynamic scalability is the
demand of the time and it affirms the performance of the SLA
while making the cost low. An efficient technique for dynamic
scalability is required for fulfilling the requirement of both the
users and CSP.

This work has proposed a dynamic scaling approach for
the containerized cloud. The approach enables us to acquire
the dynamic and scalable nature of cloud computing and
analyze its efficaciousness. The model tries to estimate the
future resource demand and provision the resources in a
dynamic way for mitigating the SLA violation and reducing
the cost incurred by the system. The work is simulated in
Cloudsim and the work is evaluated under the various quantity
of workload. The main contribution of the paper goes as:

 A queuing model is proposed to estimate and acquire
the behavior of containerized DC.

 The load balancer model and container model are
discussed.

 The mathematical formulation has been derived from
the analytical model for various QoS measures.

 Simulation of the work is performed on Cloudsim.

The remaining paper is compiled as follows: the literature
study associated with the work is done in Section II. The
proposed work is discussed in Section III. Section IV performs
the results and discussion and lastly, the work is concluded in
Section V.

II. RELATED WORK

Containerization is not a novice concept of computer
science. It was existing back in 1972 on Linux or Unix
systems in different ways [9]. It aided the developer in
providing an efficacious programming environment which has
a quite reduced operational cost. Docker has adopted container
technology and led to the start of open containers in the
industries like Google, Microsoft, and many more and it is
getting popularity day by day due to its isolation strategy.
Fig. 1 describes the container in the cloud system with its
private OS, interface, and file system. Cloud containers
provide a thin encapsulation over the application so its
deployment is relatively easier and faster. Initially, it started
with the VMs which are light. These technologies possessed
an isolated OS on which the application can be deployed [10].
Containers have several benefits over VMs [11]. Firstly,
compared to virtual machines, containers use host system
resources far more efficiently. Second, starting and stopping
the containers only takes a minute time. Next, the mobility
container prevents inter-system dependency conflict and
guarantees its separate functioning from the system on which
it is hosted. Fourth, unlike VMs, which are frequently not
distributed production environments, containers possess the
feature of being exceedingly lightweight, enabling end users
to operate dozens or more of them simultaneously. Fifth,
instead of having to go through hours-long installation and
configuration hassles, end users of apps can instantly
download and run sophisticated software. Additionally, unlike
virtual machines (VMs), which strive to virtualize an external

environment, a container's primary goal is to make an
application fully portable and independent [12].

The containerized cloud is emerging as one of the most
challenging issues over the past few years and a lot of work
has been published in this regard. This section studies the
relevant work associated with the scalability and performance
of container-based cloud models. Some study is associated
with scalability to provide better insight into scalability and
some shows the scalability in container clouds.

Fig. 1. Container structure.

Scalability has once been qualified as the key feature
contributing to the efficient working of cloud-based services.
A deep scaling methodology has been introduced in [13]
where three components have been included for effective
resource utilization. First, it forecasted the workload then it
mapped the workload intensity to the approximated CPU
utilization and lastly, an auto scale method is developed for
maximizing the CPU utilization. A proactive elastic model
was defined in [14] which resolved the scalability issues in
cloud-based IoT systems. It utilizes the ant colony
optimization technique along with the Markov chain for
scheduling the resources efficiently which enhances the
performance and maintains the QoS measures. It improved the
response time and request throughput. A benchmarking
method is proposed that defined a framework for scalability
benchmarking tools for quantifying the scalability. It included
the scalability metrics and measurement methods to specify
the achievement of the given service level objectives. It also
provided the facility for configuring the scalability parameters
for getting an efficient response [15]. The author in [16]
proposed a container-based autoscaling procedure that used a
heuristic technique for utilizing the resources efficiently. It
improved the execution time, throughput, response time, and
the minimum number of containers. The author in [17]
addresses the two major scalability metrics volume scalability
and quality scalability. Volume scalability is highly influenced
by the scaling of service volume while quality scalability is
affected by the service quality provisioned. These parameters
quantify the technical scalability and helped in assessing the
impact of demand on the service. Besides, they also aided in
designing and performing scalability testing with the motive
of the identification of the components that affect the
scalability performance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

467 | P a g e

www.ijacsa.thesai.org

Scalability in container clouds has made the processing of
cloud applications lightweight and efficient. An automatic
scaling method is discussed in [18] where it reduces the
response time, energy consumption, and better CPU
utilization. An analytical model based on the stochastic
technique for the container-based DC has been discussed in
[19]. It studied and analyzed the performance of the cloud
system with respect to mean job delay and job rejection
probability. It created a framework for container emulation
and assessed the same against the suggested stochastic
technique. Through experimental development, the suggested
model is validated using actual data. Insight into DC planning
is provided to system designers by numerical verification.
Another approach is introduced in [20] in which AWS
autoscaling is implemented which facilitate estimating the
future workload. It applied a future prediction algorithm using
Prophet API. It studied the CPU utilization and the creation of
new EC2 instances when the workload is heavy. An auto-
scaler-based model has been discussed in [21] which provide
the architecture for the container-based application. It has
included a monitoring mechanism, prediction model, time
series model, and decision mechanism. The prediction utilized
the time series to predict the future workload. It has provided
better provisioning and speedy elasticity. The author in [22]
introduced a framework for auto-scaled containerized
applications which is governed by workload demand. It
offered both reactive and proactive scaling. Reactive scaling
was implemented using the threshold rules and proactive
scaling utilized a neural network. It ensured the requirement of
QoS. Another container-based module was developed in [23]
which provided efficient provisioning. It used an adaptive
function tree for scalable container provisioning. It mitigated
the provisioning cost further by using a fetching mechanism
showing the quality of on-demand and I/O efficiency. It turned
out to be providing better scaling, response time, and
provisioning. A horizontal scaling technique is discussed in
[24] which configured the services in a docker container while
the workload was balanced using the load balancer. It
calibrated the infrastructures depending on the number of
predicted users. It expanded the infrastructure and processing
capability in a short duration and offered a fault-tolerant
system for medium and small-scale industries. Another
technique for resource utilization in a cloud-based application
is discussed in [25] for container clouds leveraging the vertical
elasticity of Docker. The resource coordinator and monitoring
policies are implemented during the execution of tasks.
Scalability parameters are the configurable parameters in the
procedure.

To the greatest of our knowledge and as of this time, there
hasn't been any research available for the effectiveness and
dynamic scalability of containers published in the literature.
The existing work does not consider the dynamic scalability in
the containers which has provided a cost-effective solution to
the virtualization. It is of utmost importance to identify the
number of containers required to cope with the highly
dynamic workload to satisfy the SLA and QoS requirements.
Dynamic scalability is attained only when there is neither
overprovisioning nor under-provisioning. Overprovisioning
may result in higher costs as more containers will be

engrossed while under-provisioning leads to SLA violation.
Therefore, the main distinction between our study and the
studies listed above is that in addition to forecasting workload,
we also forecast the future need for computing resources.
Furthermore, in contrast to most techniques that focus on only
one factor (CPU utilization), our model provides cloud
providers with more information about the timely scaling and
descaling of containers’ and VMs’ volume. This not only
decreases the cost incurred by the users but also improves the
user’s experience and also mitigates the financial burden of
service provider and infrastructure cost due to the efficient and
wise usage of the resources.

III. PROPOSED WORK

A. Problem Formulation

A model consisting of DC consists of PMs which has the
capability of holding various VMs which are further profound
enough to hold various containers representing the real
practical scenario of current existing cloud services. A
hypervisor is held responsible for allocating various VMs to a
PM while multiple containers can be allocated to a VM. The
task execution request raised from the different users is being
sent to the load balancer (LB). This LB routes the traffic to the
PMs for execution. These requests are sent to a buffer system
which is linked to the LB queue from where it is sent to the
containers for the allocation of the resources and their
execution. The tasks from the queue are allocated to the
containers as per the availability of the resources. Whenever
the user demands a new container with a particular
requirement of the resources, the establishment of SLA
between the final users and the CSP is agreed upon by the
delivery of the requested QoS. If the breach in the agreed SLA
happens the CSP is supposed to pay the penalty to consumers.
The flow of the tasks happens as end users put in the request
and it is sent to the LB. This LB receives the requests and
distributes the tasks to the PMs as per the allocation policy
utilized. Each task is allocated a unique container. As the task
request increases the VM scales up the through the addition of
the container for the execution of the request. Mostly the
companies utilizing the features of the famous company
Docker [26], use at least 18 containers simultaneously. Let us
consider the m PMs which are represented as *
 + which can hold a maximum of up to n VMs
represented as * + . A VM can contain
maximum l containers represented as * +.
So, a PM can be scaled maximum to VMs which can
accommodate a maximum of containers.

B. Queuing Model

The PMs undertaken in the DC have a similar
configuration. The requests generated by the end users are sent
to the queue and are served at each node in the DC based on a
first come first serve basis. When the requests are executed
and served well then they exit from the system. This paper has
assumed that each request is served in only one container and
one container will serve only one request. The DC is modeled
using the open Jackson queuing model represented in Fig. 2.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

468 | P a g e

www.ijacsa.thesai.org

Fig. 2. Queuing model.

C. Load Balancer Model

The LB is held responsible for managing the huge load
which comes with cloud computing in the form of an ample
number of requests from the end users. To serve the requests
well the LB is modeled as an M/M/1 queuing model having
the provision of the infinite capacity task requests buffer and
the arrival of requests is supposed to be one by one [27]. The
Markov chain with the continuous time of the LB model, and
state depicts the task number which means tasks are
waiting to get allocated in the queue. The arrival of the tasks
happens at the rate similar to that of the Poisson procedure
in which the arrival duration of two immediate tasks is
independent and the distribution is exponential according to
the rate . The serving time to the task at the PM in the LB
is exponentially distributed over the rate and is the
mean serving time. If the M/M/1 is assumed to be

stationary, where

 . Let the probability be be for the

 state. The following equations can be summated utilizing
the balanced equation [28]:

 (1)

() (2)

From equation 1 and 2, it can be written

 (3)

According to the normalized equation,

∑

 (4)

One can deduce that,

 (5)

And then the steady-state probability of t tasks in the
queue can be given as:

 ()
 (6)

The number of tasks on an average queued in LB can be
deduced as:

 ∑ ()∑

 (7)

The average response time that the tasks in the queue
obtained can be evaluated through Little’s law [29] given as:

 (8)

D. Container Model

The paper has considered a DC containing various PMs
having various VMs designated to hold one or more container
instances executing on it. The local Scheduler (LS) and the
runtime component (VMs) are the two major holdings of a
PM. Fig. 3 demonstrate the placement of VMs and containers
and LS in a PM. The container is executed on these VMs as an
isolated thread in a similar namespace with a guest OS shared
among other containers in the same VM. The hypervisor
performs the operations that include resource management for
placing the containers in the pool of VMs in accordance with
the workload being requested from the users.

Fig. 3. PM structure.

Let’s consider CDC contains PMs with LS modeled as
M/M/1/C model [30] with VMs and containers
 and thus making the queue full. This implies that PM is
exhausted with the resources and is not in a condition to
accept any new task until it gets finished up with the tasks
previously allotted to it. So, it will reject the incoming new
tasks. According to Burke [31], the departure procedure in the
queue M/M/1 follows the Poisson process with the same rate
 . Thus, the tasks arriving at each PM follow the Poisson rate

with

 ⁄ and each task is served with a service time

exponentially distributed with an average
⁄ . As the queue

is finite in size so, for all the values of and the system is

stable. The PM with t tasks in the queue has an equilibrium
probability that can be defined as:

 {

()

()

 (9)

The rate at which tasks are lost at the PM at the LS
queue can be obtained as:

()

()
 (10)

The LS queue has PM whose throughput is given as:

 ()

 (11)

Similarly, the volume of tasks available in PM at the
queue is:

 ∑

 {

 ()

 (12)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

469 | P a g e

www.ijacsa.thesai.org

The number of tasks undergoing the service is:

 (13)

So, the tasks waiting in the queue can be given as:

 (14)

The CPU utilization can be given as:

 (15)

The waiting time for the tasks at PM is:

 (16)

Thus, the response time at PM is evaluated as:

 (17)

For the later part of PM, each VM is modeled as the
servers with servers and the queue is not available with these
servers i.e., M/M/l/l [32] where depicts the volume of
containers available with each VM. As stated in [31], each
virtual machine's incoming tasks follow a Poisson process
with a rate of , indicating that each container receives an
equal amount of requests. Since there are VMs so each will

get the tasks with an arrival rate

 ⁄ . This will provide

a balance system as each VM has a similar configuration. The
service rate of each container can be taken as . The task
incoming at the VM can be visualized as a birth and death
process. In a state , the rate of the incoming task is
 where . While in the state , the
death rate . Let be the stationary probability with

 tasks in the VM. It is observed: ,
() , from the local balance equation. With
 ⁄ , it can be written as:

 (18)

After the application of standardization condition [33],
can be generalized as:

∑

 (19)

It can be further deduced:

∑

 (20)

The loss probability for the tasks lost at VM, as the
VM was full, is recognized as:

∑

 (21)

As there is no queue for the VM, so the tasks’ volume in
the VM

 (
) (22)

As earlier, the response time is evaluated as:

 (23)

As it is already known, when the LB sends the request, a
job can only be carried out by one PM and in one VM by a
container. Thus, the response time of the tasks before they
went for execution can be summed as:

 (24)

With a similar analysis, the task being rejected in DC is:

 (25)

IV. RESULTS AND DISCUSSION

The model proposed above is simulated through a series of
experiments to analyze its effectiveness. The simulation has
been performed on a personal computer with a 2.30 GHz Intel
Core i3 processor and 4GB of RAM. The simulation tool used
is Cloudsim. Initially, the DC is configured with 5 PMs and
each PM is capable of supporting 10 VMs which varies to 50
VMs while each VM can accommodate a maximum of up to
18 containers. The arrival rate of the task varies from 1000 to
10,000 tasks per second. The task in the queue requests for
execution which is serviced in 0.0001 seconds. The maximum
capacity of the queue is 300. The LS service the request on an
average of 0.001 seconds. The experiment is performed with
100 repetitions for efficient analysis.

A. Response Time

The response time of the system is very much affected by
the volume of VMs which is analyzed with the varied task
arrival rate. Fig. 4 illustrates the same. Here, the capacity of
each VM to hold containers is 20. From the figure, it can be
observed that the increment in response time to the task arrival
is quite proportional. It is analyzed, for all the given scales of
VMs, there are no substantial change in the response time
when the arrival rate of the task varies from 5500 tasks per
second to 9500 tasks per second. As the tasks arrival rate
increases from 9500 tasks/second the response time increase
exponentially for all the scales of containers. The response
time 0.41second is observed in the 20 VMs scenario when the
arrival rate is 10,000. The proper configuration of the VM can
be chosen if the minimum response time is one of the QoS
targets to be achieved for SLA.

Fig. 4. Response time.

0

0.1

0.2

0.3

0.4

0.5

R
es

p
o

n
se

 T
im

e(
s)

Task Arrival Rate

20 VMs 30 VMs

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

470 | P a g e

www.ijacsa.thesai.org

B. Drop Rate

The drop rate of the system is defined as the rate at which
the tasks are dropped or rejected because of either lack of
space in the LS queue or a lack of capacity in DC. Fig. 5
depicts the drop rate against the task arrival rate with the
varied number of containers. Each VM has 18 containers. It
can be observed from the figure that initially there is not much
drop in the tasks but as the task rate increases the drop rate
increases. This increase varies differently with a different
configuration. In the case of 20 VMs, the loss starts after the
2000 task arrival rate is reached while in the 50 VMs case this
loss starts after 5000 tasks/sec. Until the rate reaches 5000 the
50VMs configuration doesn’t show any loss while the 3015
tasks/s are lost in the same task arrival rate as the 20VMs
configuration. It can be deduced with the increased number of
containers there is less loss of tasks.

Fig. 5. Drop rate.

C. Throughput

The system throughput is being analyzed against the task
arrival rate with all four configurations of the containers.
Fig. 6 shows the variation of the system throughput measured
in tasks per second. As it can be observed that in all four cases
the system throughput is similar till 2000 tasks/sec. The
impact of the different configurations of containers can be

seen beyond 2000 tasks/sec. The system performs better with
a large number of containers. There is not much variation that
can be seen when the rate of the task reaches 2000 tasks/sec in
the first case, 3000 tasks/sec in the second case, 4000 tasks/sec
in the third case, and 5000 tasks/sec in the last case. After a
certain threshold, the throughput has become quite fixed. The
requirement of predefined system throughput in SLA can be
resolved using the selection of the best configuration of
containers by the service providers.

D. Number of Containers

To study the effects of the number of containers on
response time and drop rate the tasks arrival rate has been
fixed at 9000 tasks/sec. The number of containers has been
increased from 8 to 18 containers. Table I represents the
response time. It is observed from the table as the number of
containers increases the response time decreases. A dramatic
decrease can be seen after the 16th container. The response
time of the system is highly dependent on the volume of
containers. The system drop rate is also getting highly
influenced by the number of containers. It can be analyzed
that as the containers increase the drop rate decreases. It
shows that to keep the drop rate below 3010 tasks/sec the
minimum number of VMs and containers is 50 and 8
respectively.

Fig. 6. System throughput.

TABLE I. SYSTEM RESPONSE TIME AND DROP RATE WITH RESPECT TO THE NUMBER OF CONTAINERS

No. of System Response Time System Drop Rate

Containers 20 30 40 50 20 30 40 50

8 0.317 0.311 0.293 0.284 6135 5147 4087 3010

9 0.316 0.308 0.289 0.282 5948 5084 3942 2985

10 0.3149 0.304 0.286 0.2815 5827 4972 3875 2875

11 0.315 0.3037 0.288 0.281 5773 4864 3751 2870

12 0.3157 0.3021 0.287 0.2807 5648 4784 3617 2861

13 0.3154 0.2998 0.285 0.2794 5584 4743 3561 2756

14 0.3148 0.2994 0.283 0.279 5538 4476 3548 2641

15 0.297 0.287 0.277 0.274 5416 4507 3472 2571

16 0.283 0.278 0.264 0.258 5386 4459 3378 2468

17 0.257 0.246 0.238 0.2334 5258 4319 3307 2402

18 0.226 0.218 0.210 0.204 5156 4238 3193 2354

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

D
ro

p
 R

at
e(

ta
sk

s/
s)

Tasks Arrival Rate

20 VMs 30 VMs 40 VMs 50 VMs

500

1500

2500

3500

4500

5500
S

y
st

em
 T

h
ro

u
g

h
p

u
t

(T
as

k
s/

se
c)

Task Arrival Rate

20 VMs 30 VMS 40 VMs 50 VMs

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

471 | P a g e

www.ijacsa.thesai.org

E. Comparison with other Algorithms

The response time and system drop rate are compared with
the existing work [11] and [16] for the 50VMs with 18
containers each. From Fig. 7, it can be observed that till the
4000 tasks/sec there is not much variation among the
algorithms. As the rate increases the proposed shows better
results. With 10000 tasks/sec, the response rate is 0.3301sec of
the proposed algorithm while that of [11] is 0.524sec and that
of [11a] is 0.601 sec. From Fig. 8., it can be deduced that till
the task rate is 4000 all the algorithms show the same drop
rate but as the task rate increases there is an exponential
increment in the drop rate. With 10000 tasks/sec, the drop rate
of the proposed algorithm is 4859 tasks/sec and while that of
others is 5338 and 5812 respectively. The suggested method is
significantly more effective than others.

The results obtained above have demonstrated that the
increment in task arrival rate affects the QoS measures
depending on the containers available in the DC. So, it’s very
essential to scale up or scale down the container instances
depending upon the rate of the incoming task. In addition to
this, the number of containers available has to fulfill the SLA
requirements. Besides, in the DC the workload is very
dynamic and to provision, the minimum containers
dynamically which can fully satisfy the SLA requisite which
monitors the usage of virtual resources and modify the number
of resources to be used is of utmost importance. Therefore, the
main challenge that needs to be worked upon is the
engagement of the minimal number of containers for fulfilling
the SLA exigencies. Allocation of a greater number of
containers than required may lead to the OP which increases
the cost. Deploying a lesser volume of containers than
expected may result in UP leading to more SLA violations.
Therefore, dynamic scalability is the requirement of the time
to avoid the situation of under and over-provisioning. The
proposed algorithm facilitates the service provider to identify
the minimal containers required while the rate of the task
fluctuates helping in scaling up and down the resources and
maintaining the SLA.

Fig. 7. Comparative analysis of system response rate.

Fig. 8. Comparative analysis of system drop rate.

Further, the resources are allocated to the tasks in the order
of their arrival. It may not consider the priority tasks which
can be handled in further study. Since the arrival rate of the
tasks is considered fixed which may differ in real life scenario
as the arrival rate can vary with the state and thus making the
potential customer to switch other service due to long waiting
queue and thus it may affect the efficiency of the system.

V. CONCLUSION

This paper has proposed a queuing model for dynamic
scalability in containerized clouds to analyze the workload and
the effects of scaling on the QoS parameters. It also suggests
the number of containers is scaled up or down for the
requirement of a particular given SLA. A mathematical model
is developed for identifying the key performance metrics. The
model predicts and approximates the resource request for
future requirements to mitigate the SLA violations and
provide cost-effective solutions. The proposed methodology
can also be used to scale the DC containers to guarantee the
QoS parameters. The model is proficient enough in deciding
the number of containers required for the provision or
deprovisioned as per the given workload situation to meet up
the SLA demand and QoS metrics. The proposed model is
tested against some existing work and has turned out to be
performing better. In future work, the model can be
implemented in a real working environment and more SLA
parameters can be included for the analysis. Further, clustering
technique can be included and the model can have queue
classified according to the requirements of the tasks like some
tasks may require more processing units while some require
more storage unit.

REFERENCES

[1] Amini Motlagh, A., Movaghar, A., & Rahmani, A. M., ―Task scheduling
mechanisms in cloud computing: A systematic review,‖ International
Journal of Communication Systems, vol. 33, no. 6, pp. e4302, 2020.
https://doi.org/10.1002/dac.4302.

[2] V. Eramo, F. G. Lavacca, T. Catena, and P.J. Perez Salazar, ―Proposal
and investigation of an artificial intelligence (AI)-based cloud resource
allocation algorithm in network function virtualization
architectures,‖ Future Internet, vol. 12, no. 11, pp. 196, 2020.
https://doi.org/10.3390/fi12110196.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2000 4000 6000 8000 10000

S
y
st

em
 R

es
p

o
n

se
 T

im
e

Tasks Arrival Rate

Proposed [16] [17]

0

1000

2000

3000

4000

5000

6000

7000

2000 4000 6000 8000 10000S
y
st

em
 D

ro
p

 R
at

e(
ta

sk
s/

se
c)

Tasks Arrival Rate

Proposed [16] [17]

https://doi.org/10.1002/dac.4302
https://doi.org/10.3390/fi12110196

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

472 | P a g e

www.ijacsa.thesai.org

[3] A. Bhardwaj, and C. R. Krishna, ―Virtualization in cloud computing:
Moving from hypervisor to containerization—a survey,‖ Arabian
Journal for Science and Engineering, vol. 46, no. 9, pp. 8585-8601,
2021. https://doi.org/10.1007/s13369-021-05553-3.

[4] B. Varghese, R. Buyya, ―Next generation cloud computing: new trends
and research directions,‖ Future Gener. Computer Syst. vol. 79, pp. 849–
861, 2018. https://doi.org/10.1016/j.future.2017.09.020.

[5] H. Khazaei, C. Barna, N. Beigi-Mohammadi, M. Litoiu, ―Efficiency
analysis of provisioning microservices,‖ International Conference on
Cloud Computing Technology and Science (CloudCom), IEEE, pp. 261–
268, 2016. https://doi.org/10.1109/CloudCom.2016.0051.

[6] P. Di Francesco, P. Lago, and I. Malavolta, ―Architecting with
microservices: A systematic mapping study,‖ Journal of Systems and
Software, vol. 150, pp. 77-97, 2019.

[7] Y. Saadi, S. El Kafhali, ―Energy-efcient strategy for virtual machine
consolidation in cloud environment,‖ Soft. Comput, vol.24, no.19, pp.
14845-14859, 2020. https://doi.org/10.1016/j.jss.2019.01.001.

[8] I. Kabashkin, ―Availability of applications in container-based cloud
PaaS architecture,‖ In International Conference on Reliability and
Statistics in Transportation and Communication, Springer, pp. 241-248,
2018. https://doi.org/10.1007/978-3-030-12450-2_22.

[9] J.P. Martin, A. Kandasamy, K. Chandrasekaran, ―Exploring the support
for high performance applications in the container runtime
environment,‖ Human-Centric Comput. Inf. Sci., vol. 8, no.1, pp. 1–15,
2018. https://doi.org/10.1186/s13673-017-0124-3.

[10] L.Cai, Y. Qi, W. Wei, J. Li, ―Improving resource usages of containers
through auto-tuning container resource parameters,‖ IEEE Access, vol.
7, pp. 108530–108541, 2019.
https://doi.org/10.1109/ACCESS.2019.2927279.

[11] A. Bhardwaj, and C. R. Krishna, ―Virtualization in cloud computing:
Moving from hypervisor to containerization—a survey‖ Arabian Journal
for Science and Engineering, vol. 46, no. 9, pp. 8585-8601, 2021.
https://doi.org/10.1007/s13369-021-05553-3.

[12] B. Tan, H. Ma, Y. Mei, and M. Zhang, ―A cooperative coevolution
genetic programming hyper-heuristic approach for on-line resource
allocation in container-based clouds,‖ IEEE Transactions on Cloud
Computing, vol.10, no.3, pp. 1500-1514, 2020.
https://doi.org/10.1109/TCC.2020.3026338.

[13] Z. Wang, S. Zhu, J. Li, W. Jiang, K. K. Ramakrishnan, Y. Zheng, and A.
X. Liu, ―DeepScaling: microservices autoscaling for stable CPU
utilization in large scale cloud systems,‖ In Proceedings of the 13th
Symposium on Cloud Computing, pp. 16-30, 2022.
https://doi.org/10.1145/3542929.3563469.

[14] N. Nithiyanandam, M. Rajesh, R. Sitharthan, D. Shanmuga Sundar, K.
Vengatesan, and K. Madurakavi, K., ―Optimization of Performance and
Scalability Measures across Cloud Based IoT Applications with
Efficient Scheduling Approach,‖ International Journal of Wireless
Information Networks, vol. 29, no. 4, pp. 442-453, 2022.
https://doi.org/10.1007/s10776-022-00568-5.

[15] S. Henning, and W. Hasselbring, ―A configurable method for
benchmarking scalability of cloud-native applications,‖ Empirical
Software Engineering, vol. 27, no. 6, pp. 1-42, 2022.
https://doi.org/10.1007/s10664-022-10162-1.

[16] S. N. Srirama, M. Adhikari, and S. Paul, ―Application deployment using
containers with auto-scaling for microservices in cloud environment‖
Journal of Network and Computer Applications, vol.160, pp. 102629-
102641, 2022. https://doi.org/10.1016/j.jnca.2020.102629.

[17] A. Al-Said Ahmad, and P. Andras, ―Cloud-based software services
delivery from the perspective of scalability,‖ International Journal of
Parallel, Emergent and Distributed Systems, vol. 36, no. 2, pp. 53-68,
2021. https://doi.org/10.1080/17445760.2019.1617864.

[18] C. Li, J. Liu, B. Lu, and Y. Luo, ―Cost-aware automatic scaling and
workload-aware replica management for edge-cloud
environment,‖ Journal of Network and Computer Applications,
vol. 180, pp. 103017, 2021. https://doi.org/10.1016/j.jnca.2021.103017.

[19] B. Liu, Y. Chen, ―A scalable fine-grained analytic model for container
cloud data centres,‖ Int. J. Internet Technol. Secur. Trans., vol. 9, no. 4,
pp. 355–389, 2019. https://doi.org/10.1504/IJITST.2019.102794.

[20] N. Nithiyanandam, M. Rajesh, R. Sitharthan, D. Shanmuga Sundar, K.
Vengatesan, and K. Madurakavi, K., ―Optimization of Performance and
Scalability Measures across Cloud Based IoT Applications with
Efficient Scheduling Approach,‖ International Journal of Wireless
Information Networks, vol. 29, no. 4, pp. 442-453, 2022.
https://doi.org/10.1007/s10776-022-00568-5.

[21] M. Imdoukh, I. Ahmad, M. G. Alfailakawi, ―Machine learning-based
auto-scaling for containerized applications,‖ Neural Computing and
Applications, vol. 32, no. 13, pp. 9745-9760, 2020.
https://doi.org/10.1007/s00521-019-04507-z.

[22] S. Chouliaras, and S. Sotiriadis, ―Auto-scaling containerized cloud
applications: A workload-driven approach,‖ Simulation Modelling
Practice and Theory, vol. 121, pp. 102654, 2022.
https://doi.org/10.1016/j.simpat.2022.102654.

[23] A. Wang, S. Chang, H. Tian, H. Wang, H. Yang, H. Li, and Y. Cheng,
―{FaaSNet}: Scalable and Fast Provisioning of Custom Serverless
Container Runtimes at Alibaba Cloud Function Compute,‖ USENIX
Annual Technical Conference (USENIX ATC 21), pp. 443-457, 2021.

[24] D. Perri, M. Simonetti, S. Tasso, F. Ragni, and O. Gervasi,
―Implementing a scalable and elastic computing environment based on
cloud containers,‖ International Conference on Computational Science
and Its Applications, Springer, pp. 676-689, 2021.
https://doi.org/10.1007/978-3-030-86653-2_49.

[25] J. Y. Choi, M. Cho, and J. S. Kim, ―Employing Vertical Elasticity for
Efficient Big Data Processing in Container-Based Cloud Environments,‖
Applied Sciences, vol. 11, no. 13, pp. 6200, 2021.
https://doi.org/10.3390/app11136200.

[26] I. Kabashkin, ―Availability of applications in container-based cloud
PaaS architecture,‖ International Conference on Reliability and Statistics
in Transportation and Communication, Springer, pp. 241–248, 2018.
https://doi.org/10.1007/978-3-030-12450-2_22.

[27] S. El Kafhali, K. Salah, ―Performance modeling and analysis of internet
of things enabled healthcare monitoring systems,‖ IET Netw, vol. 8, no.
1, pp. 48–58, 2019. https://doi.org/10.1049/iet-net.2018.5067.

[28] H. Chen, D. D. Yao, ―Fundamentals of Queueing Networks:
Performance, Asymptotics, and Optimization,‖ vol. 46. Springer, Berlin
,2013. https://doi.org/10.1007/978-1-4757-5301-1.

[29] R. Nelson, ―Probability, Stochastic Processes, and Queueing Theory: the
Mathematics of Computer Performance Modeling,‖ Springer, Berlin
2013. https://doi.org/10.1007/978-1-4757-2426-4.

[30] K. Salah, S. El Kafhali, ―Performance modeling and analysis of
hypoexponential network servers,‖ J. Telecommun. Syst., vol. 65, no. 4,
pp. 717–728, 2017. https://doi.org/10.1007/s11235-016-0262-3.

[31] Burke, ―P.J.: The output of a queuing system,‖ Oper. Res., vol. 4, no. 6,
pp. 699–704, 1956. https://doi.org/10.1287/opre.4.6.699.

[32] S. El Kafhal, K. Salah, S. Ben Alla, ―Performance evaluation of IoT-fog-
cloud deployment for healthcare services,‖ International Conference on
Cloud Computing Technologies and Applications (CloudTech’18),
IEEE, pp. 1–6 ,2018. https://doi.org/10.1109/CloudTech.2018.8713355.

[33] U. N. Bhat, ―An Introduction to Queueing Theory: Modeling and
Analysis in Applications, Springer, New York ,2015.
https://doi.org/10.1007/978-0-8176-4725-4.

https://doi.org/10.1016/j.future.2017.09.020
https://doi.org/10.1109/CloudCom.2016.0051
https://doi.org/10.1016/j.jss.2019.01.001
https://doi.org/10.1109/ACCESS.2019.2927279
https://doi.org/10.1109/TCC.2020.3026338
https://doi.org/10.1145/3542929.3563469
https://doi.org/10.1016/j.jnca.2020.102629
https://doi.org/10.1080/17445760.2019.1617864
https://doi.org/10.1016/j.jnca.2021.103017
https://doi.org/10.1504/IJITST.2019.102794
https://doi.org/10.1016/j.simpat.2022.102654
https://doi.org/10.3390/app11136200
https://doi.org/10.1049/iet-net.2018.5067
https://doi.org/10.1287/opre.4.6.699
https://doi.org/10.1109/CloudTech.2018.8713355

