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Abstract—In recent years, the electroencephalography (EEG) 

signal identification of epileptic seizures has developed into a 

routine procedure to determine epilepsy. Since physically 

identifying epileptic seizures by expert neurologists becomes a 

labor-intensive, time-consuming procedure that also produces 

several errors. Thus, efficient, and computerized detection of 

epileptic seizures is required. The disordered brain function that 

causes epileptic seizures can have an impact on a patient's 

condition. Epileptic seizures can be prevented by medicine with 

great success if they are predicted before they start. 

Electroencephalogram (EEG) signals are utilized to predict 

epileptic seizures by using machine learning algorithms and 

complex computational methodologies. Furthermore, two 

significant challenges that affect both expectancy time and 

genuine positive forecast rate are feature extraction from EEG 

signals and noise removal from EEG signals. As a result, we 

suggest a model that offers trustworthy preprocessing and 

feature extraction techniques. To automatically identify epileptic 

seizures, a variety of ensemble learning-based classifiers were 

utilized to extract frequency-based features from the EEG signal. 

Our algorithm offers a higher true positive rate and diagnoses 

epileptic episodes with enough foresight before they begin. On 

the scalp EEG CHB-MIT dataset on 24 subjects, this suggested 

framework detects the beginning of the preictal state, the state 

that occurs before a few minutes of the onset of the detention, 

resulting in an elevated true positive rate of (91%) than 

conventional methods and an optimum estimation time of 33 

minutes and an average time of prediction is 23 minutes and 36 

seconds. Depending on the experimental findings’ The maximum 

accuracy, sensitivity, and specificity rates in this research were 91 

%, 98%, and 84%. 

Keywords—Epilepsy; electroencephalogram; artificial 

intelligence; machine learning; CHB-MIT 

I. INTRODUCTION 

A set of neurological illnesses known as epilepsy can 
afflict people of any age and are defined by a persistent 
propensity to cause repeated seizures. The progressive 
neurobiological process known as "epileptogenic" causes 
epilepsy [1]. The aberrant synchronized electrical activity of 
brain neurons is the primary cause of epilepsy, a persistent, 
non-communicable condition [2, 3]. The oldest and most 
prevalent neurological condition in the globe is epilepsy [4, 5]. 
Epilepsy is the third most prevalent neurological condition in 
the world, affecting 50 million individuals worldwide, based 
on a World Health Organization (WHO) study from June 2019 
[6]-[10]. An abnormality of the brain characterized by 
recurrent seizures is called Epilepsy. Typically, a seizure is 
described as a sudden (abrupt) shift in behavior because of an 

abnormal disturbance in the electrical activity of the human 
brain [11]. Some minute electrical impulses are continuously 
produced by the brain resulting in a consistent pattern. 
Neurotransmitters are the chemical signals which carry 
electrical signals along with neurons, and neural networks in 
the brain and throughout the entire body [12]. 

Fig. 1 illustrates how epilepsy causes the brain's electrical 
cycles to become unbalanced and cause recurring seizures. 
Individuals having seizures must face synchronized electrical 
energy bursts that may alter their cognition, movements, or 
perceptions and disturb the regular brain electrical sequence 
for a period. The main symptoms of epilepsy are varied and 
complex due to variations in the beginning location and 
method of propagation of aberrant electrical activity in the 
brain [13]. Recurrent seizures can have a long-lasting severe 
impact on a patient's psychological and cognitive abilities and 
pose a serious risk to their lives [14]. Investigation into the 
treatment and diagnosis of epilepsy, therefore, has huge 
therapeutic implications. 

Epileptic seizures can be prevented by medication if they 
are predicted early, giving ample time before they happen. 
Four distinct states occur during epileptic seizures. The first 
state that emerges before the beginning of the seizure is the 
prodromal (pre-ictal) state, the second state i.e., the ictal state, 
starts with the exact beginning of the seizure and completes 
leaving a threat, after the ending of the ictal state comes the 
third state i.e., postictal state, and last is an interictal state, that 
begins after the postictal state of the first seizure and is 
finished before the begin of the preictal state of the subsequent 
seizure. The various input conditions for three distinct 
channels are depicted in Fig. 2. Additionally, the onset of the 
preictal state can be used to anticipate seizures [15]. 

 
Fig. 1. Epilepsy hotpot. 

*Corresponding Author. 
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Fig. 2. Different input states of epileptic seizure [15]. 

The remainder of the essay has been structured as follows: 
The complaints are covered in Section II, the background of 
epilepsy seizures is covered in Section III, and the proposed 
technique is covered in Section IV. The experimental results 
are reported in Section V. Section VI brings the essay to a 
close and discusses unfinished business. 

II. TYPES AND SYMPTOMS OF EPILEPTIC SEIZURE 

Neurologically epilepsy is characterized by abnormal 
activity of the brain that results in seizures resulting in strange 
behavior, emotional sensations, and most of the time total loss 
of conscious [16]. When a person experiences at least 2 
seizures that are not related to another established medical 
problem, such as opiate withdrawal or exceptionally low 
blood sugar, an epilepsy diagnosis is typically made [17]. That 
part of the brain from which the seizure frequently originates 
in early phases causes disturbance in functions of the affected 
part. The right side of the body is governed by the left half of 
the brain, while the left side of the body is governed by the 
right half of the brain. Typically, Doctors determine seizure as 
either generalized or focal depending on where and how the 
abnormal activity of the brain starts [18]. Focal seizures are 
caused by the aberrant activity of the brain in a specific part of 
the brain, while Generalized seizures appear to be involved in 
the entire brain [19]. Neuro-experts have divided seizures into 
two main groups, partial and generalized, depending on the 
signs, as depicted in Fig. 3 [20, 21]. The symptoms of a partial 
seizure, which are mostly brought on by damage to the 
cerebral hemisphere, can be utilized to define it. Additionally, 
there are two basic categories of partial seizures: simple-
partial and complex-partial. In simple-partial, the person 
appears cognizant and can typically speak, whereas, in 
complex-partial, patients behave erratically, become 
disoriented, and frequently mumble and chew. A generalized 
seizure comprises two main components as well. While 
definitive seizures are challenging to detect because they lack 
motor signals, non-conclusive seizures can be identified by 
their clear motor symptoms. The person is unable to move or 
say anything other than to gaze [22, 23]. 

 
Fig. 3. Types of epileptic seizures. 

 
Fig. 4. Symptoms of epileptic seizure [23]. 

Fig. 4 illustrates the wide range of seizure signs. 
Throughout a seizure, some patients just stare aimlessly for a 
specific period, while others continuously jerk their limbs or 
legs. One seizure may not necessarily indicate epilepsy. For an 
epileptic classification, at least 2 unprovoked seizures 
(seizures caused by unknown reasons) must be occurred 
within 24 hours away [24, 25]. Any brain-coordinated process 
can be disturbed by seizures since aberrant brain activity 
causes Epilepsy. Some specific symptoms determine the 
epilepsy type. Some of the below-mentioned sensations will 
be realized from time to time while others become consistent. 
Most of the time, an individual having epilepsy experiences 
the same type of seizure every other time. Symbols and 
Seizure indications may contain [26]: 

 Brief uncertainty (confusion). 

 Steady Eye spell. 

 Rigid Body Movement. 

 Uncontrollable spasmodic motion. 

 Unawareness and incognizance. 

 Spiritual indications such as fear or nervousness. 
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III. RELATED WORK 

Early studies on Epilepsy prediction were conducted in the 
1970s utilizing feature extraction methods that were linear 
[27]. Because of the non-linear character of EEG signals in the 
1980s, researchers were able to apply these approaches for 
feature extraction thanks to the advent of non-linear methods 
[28, 29]. The utilization of the pre-ictal phase for epilepsy 
identification was also implemented in this decade with the 
diagnosis of the EEG patterns associated with epilepsy, 
including preictal, ictal, and interictal patterns. Salant et al. 
conducted early ES prediction almost 6 seconds before the 
seizure began in 1998 [30], and Drogenlen et al. 2003 
expanded on this work [31]. They employed a feature called 
Kolmogorov entropy to forecast epilepsy 2 – 40 minutes 
before it began. The very first worldwide session on epilepsy 
forecasting took place in 2002, and several epilepsy facilities 
contributed a database of multi-day EEG recordings. 
Eventually, this database was the subject of other 
investigations [32]. Mormann et al. discovered in 2003 that 
the periodic synchronization of various EEG channels 
diminishes before seizure onset [33] using this theory that the 
hyper-synchronous discharge of the brain's neurons causes ES. 
Research studies on substantial EEG data have cast doubt on 
the accuracy of metrics computed in the past century during 
the first 10 years of the ongoing century. Some researchers 
discovered that these findings belonging to past studies were 
based on a limited number of carefully chosen data that could 
not be replicated on a large amount of previously unreported 
data. In worldwide workshops held on the subject, it was 
determined to hold contests on seizure prediction. These 
contests were created to make it easier to compare the 
effectiveness of algorithms that had been trained on the same 
dataset [34, 35]. The International Workshop on Seizure 
Prediction 3 (IWSP3) and the International Workshop on 
Seizure Prediction 4 (IWSP4) collaborated on the inaugural 
seizure prediction competition, which took place in 2007. The 
participants in both events received continuous iEEG 
recordings from 3 epilepsy patients. The algorithms' results 
obtained, however, fell short of expectations. 

The 2014 American Epilepsy Society Seizure Forecasting 
Trial used long-term iEEG recordings of epileptic canines as 
well as short-term human iEEG containing 942 seizures 
acquired over more than 500 days. The same training and 
testing data, lasting 10 minutes, was given to each contestant. 
An evaluation metric for effectiveness was the Area Under the 
Curve (AUC). Another competition by Melbourne University 
with a similar format comprised long-term iEEG recording 
with 1139 seizures [36]. Any algorithm estimating the 
fundamental properties of EEG signals for epilepsy 
predictions or machine learning algorithms based on these 
basic properties was eligible for the competition. In any 
scenario, we are still unsure of the ideal characteristics or 
techniques. People entered algorithms that were excessively 
complex in the competitions. Therefore, it is challenging to 
determine which attribute or ML method was better. A novel 
solution presented by Maturana et al. [37] may be effective for 
a variety of patients. They determined that the crucial slowing 
of neural activity served as an ES prediction indication. Fig. 5 
shows a timeline for the evolution of EEG data measurements. 
Readers who are interested in learning more about the 

background of these advances should consult [38] for 
additional details. Fig. 6 from Natu et al. [39] discussion on 
the development of technology for epileptic seizure detection. 

 
Fig. 5. History of epileptic seizure prediction [38]. 

 
Fig. 6. Machine learning for generalized epileptic seizure prediction. 
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IV. MACHINE LEARNING FOR GENERALIZED EPILEPTIC 

SEIZURE PREDICTION 

Since the turn of the century, scientists have been trying to 
get past the difficulties in diagnosing and predicting epilepsy. 
The initial emphasis of the ES forecast study was mainly on 
the evaluation of EEG recordings because EEG data are an 
important source to observe brain function before, throughout, 
and after epilepsy. Eye rotations, blinks, heart signals, and 
muscular noise contaminate EEG signals. To lessen the impact 
of these numerous sources of interference and distortions, a 
variety of filtration and noise reduction techniques are 
employed [40]. Substantial features are required for 
developing Machine learning models for the classification and 
identification of interictal and pre-ictal phases once artifacts 
have been removed. Fig. 7 illustrates the traditional Machine 
learning approach for epilepsy forecasting and emphasizes the 
key distinction between the application of Machine learning 
and Deep Learning methods. 

A. Signal Processing 

One important step in the analysis of raw biological 
signals is the identification of noise and artifacts. Filtering of 
these artifacts is required to lessen their impact on feature 
extraction. For filtering, a variety of methods have been used, 
including many filters such as Wavelet, Band-Pass, Finite 
Impulse response, and adaptive filters. Additionally, such 
processing is done to make the data standardized so that it 
may be compared to the records of other patients. 

B. Feature Extraction and Collection 

Reliable features are a requirement for all prediction 
models. These features can be divided into unilateral (steps 
undertaken on each EEG channel independently) and 
multimodal (measurements taken on two or more EEG 
channels) categories according to the quantity of EEG 
channels. Numerous techniques recommended in the literature 
were used to do the EEG study. As shown in Fig. 8, these 
methods were widely divided into 4 categories: frequency 
domain, time domain, nonlinear approaches, and time-
frequency domain. 

C. Classification 

Artificial neural networks (ANN), fuzzy logic, k-means 
clustering, support vector machines (SVM), and decision trees 
are used to ensure the identification of epileptic seizures from 
provided EEG data. Most of the time, feature values with 
thresholds are used to draw inferences. 

 
Fig. 7. Different input states of epileptic seizure [15]. 

 
Fig. 8. Classification of feature extraction approaches [42]. 

V. GENERALIZED EPILEPSY PREDICTION USING ML 

METHOD EXPERIMENTAL DETAILS 

The primary goal of this research is to use computer vision 
algorithms to classify EEG signals as epileptic signals (pre-
ictal phase) or non-epileptic signals for the diagnosis of 
epilepsy. The signals in this are centered on ictal release for 
epileptic signals, whereas non-epileptic signals are consisting 
of both normal and pathological inter-ictal discharges for non-
epileptic signals. The technique utilized to accomplish this is 
as follows: 

1) EEG signal normalization and signal extraction. 

2) To generate a feature collection, extract statistical 

features. 

3) Apply wavelet decomposition to the signal to break it 

down. 

4) To reduce the runtime, using k-means clustering for 

reducing the number of features in the feature set. 

5) Training of the Support Vector Machine using the 

condensed feature set. 

6) On a test data set, compare how well the SVM is based 

on the entire and modified feature set performed in separating 

epileptic from non-epileptic signals. 

 
Fig. 9. Machine learning proposed model. 
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Fig. 9 displays the suggested method's block diagram. The 
gathering of EEG datasets, the pre-processing of these signals, 
feature extraction, and classification are the four primary 
stages of this approach. Below is a detailed explanation of 
these actions. 

D. EEG Dataset Collection 

The CHB-MIT database, which contains EEG recordings, 
was used in this investigation. All signals were captured and 
made accessible to the public by Boston Children's Hospital. 
Many recordings last an hour, but others go on for two or four 
hours. 24 portions of an EEG recording are separated and 
recorded in the EDF database schema. An EEG recording is 
represented by each EDF file. The CHB-MIT dataset signals 
include 686 EEG recordings from 23 people ranging in age 
from 1.5 to 17 years old. Each participant is represented by 
several EEG signals from various channels, and the dataset's 
sample frequency is 256 Hz. The Chb01 (1st subject) and 
Chb21 (second subject) in this database are the same 
individuals who were enrolled over 1.5 years. Information 
from the CHB-MIT dataset is shown in Table I. 

Fig. 10 depicts a sample EEG signal from a person 
experiencing an epileptic seizure. In this image, the Seizure 
time window is indicated by red lines. Instances of (a) non-
seizure records and (b) seizure records from the CHB-MIT 
database are shown in Fig. 11 [41]. Dataset information from 
EEGLAB executing in MATLAB is shown in Fig. 12. 

TABLE I. CHB-MIT DATASET 

Case No. Gender Age No. of Seizure 

1 F 11 7 

2 M 9 3 

3 M 61 7 

4 F 14 4 

5 M 45 5 

6 M 3 10 

7 F 13 3 

8 M 76 5 

9 F 36 4 

10 M 55 7 

11 F 6 3 

12 F 14 27 

13 M 44 10 

14 M 4 8 

15 F 6 3 

16 M 6 6 

17 F 5 3 

18 M 9 8 

19 F 8 4 

20 F 27 3 

21 M 23 7 

22 F 33 16 

23 F 7 7 

24 M 21 4 

 
Fig. 10. EEG signal with epilepsy seizure [40]. 

 
Fig. 11. CHB-MIT database: (a) Non-Seizure; (b) Seizure. 

 
Fig. 12. Dataset details from EEGLAB running in MATLAB. 

E. Pre-Processing of EEG Signals 

Preprocessing is the procedure of transforming raw data 
into a format that is more suitable for further analysis and 
interpretable for the user. In the case of EEG data, 
preprocessing usually refers to removing noise from the data 
to get closer to the true neural signals. 

There are several reasons for preprocessing of EEG data is 
necessary. First, the signals that are picked up from the scalp 
are not necessarily an accurate representation of the signals 
originating from the brain, as the spatial information gets lost. 
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Secondly, EEG data tends to contain a lot of noise which can 
obscure weaker EEG signals. Artifacts such as blinking, or 
muscle movement can contaminate the data and distort the 
picture. Finally, we want to separate the relevant neural 
signals from random neural activity that occurs during EEG 
recordings. Fig. 13 represents the preprocessing pipeline that 
is followed in this research. 

 
Fig. 13. Preprocessing pipeline. 

After following the preprocessing pipeline, we reduce the 
23 channels into 8 channels which are: 

1) FP1-F7 

2) P3-O1 

3) P4-O2 

4) FP2-F8 

5) P8-O2 

6) FZ-CZ 

7) CZ-PZ 

8) P7-T7 

The results of these 8 channels are shown in Fig. 14. The 
dataset with the following setting is shown in Fig. 15. Save the 
dataset as a ‗.set‘ file extension for the next step which is 
feature extraction. 

 
Fig. 14. Visualization of 8-selected channels. 

 
Fig. 15. Data of 8 selected channels. 

F. Feature Extraction 

To collect the abstract information required for the 
classification procedure at this point, feature extraction was 
used to remove the duplicate information from the EEG 
signals. When analyzing signals using wavelet transform, it's 
crucial to choose the right wavelets and the right number of 
layers of decomposition. The signal's prominent frequency 
components are used to determine the number of 
decomposition levels. The amount of decay is selected so that 
the wavelet coefficients preserve the frequencies necessary for 
the identification of the signal. The MATLAB software 
program was used to calculate the wavelet coefficients. In this 
study, we extract several features including the Fast Fourier 
transform, wavelet transforms, Mean, and Standard Deviation 
for alpha, beta, theta, delta, and gamma frequencies as shown 
in Fig. 16. 12 Features value extracted and saved as ‗.mat‘ for 
normal and epilepsy as shown in Fig. 17. 

 
Fig. 16. Alpha, beta, and gamma features. 

 
Fig. 17. Feature extraction. 



(IJACSA) International Journal of Advanced Computer Science and Applications 
Vol. 14 No. 1, 2023 

508 | P a g e  

www.ijacsa.thesai.org 

G. Classification 

The goal of the model was to determine the most effective 
dimensionality reduction method that, when combined with 
SVM, would provide the maximum degree of sensitivity and 
validity for gathering statistics as either epileptic or not. In a 
high-dimensional space, the support vector machine (SVM) 
creates a hyperplane or series of hyperplanes that can be 
utilized for classification. SVM has been demonstrated to be a 
useful supervised model based on a statistical learning tool 
with high generalization. The principle underlying SVM is the 
separation of two data sets. This separation can be linear or 
non-linear. In the case of linear separation, SVM uses a 
discriminant hyperplane to distinguish classes. However, in 
the case of nonlinear separation, SVM uses the kernel function 
to identify decision boundaries. Compared with that of other 
supervised algorithms, such as ANNs [42, 43] and KNN, the 
computational complexity of SVM is low [44]-[46]. 

In this study, the model of all data of 23 people is used for 
training each time, and data of the remaining 1 subject is used 
for the test. We explore multiple training, validation, and 
testing divisions of the dataset to see the effect on the 
performance achieved on these subsets. With an increase in 
training data as compared to testing data, an increase in 
performance for accuracy and sensitivity is observed. In our 
experimentation, a train-validation-test ratio of (70%-20%-
10%) is followed.  This ratio resulted in a total of 50 epochs 
for training. Fig. 18 shows the Epileptic seizure detection 
training, validation, and testing of 24 patients. 

 
Fig. 18. Epileptic seizure detection training, validation, and testing. 

VI. RESULTS 

The clinical employment of ES prediction methods 
requires a sufficient performance and quality check and 
different evaluation metrics have been discussed in this 
section. Our end goal is to classify data into two classes non-
seizure and seizure. To measure the performance of the 
proposed method, a confusion matrix, shown in Fig. 19 is 
obtained. In this table, (TP) represents true positive (epileptic 
region predicted as epileptic), TN represents true negative 
(non-epileptic region predicted as non-epileptic), FP 
represents false positive (non-epileptic region predicted as 
epileptic), and FN represents false negative (epileptic region 
predicted as non-epileptic). 

One main challenge in classifying seizure data is the 
imbalance of the dataset. This comes from the fact that 
seizures (and so preictal data) do not occur frequently and the 
size of the interictal class is much larger than the preictal 
class. This may cause naive classification, which means that 
the classifier labels all the data as interictal and completely 
ignores the other class, and still reports a good precision. To 
avoid this, we propose a few contingency plans. First, we do 
not rely only on accuracy as the main factor to choose the best 
classifier. More informative factors can be sensitivity and 
specificity. Here, accuracy is the correct classification rate, 
sensitivity is the proportion of the epileptic regions that are 
correctly classified and specificity is the proportion of the 
non-epileptic regions that are correctly classified. Sensitivity 
is defined as the ratio of the total number of true positives 
(TP) to the sum of the total number of true positives and false 
negatives (FN). True positive is defined as the detection of a 
seizure in a segment which is also identified as a seizure 
segment by experts. Whereas false negatives represent a 
seizure segment not being classified as so by the algorithm, 
while the segment is identified as a seizure segment by 
experts. Specificity is defined as the ratio of the total number 
of true negatives (TN) to the sum of the total number of true 
negatives and false positives (FP). True negative is defined as 
the detection of a non-seizure segment which is also identified 
as a non-seizure segment by experts. Whereas false positives 
represent a seizure segment being classified by the algorithm, 
while the segment is identified to be a non-seizure segment by 
experts Accuracy is defined as the ratio of the sum of TP and 
TN to the sum of TP, TN, FP, and FN. Hence, the higher the 
value, the better the performance is achieved. Classification 
results are shown in Table II. 

TABLE II. CLASSIFICATION RESULTS 

Measure Value Derivations 

Sensitivity 0.980 TPR = TP / (TP + FN) 

Specificity 0.840 SPC = TN / (FP + TN) 

Precision 0.859 PPV = TP / (TP + FP) 

Negative Predictive Value 0.976 NPV = TN / (TN + FN) 

False Positive Rate 0.160 FPR = FP / (FP + TN) 

False Discovery Rate 0.140 FDR = FP / (FP + TP) 

False Negative Rate 0.020 FNR = FN / (FN + TP) 

Accuracy 0.910 ACC = (TP + TN) / (P + N) 

F1 Score 0.915 F1 = 2TP / (2TP + FP + FN) 

In Fig. 19, the first two diagonal cells show the number 
and percentage of correct classifications by the trained 
network. For example, 98 recordings are correctly classified as 
benign. This corresponds to 49.0% of all 200 recordings. 
Similarly, 84 cases are correctly classified as malignant. This 
corresponds to 42.0% of all recordings. 16 of the malignant 
recordings are incorrectly classified as benign and this 
corresponds to 8.0% of all 200 recordings in the data. 
Similarly, 2 of the benign recordings are incorrectly classified 
as malignant and this corresponds to 1.0% of all data. Out of 
114 benign predictions, 86.0% are correct and 14.0% are 
wrong. Out of 86 malignant predictions, 97.7% are correct and 
2.3% are wrong. Out of 100 benign cases, 98.0% are correctly 

https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
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predicted as benign and 2.0% are predicted as malignant. Out 
of 100 malignant cases, 84.0% are correctly classified as 
malignant and 16.0% are classified as benign. Overall, 91.0% 
of the predictions are correct and 9.0 % are wrong. 
Considering the proposed approach system's specificity (SP), 
sensitivity (SN), and accuracy (AC) allows for an evaluation 
of its performance. The proportion of the total number of true 
positives (TP) to the total number of false negatives and true 
positives is known as the sensitivity (FN). True positive is the 
identification of a seizure in a part that is also recognized by 
professionals as a seizure section. False negatives, on the other 
hand, refer to a seizure segment that is recognized as a seizure 
segment by specialists but is not classified as such by the 
algorithm. Therefore, better performance is obtained as the 
greater the value. The classification time of SVM is shown in 
Table III. 

 
Fig. 19. Confusion matrix. 

TABLE III. CLASSIFICATION TIME 

Classifier Training Time (Sec) Testing Time (Sec) 

Support Vector Machine 

(SVM) 
0.150 0.050 

VII. CONCLUSION 

The automatic approaches for detecting epileptic seizures 
have been suggested in this paper. Data from CHB MIT were 
utilized to detect seizure events. An SVM classifier was used 
for classification, and maximum accuracy of 90.7% was 
attained. Training of the classification algorithm was carried 
out across patients to assess the effectiveness of the suggested 
method, and the experimental findings were as a result. The 
maximum accuracy, sensitivity, and specificity rates in this 
research were 91.0%, 98%, and 84% correspondingly as 
shown in Fig. 20. 

 
Fig. 20. Classification result. 
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