
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

709 | P a g e
www.ijacsa.thesai.org

Implementation Failure Recovery Mechanism using

VLAN ID in Software Defined Networks

Heru Nurwarsito1, Galih Prasetyo2

Faculty of Computer Science, University of Brawijaya, Malang, Indonesia1, 2

Abstract—Link failure is a common problem that occurs in

software-defined networks. The most proposed approach for

failure recovery is to use pre-configured backup paths in the

switch. However, it may increase the number of traffic packets

after the traffic is rerouted through the backup path. In this

research, the proposed method is the implementation of a failure

recovery mechanism by utilizing the fast failover group feature

in OpenFlow to store pre-configured backup paths in the switch.

The disrupted traffic packets will be labeled using the VLAN ID,

which can be used as a matching field. Due to this capability,

VLAN ID can aggregate traffic packets into one entry table as a

match field in the forwarding rules. Through implementation

and evaluation, it is shown that the system can build a backup

path in the switch and reroute the disrupted traffic to the backup

path. Based on the parameters used, the results show that the

proposed approach achieves a recovery time of around 1.02-

1.26ms. Additionally, it can reduce the number of traffic packets

and has a low amount of packet loss compared to previous

methods.

Keywords—Software-defined networks; openflow; link failure;

failure recovery; VLAN ID; fast failover

I. INTRODUCTION

Software-defined networking is a new paradigm that
changes the current network infrastructure. The SDN concept
is to break down the network infrastructure by combining the
control logic (control plane) of routers and switches that
forward traffic (data plane) [1]. Unlike the conventional
network concept, where the control plane and forwarding are
tied directly to the same network device. This causes the
network administrator to have to configure the device
manually. Another disadvantage of conventional networks is
that when a device encounters a problem, the network
administrator must fix the problem directly on the device.

In SDN, several problems can occur when the routing
process is executed, one of which is a link failure. Link failure
is one of the problems on the network that causes delays and
even packet loss so the throughput value decreases. Link
failures consist of direct or indirect failures. In the case of
direct failures, the switches detect the failure immediately and
recover quickly, whereas, in the case of indirect failures, the
link failure is not detected by the respective switch despite
traffic overhead. Unidirectional link failures disrupt traffic and
create a loop in the switch topology. Multiple link failures
reduce network reliability performance [2].

Based on previous research that used proactive SDN
methods to solve the link failure problem. When a link fails, a
predetermined backup path is created and used in this proactive

method. The switch closest to the link failure point will then
reroute through the backup path to reach the destination [3].
Then in another research, using the rerouting method to
overcome link failure was examined. When a link fails, high-
priority packets are temporarily diverted to an alternate path,
and then the packet is sent to the destination using the re-
routing method to find the shortest path to the destination [4].

In the several methods previously mentioned, these
methods can overcome link failures without involving the
controller, thereby reducing failover time on SDN. However,
these methods have several downsides, such as the need for a
large number of flow entries to build backup lines and complex
processes to maintain the lines alive. The backup path that has
been created is then difficult to modify or adapt to changing
network conditions, allowing for the possibility of congestion
during the rerouting procedure.

Based on the problems described above and previous
research, a test simulation will be developed to implement
failure recovery on SDN by incorporating the fast failover
group and VLAN ID features. This method works by creating a
backup path for each link using the SDN architecture's fast
failover group feature. Next, enable the VLAN ID feature,
which is used as a match field in forwarding rules, to reduce
traffic when packets are diverted to the backup path. This
approach allows the system to recover from failures without
involving the controller, reducing recovery time and
minimizing the use of flow table memory on switches during
link failures.

The rest of the paper is organized as follows: Section II
provides a brief review of the literature relevant to our work
and describes the main concepts around our approach.
Section III explains the methodology of our approach is
presented. Section IV explains the results and findings of the
research. Section V is the discussion that presents the
comparison result and findings with the previous studies. In
Section VI, the conclusion of this research.

II. RELATED WORK

A. Background

The Group Table-based Rerouting (GTR) method is one of
the approaches used to find responses to single link failures
through the fast failover (FF) group [5]. In general, a backup
path is created for each link between the source and the
destination; however, the backup path proposed in this research
is created by calculating the most efficient path between
adjacent switches. The controller periodically updates the
lookup table on the controller and the FF group table on the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

710 | P a g e
www.ijacsa.thesai.org

switch to determine what changes have occurred in the
topology and network traffic. The research proposed a
protection scheme for source routing-based backup links [6].
The proposed method controls packets going to the backup link
by updating the source routing header. With SDN source
routing, it can use VLAN tags to store packet routes in the
source routing headers instead of being stored in switch flow
entries. By using this method, it can reduce the number of flow
entries needed to build a backup link. However, these
approaches have limitations in the implementation process,
which is quite complex to overcome existing problems in the
fast failover mechanism.

Furthermore, in the research conducted [7], flow-based
network management was proposed that can be programmed
on the OpenFlow network. Researchers propose a method
called Path Monitoring (PathMon), which encodes flow and
path information as tags that can work flexibly. This method is
implemented on a switch and uses OpenFlow 1.3, which
supports VLAN tags to encode flow and path information as
flexible tags so that the statistical data obtained to monitor
network traffic on OpenFlow is more specific. The purpose of
using VLAN IDs in this research is to make it easier for
network administrators to monitor network traffic and collect
the different statistical information needed. In further research,
there are problems with the data center caused by the detection
of elephant flow, which resulted in high network latency [8].
The proposed method is to use multipath routing, which can
break down elephant flows into several mice flows that are
distributed evenly on the network without detecting elephant
flows. In this research, VLAN-based routing is used to reduce
flow entry consumption, where the controller can instruct the
switch to enter the path ID in the VLAN ID field in each
packet from the flow when routing to the switch. The results
showed a 32% reduction in flow entry on switches compared to
the method without using VLANs. This research is distinct
from one another in that researchers raise different issues. In
the proposed approach, the problem to be solved is the use of
fast failover, which requires a large number of flow entries
when a link failure occurs.

B. Software Defined Networking

SDN provides a new approach to managing complex end-
to-end connectivity and knowing the big picture of a network.
A centralized network at the control layer allows management,
configuration, security, and network resources to be optimized
flexibly, dynamically, and automatically on SDN. It can be
used for a variety of purposes, including control manipulation
and network management, network virtualization, and
providing a platform for building fast services [9].

As shown in Fig. 1, there is an SDN architecture consisting
of an infrastructure layer related to the data plane that is in
charge of forwarding. In the control layer, there is a component
where the SDN controller is located. The application layer
functions to make rules for the network. The control layer and
the application layer are connected by the northbound API,
while the infrastructure layer and the control layer are
connected by the southbound API. In the southbound API,
there is an SDN protocol, which is known as OpenFlow.

Fig. 1. SDN architecture

C. OpenFlow

OpenFlow is a standard protocol used in software-defined
networks. This protocol is used for communication between the
control plane and the data plane. The SDN controller can
manage a collection of switches to manage network traffic. The
controller communicates with the OpenFlow switch and
manages the switch via the OpenFlow protocol [10]. Fig. 2
shows the OpenFlow Controller and the OpenFlow Switch are
the two most important components of OpenFlow. The
OpenFlow Controller manages the performance of the Switch
by controlling paths and flows. Then, the OpenFlow Switch is
part of the data plane, which functions to process data such as
forwarding packets.

Fig. 2. Components of OpenFlow

In the OpenFlow protocol, each flow table on the switch
has a flow entry, where each flow entry has a match field, a set
of instructions to be applied to matching packets [11]. There
are three main components in OpenFlow: the first is the table,
which contains the flow table, meter table, and group table.
The second is a secure channel that contains an SSL channel
that is between the switch and the SDN controller. The third
component is the OF protocol, which is used to control and
manage switches [12].

D. Failure Recovery

Failure recovery is a network process that allows packets or
flows that have experienced link failure to be recovered and
forwarded to their destination. In the failure recovery process,
there are two mechanisms: reactive mechanisms and proactive

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

711 | P a g e
www.ijacsa.thesai.org

mechanisms [13]. In a reactive mechanism, there is no backup
path configured in the forwarding plane, so the controller
immediately computes an alternative path after receiving a link
failure notification message from the switch. Whereas in a
proactive mechanism, there are two separate paths (the primary
path and the backup path) that are configured by the controller
in the forwarding plane before link failure occurs on the
network. The fast failover feature is used to implement a
backup path on a proactive mechanism. Fast failover is the
ability of a flow table to create a group table that provides
various ways of forwarding (primary and backup links) [14].
With this capability, fast failover can redirect disrupted flows
to a backup link that has been configured in the flow table.
Fault recovery is performed directly by the OpenFlow switch
without involving the controller. In addition, failure recovery
can be combined with backup path calculations, which are
proactively installed by the controller.

Fig. 3. Failure recovery mechanisms

Fig. 3 is an example of how the failure recovery
mechanism works. There are 5 switches connected to 1
controller, and there are 2 hosts. In this topology, there is a
primary path in switch A-B-D and a backup path in switch A-
C-E-D. When there is a link failure on link A-B, packets from
host 1 will be diverted to the backup path that has been
configured in the flow table to switch A-C-E-D, so that packets
can be sent to host 2.

Fig. 4. Components of fast failover group

Fig. 4 shows the fast failover group component that is run
by the SDN controller. Fast failover is a feature that
reconfigures the link in the event of a failure. This feature
utilizes OpenFlow 1.3 to run a group table that contains watch
ports and action buckets that can monitor and act as long as the

port status changes [15]. The SDN controller configures the
switch with a flow table that can help the network recover
when a link failure occurs. The flow table contains fast failover
group rules that implement a path-switching mechanism if a
link is down.

E. VLAN ID

VLAN-ID is one of the newest features introduced to
OpenFlow in version 1.3. The VLAN mechanism can logically
divide networks that are grouped based on VLAN ID. With this
capability, VLANs can limit broadcast traffic on the network
because they can only send packets to hosts that have the same
VLAN ID. IEEE 802.1Q is the standard definition of VLANs.
A VLAN tag contains 12 bits in the ethernet frame, so there
can be up to 4,096 VLANs on a LAN. Implementation of
VLAN tagging on the Ethernet protocol can create different
broadcast sub-domains on the same LAN by including a
VLAN number or tag for each subnet interface on the same
switch [16].

In the OpenFlow protocol, in the flow table, there are flow
entries that determine how a flow is processed and forwarded.
Inside the flow entry, there are matching fields, actions, and
counters. The matching field is used to match incoming
packets. The action contains a set of instructions that are used
to forward packets in various ways, for example, forwarding to
a group table, one of which is the fast failover group. Then the
counter is used to collect statistics on a particular flow, for
example, the number of packets that have been received, the
number of bytes, and the duration of the flow.

Fig. 5. Fields in the OpenFlow protocol

As shown in Fig. 5, there are 12 match fields, which are
collectively referred to as the "basic twelve-tuple of match
fields". Flow entries are processed sequentially, and when a
match is found, the matching process against the flow table
will be stopped [17]. In addition, the flow table is also
equipped with a frame/byte counter that provides an indication
of flow statistics on all ports so that the controller knows all the
conditions that occur in the network [18]. Several actions can
be performed by the OpenFlow protocol, such as sending
packets to several ports, adding, removing, or modifying a
VLAN tag, deleting packets, or sending packets to the
controller.

III. PROPOSED APPROACH

 In OpenFlow, a specific flow can be defined as a collection
of matching fields. Therefore, VLAN ID can be used as a flow
ID, which can be forwarded based on flow entry. The use of
VLAN ID can reduce interference with route flow and thus

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

712 | P a g e
www.ijacsa.thesai.org

reduce switch memory consumption. The failure recovery
mechanism proposed in this research uses the VLAN ID
feature on OpenFlow to collect failed flows. Each switch and a
link is associated with a VLAN ID that can redirect flow to a
backup path configured by fast failover on the switch.

Based on the topology that will be used in this research, the
failure recovery mechanism will be implemented using
OpenFlow 1.3. This mechanism provides a primary path for

forwarding and a backup path for diverting packets to an
alternative path when a link failure occurs in the primary path.
Based on Fig. 6, shows the failure recovery mechanism in the
topology. In this topology, there is a primary path in S1-S2-S3-
S4, while the backup path is in S2-S5-S6-S7-S4. Then, with the
backup path configuration that has been made in S2, traffic can
be diverted from port 3 to S5-S6-S7-S4 without making a
round trip to the controller, so that packets can be sent to the
destination.

Fig. 6. Experimental topology

In the network topology, there is a link failure in S2-S3, so
packets cannot pass through the link. Furthermore, there is H1,
which will send packets to H2, H3, and H4, so there are three
traffic flows in the topology. When the S2-S3 link fails, the
controller will update the network topology by removing the
failed link. In flow table S2, traffic is forwarded to group table
2 with the fast failover type, which is sent to output port 3.

Fig. 7. Labelling process of VLAN ID

In Fig. 7, when the packet arrives at S5, configure the
VLAN ID in the access port by accepting all packets that do
not have a VLAN header. Then add a VLAN ID tag with a
value of 10 for each incoming packet in S5. Then, the value of
the VLAN ID is used as a match field in the switch connected
to S5 and S6 via port 2. When it arrives at the next switch,
packets will become one flow with a match field VLAN ID of
10. In S6, there is a packet with a VLAN ID as a match field
with a value of 10 that has been configured on the previous
switch. When a packet with a VLAN ID matches the flow
match field, the packet can be forwarded based on the action
specified in the flow table. Then, when the flow arrives at S7,
there is an action with the Strip VLAN ID that functions to
delete the value from the VLAN ID. The process is in the
output access port, so the VLAN header has been deleted when
it goes to the output port. Furthermore, when the flow arrives at
S4, it will be returned to three traffic flows. Thus, in flow table
S4, the three traffic flows can be forwarded according to the
forwarding rules in S4 without requiring changes to the flow
table S4.

IV. PERFORMANCE EVALUATION

A. Testbed Configuration

The topology shown in Fig. 6 was implemented on Mininet
as the network emulator and select Ryu as the controller.
Mininet supports different types of switches. In this case, we
used OpenVSwitch to support the fast failover group and
VLAN ID features in OpenFlow 1.3. Furthermore, because our
experiment was carried out in a controlled environment, we
used OpenVSwitch to install the flows directly in each switch
of the network topology using the script-line program ovs-ofctl.
To collect statistics and monitor the behavior of TCP traffic
generated by the IPERF application. The main characteristics

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

713 | P a g e
www.ijacsa.thesai.org

of the laptop on which the tests were conducted are as follows:
Processor: Intel Core i7-8550U, CPU running at 1.99 GHz;
RAM: 16 GB; operating system: Linux Ubuntu 20.04 LTS 64-
bit on a VMware workstation.

B. Recovery Time

The recovery time evaluation is carried out to find out how
long it takes for packets to be diverted to the backup path when
a link fails. The analysis compares the recovery time in failure
recovery with VLAN ID and fast failover.

Fig. 8. Failure recovery time

In Fig. 8, there is a graph of the recovery time test. Based
on the test results, the minimum time required for failure
recovery with a VLAN ID is 1.02 ms, while the maximum time
is 1.26ms. As a result, the time required to perform recovery in
this mechanism is 1.02-1.26ms. Whereas for fast failover, the
minimum time is 1.02ms, and has the maximum time of 1.4ms.
As a result, when a link fails, recovery takes 1.02-1.4 ms on
fast failover. Based on the results obtained in this test, the
recovery time required in the failure recovery mechanism with
VLAN ID is smaller than that required in the fast failover
mechanism.

C. Traffic Packets

The Traffic packet evaluation is used to find out how much
packet traffic is transmitted to the destination. The analysis of
this evaluation is used to determine the performance of the
VLAN ID as a matching field in sending packets to the
destination.

Fig. 9. Total number of traffic packets

As shown in Fig. 9, there is a traffic packet evaluation.
Based on the two mechanisms tested, the failure recovery
mechanism with VLAN ID resulted in a total of 615,199 traffic
packets. Meanwhile, in failure recovery, the number of packets
generated in this test was 861,579 packets. According to the
results obtained from the test, failure recovery with VLAN ID
produces less packet traffic than the fast failover mechanism.

D. Packet Loss

Packet loss evaluation is carried out to find out how many
packets are lost when sending packets from host 1 to host 2
when a link failure occurs. The duration of each test to be
carried out is 10 seconds, and the test is carried out five times.
The test will be carried out with a different total number of
streams.

Fig. 10. Packet loss rate

In Fig. 10, there is a graph of the results of the packet loss
evaluation that has been done. In the first test using 5 streams,
the failure recovery mechanism with VLAN ID has a packet
loss value of 0.067%, and this value increases when the last
test uses 25 streams at 0.28%. Whereas in fast failover, in the
first test, it has the same packet loss value of 0.067%. But in
the last test using 25 streams, the packet loss value was 0.46%.
Based on the results obtained in this test, the smallest packet
loss value for the two mechanisms is 0.067%. Whereas in the
last test, the failure recovery mechanism with VLAN ID had a
smaller packet loss value compared to fast failover.

V. DISCUSSION

In the recovery time test results, the failure recovery
mechanism with VLAN ID shows results of 1.02-1.26ms with
an average yield of 1.18ms to perform recovery after a link
failure occurs. In research conducted [19], the time needed to
detect and recover a single link failure is at least around 10-20
ms. Then, research [20], states that the need to detect and
perform recovery on operator-scale networks must be carried
out in 50ms time intervals. The results of the packet loss test
that has been carried out show that the average value of packet
loss in the failure recovery mechanism with a VLAN ID is
0.18%, with the highest packet loss being 0.28%. The results of
the packet loss test are still considered good, based on research
conducted [21] which states that packet loss with a ratio of 5-
10% can affect network quality. Whereas in audio and video

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

714 | P a g e
www.ijacsa.thesai.org

stream scenarios, the range of acceptable packet loss is
between 1 and 2.5%.

VI. CONCLUSION

Based on the results of the analysis of this research it can
be concluded that compared to the fast failover method used in
SDN, it mainly has three advantages: First, in the recovery
time test results, the failure recovery mechanism with VLAN
ID shows results of 1.02-1.26ms to perform recovery after a
link failure occurs. Whereas in the fast failover mechanism, the
time needed to perform recovery is 1.02-1.4ms. Second, it
shows that the use of VLAN ID in failure recovery is proven to
be able to reduce the amount of traffic packet when a link
failure occurs. Third, the results of the packet loss evaluation
that has been carried out show that the average value of packet
loss in the failure recovery mechanism with a VLAN ID is
0.18%, with the highest packet loss is 0.28%. Based on the
evaluation results, our proposed approach has better results
than the fast failover method. However, the major drawback of
our proposed approach is that the mechanism is less dynamic
because we implement fast failover groups and VLAN IDs
directly in the switch. Perhaps we can present a solution to the
problem and provide direction for our future work.

REFERENCES

[1] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S.
Azodolmolky, and S. Uhlig, “Software-defined networking: A
comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp.
14–76, Jan. 2015, doi: 10.1109/JPROC.2014.2371999.

[2] V. Muthumanikandan and C. Valliyammai, “A survey on link failures in
software defined networks,” ICoAC 2015 - 7th International Conference
on Advanced Computing, Sep. 2016, doi:
10.1109/ICOAC.2015.7562808.

[3] R. Kanagavelu and Y. Zhu, “A pro-active and adaptive mechanism for
fast failure recovery in SDN data centers,” Advances in Intelligent
Systems and Computing, vol. 886, pp. 239–257, 2019, doi: 10.1007/978-
3-030-03402-3_17/COVER.

[4] V. Muthumanikandan and C. Valliyammai, “Link Failure Recovery
Using Shortest Path Fast Rerouting Technique in SDN,” Wireless
Personal Communications 2017 97:2, vol. 97, no. 2, pp. 2475–2495, Jun.
2017, doi: 10.1007/S11277-017-4618-0.

[5] S. Petale and J. Thangaraj, “Link Failure Recovery Mechanism in
Software Defined Networks,” IEEE Journal on Selected Areas in
Communications, vol. 38, no. 7, pp. 1285–1292, Jul. 2020, doi:
10.1109/JSAC.2020.2986668.

[6] L. Huang, Q. Shen, and W. Shao, “A source routing based link
protection method for link failure in SDN,” 2016 2nd IEEE International
Conference on Computer and Communications, ICCC 2016 -
Proceedings, pp. 2588–2594, May 2017, doi:
10.1109/COMPCOMM.2016.7925166.

[7] M. H. Wang, S. Y. Wu, L. H. Yen, and C. C. Tseng, “PathMon: Path-
specific traffic monitoring in OpenFlow-enabled networks,”
International Conference on Ubiquitous and Future Networks, ICUFN,

vol. 2016-August, pp. 775–780, Aug. 2016, doi:
10.1109/ICUFN.2016.7537143.

[8] S. Chakraborty and C. Chen, “A low-latency multipath routing without
elephant flow detection for data centers,” IEEE International Conference
on High Performance Switching and Routing, HPSR, vol. 2016-July, pp.
49–54, Jul. 2016, doi: 10.1109/HPSR.2016.7525638.

[9] C. Decusatis et al., “Dynamic, software-defined service provider
network infrastructure and cloud drivers for SDN adoption,” 2013 IEEE
International Conference on Communications Workshops, ICC 2013,
pp. 235–239, 2013, doi: 10.1109/ICCW.2013.6649235.

[10] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and
OpenFlow: From concept to implementation,” IEEE Communications
Surveys and Tutorials, vol. 16, no. 4, pp. 2181–2206, Apr. 2014, doi:
10.1109/COMST.2014.2326417.

[11] A. Mukherjee, R. A. Saeed, S. Dutta, and M. K. Naskar, “Fault tracking
framework for software-defined networking (SDN),” Resource
Allocation in Next-Generation Broadband Wireless Access Networks,
pp. 247–272, Feb. 2017, doi: 10.4018/978-1-5225-2023-8.CH011.

[12] S. Jamali, A. Badirzadeh, and M. S. Siapoush, “On the use of the genetic
programming for balanced load distribution in software-defined
networks,” Digital Communications and Networks, vol. 5, no. 4, pp.
288–296, Nov. 2019, doi: 10.1016/J.DCAN.2019.10.002.

[13] [13] R. Ahmed, E. Alfaki, and M. Nawari, “Fast failure detection and
recovery mechanism for dynamic networks using software-defined
networking,” Proceedings of 2016 Conference of Basic Sciences and
Engineering Studies, SGCAC 2016, pp. 167–170, Apr. 2016, doi:
10.1109/SGCAC.2016.7458023.

[14] E. Molina, E. Jacob, J. Matias, N. Moreira, and A. Astarloa, “Using
Software Defined Networking to manage and control IEC 61850-based
systems,” Computers & Electrical Engineering, vol. 43, pp. 142–154,
Apr. 2015, doi: 10.1016/J.COMPELECENG.2014.10.016.

[15] K. Halba, C. Mahmoudi, and E. Griffor, “Robust safety for autonomous
vehicles through reconfigurable networking,” Electronic Proceedings in
Theoretical Computer Science, EPTCS, vol. 269, pp. 48–58, Apr. 2018,
doi: 10.4204/EPTCS.269.5.

[16] M. B. Lehocine and M. Batouche, “Flexibility of managing VLAN
filtering and segmentation in SDN networks,” 2017 International
Symposium on Networks, Computers and Communications, ISNCC
2017, Oct. 2017, doi: 10.1109/ISNCC.2017.8071999.

[17] P. Göransson, C. Black, and T. Culver, “The OpenFlow Specification,”
Software Defined Networks, pp. 89–136, Jan. 2017, doi: 10.1016/B978-
0-12-804555-8.00005-3.

[18] G. Pujolle, “Software Networks: Virtualization, SDN, 5G, and
Security,” Wiley eBooks, 2020.
https://ieeexplore.ieee.org/book/9116614 (accessed Oct. 03, 2022).

[19] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“Enabling fast failure recovery in OpenFlow networks,” pp. 164–171,
Dec. 2011, doi: 10.1109/DRCN.2011.6076899.

[20] D. Staessens, S. Sharma, D. Colle, M. Pickavet, and P. Demeester,
“Software defined networking: Meeting carrier grade requirements,”
IEEE Workshop on Local and Metropolitan Area Networks, 2011, doi:
10.1109/LANMAN.2011.6076935.

[21] M. Pundir and J. K. Sandhu, “A Systematic Review of Quality of
Service in Wireless Sensor Networks using Machine Learning: Recent
Trend and Future Vision,” Journal of Network and Computer
Applications, vol. 188, p. 103084, Aug. 2021, doi:
10.1016/J.JNCA.2021.103084.

