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Abstract—Text-image mapping is of great interest to the
scientific community, especially for educational purposes. It helps
young learners, mainly those with learning difficulties, to better
understand the content of stories. In this paper, we propose to
capture the teacher’s experience in manually building relevant
scenes for animal behavior stories. This manual work, which
consists of a pair of texts and a set of elementary images, is
fed into a Long Short-Term Memory (LSTM) followed by a
Conditional Random Field (CRF) that aims to associate the
relevant words in the text with their corresponding elementary
image while preserving the drawing properties. This association is
then used for scene construction. Several experiments were con-
ducted to show how better the constructed scenes convey textual
information than the scenes constructed from the competitor’s
models.

Keywords—Text to image conversion; elementary image; image
composition; deep-learning; drawing properties

I. INTRODUCTION

The use of simple illustrative approaches by instructors to
facilitate and make new concepts easier to comprehend dates
back to when kids first start school. For example, they have
used pins to stick the images on woody boards to explain
actions, verbs or any other pedagogical purpose. A set of
elementary images (EI)s such as a boy, a ball, a tree, to name
but a few, were carefully preserved in the drawers and reused
to compose new images or scenes as needed. Consequently,
the main goal of this research is to replicate EI composition.

Text to image mapping has witnessed a great interest for the
scientific community, in particular for the educational purposes
and early learners, especially those who have reading disabil-
ities. Many multimedia systems proposed to visually explain
topics, news streams or stories by annotating news articles with
pictures [1], enriching textual content [2], [3] or composing
scenes [4]. Nevertheless, there are some common limitations in
the existing systems which have not been properly addressed:

e  Several existing multimedia systems can retrieve pic-
tures automatically from the image search engine
and generate illustrations [5], [6], [7], [8]. However,
manual work is required to filter out inappropriate
pictures, which reveals the excessive manual efforts
behind these systems as indicated in [4].

e  Multimedia systems for illustrating Arabic text are
very limited, which reflects the current technical dif-
ficulties in understanding Arabic text.

e  Many pictures are available on the web, but they luck
textual descriptions or captions to be included in a
relevant image search.

e  Most of existing multimedia systems can illustrate text
based on retrieved images. However, none of them, to
our best knowledge, considers extracting elementary
objects from retrieved images and using them for
composing new pictures from scratch.

Although the use of a multimedia repository (MR) is one
of the most common approaches to building scenes from sen-
tences, obtaining the appropriate images from this repository to
construct scenes is far from being an easy task. In some cases,
we may not even be able to find accurate images that match
the input sentence. However, the MR may contain EI images
whose assembly may perfectly match the input sentence. The
main objective of our work is then to propose a model that
builds scenes with Els while preserving the relevant implicit
or explicit information contained in the sentence.

To achieve this, we implemented a model based on Recur-
rent Neural Networks (RNN) coupled with the Conditional
Random Field (CRF) model to first identify in the input
sentence words that correspond to Els and secondly, predicting
the dimensions and positions of these Els in a such a way that
the information contained in the input sentence is preserved.
The ElIs names and their respective dimensions and positions,
which are represented in matrix form, will be transmitted to
a system that will be responsible for building the scene. We
implement our model and building system with python because
it contains very advanced machine learning libraries such as
Keras and TensorFlow. The sentences we are addressing are
those relating to animal behavior.

The remainder of the paper is organized as follows. We first
provide a literature review in Section II and then elaborate on
our proposed method in Section III. We present experimental
results in Section IV and evaluation in Section VI. Finally, we
conclude this paper and discuss future directions in Section
VII.

II. RELATED WORK

Generating images from text (T2I), is an area of grow-
ing interest in computer science. Indeed, many approaches
have been proposed, inspired by the way the human brain
proceeds when trying to understand simple to more complex
sentences. Based on his cognitive memory (human being),
the comprehension of a simple text can be done by associ-
ating with each word of a text an image [9]. This process
of understanding a text from an image has given rise to
several approaches, which consist in generating scenes (set
of images) from elementary annotated images. For instance,
Coyne and Sproat [10], generate scenes from the WordsEye
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image database by retrieving the images whose annotations
match the words of the sentences. Rather than relying on all
the words in the sentence to construct the scenes, Zhu et al.
[11], proposed another approach that consists of identifying
the most relevant concepts in the sentence and constructing
the scene by merging the pictorial representations of these
concepts. As the position of the elementary images may play
a salient role in adequately conveying the meaning of the
sentence, Yamada et al. [12], proposed a geometric model
where the scenes are built considering the spatial constraints of
the object described in the text. While these aforementioned
approaches work well in practice for simple sentences, they
quickly find their limit with complex ones. Indeed, their image
database is not exhaustive, i.e. some words do not have their
corresponding images. Moreover, even if one assumes to have
an exhaustive image database, some abstract words like “lying,
politics” cannot be represented by an image. To overcome
this limitation, Rada et al. [13], implemented a system that
generates scenes from complex sentences by coupling text
and images to overcome this limitation. Although this last
approach attempts to solve the abstract word problem, it is
also limited by its exhaustive image database. It should be
mentioned that all the approaches mentioned so far do not deal
with spatial constraint and abstract word issues simultaneously.
Moreover, the goal of T2I systems is to generate realistic
scenes with exclusively images (which can be difficult when
the embedded images have different backgrounds). In order to
propose a model that addresses these issues simultaneously,
the researchers turned to a deep learning model called GAN,
proposed by Goodfellow et al. [14].

Originally proposed to generate realistic images by learning
pixel distribution from a train image dataset, GAN is made
up of two adversarial neural networks: a generator G and a
discriminator D. G is trained to generate images by learning
the distribution of real images and fooling the discriminator,
in contrast D is trained to identify which images are generated
or real. The spectacular results, obtained with GAN, have
generated enormous enthusiasm in the creation of models
derived from the latter. Thus, in order to improve the MNIST
digit generation, Mirza et al. [15], proposed a conditional GAN
(cGAN) where the generator and discriminator are conditioned
by a class label y. Inspired by this approach for the T2I task,
rather than conditioning the generation process by a y-class
label, Reed et al. [16], proposed to condition it by the whole
sentence embedding obtained from a pre-trained text encoder.
Compared to [16] where the generated images had a resolution
of 64 x 64, the authors in [17], proposed a Tac-gan-text
conditioned auxiliary classifier generative adversarial network
(TAC-GAN) capable of generating a higher resolution image
i.e. 128 x 128. In order to improve image resolution, another
paradigm based on generators and discriminators stacking has
emerged. Zhang and al. in [18], proposed a model called
StackGAN composed of two generative stages. The first stage
is dedicated to the generation of a coarse 64x64 pixel image
given a random noise vector and textual conditioning vector,
while the second produces an image of 256 x 256. An improved
version of [18], composed of three stacked generators and
discriminators, was proposed in [19]. To avoid stacking several
pairs of discriminators and generators layers, other approaches
like [20] [21] proposed to reduce the number of generator
and increase the number of discriminator (or vice versa). As
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with these stacked listed generative models, a generated image
is dependent on a previous one (except for the initial), the
poor quality of the latter can lead to an inaccurate generated
image. Therefore, to prevent this from happening, the authors
proposed Dynamic Memory Generating Adversarial Networks
(DM-GANSs) in which a dynamic memory unit is designed to
select important textual information based on the content of
the initial generated image and then use it to generate the next
image. In addition to the features extracted from the generated
image, the authors in [22], integrated also aspect-level features
(processed from the input text) to update and enhance word-
level feature in order to refine the next image.

By making the assumption that an image generated from
text should be based on the relevant words in addition to
the whole sentence (attention), Xu et al. in [23], built a fine-
grained text to image generation with Attentional Generative
Adversarial Networks (AttnGAN). Huang et al. [24], proposed
a grid-based attention model that involves applying an attention
mechanism between object-grid regions and word phrases.
Similar to our work, part-of-speech tagging is applied to extract
word features. Other models applying attention in different
fashion like [25], [26], [27], [28] were also proposed.

Initially proposed to solve signature and face verifica-
tion problems, Siamese networks designed with two branches
(split-parameter neural networks) processing a pair of inputs
have been also repurposed for the T2I task in [29], [26]. In
both, each branch takes as input a text (caption) and generates
an image. However, if in [29] the objective loss function is
employed to minimize / maximize the distance between the
features extracted in each branch to learn a semantically mean-
ingful representation, depending on whether the two captions
are from the same ground truth image (intra-class pair) or not
(inter-class pair) in [26], the objective loss function aims to
minimize the feature distance between generated image and
corresponding ground truth image while maximizing the dis-
tance to another real image associated with a different caption.
In [30], the authors proposed a model derived from Siamese
networks called Text-SeGAN in which negative sampling of
image pairs is carried out with several strategies so that the
model is able to detect the most subtle differences between two
images and therefore improve the generation process. Another
T2I approach, called cycle-consistent image generation by re-
description architectures inspired by CycleGAN [31], was also
implemented in [32], [33]. The principle of this approach is
to learn a semantically consistent representation between text
and image by appending a captioning network and train the
network to produce a semantically similar caption from the
generated image.

Unlike the CycleGAN derived models where the image
generation process is conditioned by some inputs, uncon-
ditional generative models [34], [35], [36] were built upon
unconditional image generation models [37], [38] for T2I pur-
pose. For example, in [35], the authors proposed a model called
textStyleGAN in which the text is previously passed through
a pre-trained image-to-text matching network to compute the
embedded representation of the whole text as well as the words
of this last. These embedded representations are combined
with noise and fed into textStyleGAN to generate an image.
Instead of only generating images from texts, other approaches
have added additional supervision tricks. For example, to

www.ijacsa.thesai.org

895 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

generate complex images (images with several objects also
called scenes) from Microsoft Common Objects in Context
(MS COCO), Sharma et al. proposed ChatPainter [39] where,
in addition to scene captions, they also rely on dialogues (pairs
of question-answers) describing the scenes. Other works, in
[40], [41], [42], were also relying on dialogue approach. The
authors, in [43], [44], used multiple captions to iteratively
improve the image quality.

Although GAN models are tending to democratize to the
detriment of classical approaches (due to their much higher
performance requiring less and less human intervention), the
generation of complex images remains a challenge. In order
to overcome this challenge, we proposed a model based on a
combination of the classical approach, probabilistic graphical
model and deep learning models. Each of these approaches
contributes as follows:

e  The classic approach consists of using annotated im-
ages from a Multimedia Repository (MR).

e Deep learning is to explore the sequential pattern
while encoding each word in the text.

e  And probabilistic graphical model to match the latent
word representation emitted by the deep learning
model to their corresponding part-of-speech tag;

The novelty of our proposal which, is the introduction
of new types of part-of-speech tags that describe the action
performed by a specific object and define the coordinates of
the latter in the scene. This part-of-speech tagging step of
associating each word of the text with a tag based on the
action, position and dimension of the object in the scene is
the basis of our system.

III. OUR APPROACH: SCENE BUILDER BASED ON
ELEMENTARY IMAGES

As depicted in Fig. 1, there are three phases in our builder
system. In phase 1, we need to prepare the dataset as an input
for the tag matching phase. In phase 2, the model performing
the tag matching stage, is fed with the word-tokens of the
sentences (stories) and their corresponding tags (object names,
positions and sizes) processed in phase 1. Finally, in phase 3,
a scene builder is implemented to build the scenes from the
input sentences, based on the tag matrices obtained in the tag
matching stage.

A. Phase 1: Learning Dataset Preparation

We have developed a graphical tool that allows an instruc-
tor to write a story’s text and manually draws its related scene
by inserting Elementary images (E1s) in a graphical drawing
area. Based on his expertise, the instructor selects the most
relevant images and arranges them in the graphical area to fit
the story’s meaning. We consider that this expertise is the key
point on which we based our approach. Hence, we collect all
instructor actions, namely the selected images, their positions
and sizes, and we save them in a database. While choosing an
image from the toolbox, the user selects its related textual parts
in the story. This is considered as an implicit image annotation
that serves later to map a text into an image. In the following,
we give more details about the tools and the E[s repository
already prepared in [45].
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Fig. 1. System architecture.

1) Elementary Images Repository: An initial Els repository
was constructed in [45]. It contains around 1540 Els collected
from Google image and ImageNet. The EIs were obtained
by following a particular process. In fact, based on existing
online libraries such as Google Images, ImageNet, etc., a set
of images were collected and stored in a local folder. For each
image, the model Mask R-CNN [46] object extraction tool
was applied in order to obtain Els with some of their drawing
properties. Subsequently, an image captioning process was ap-
plied on extracted elementary objects in order to automatically
assign a caption for each one of them.

2) The Tool: In our Image Story Generator tool, image
composing is designed in two ways: manual image composing
and automatic image composing. In our current tool ver-
sion, we compose new images or pictures manually, allowing
thereby flexible working with the tool. We briefly describe how
a user composes new images using our tool. First, a user input
keywords in an input field on the top of the tool main interface
and hits enter. Note, we use single keyword only at this current
version. The retrieved E1s from EMR are displayed in a panel
on the Graphical Toolbox on the left side of the main interface,
as indicated in Fig. 2. The user or the teacher can drag and
drop the main interface, locate images and resize them, thereby
composing a new scene describing the input sentence. The
teacher can successively search for other E1s doing same steps
as described. Thus, the teacher can show the final illustration
to the students. The newly created image is stored locally.
Therefore, the system extracts the image sizes, positions, etc.
This information is saved as drawing properties and will be
further used for generating new pictures/images dynamically.

3) Input preparation for the tag matching stage: In this
phase, we arrange the database content to fit the deep learning
model dedicated to the tag matching stage.

Once getting a manually satisfactory scene, i.e., arranging
the Els and setting their sizes, positions as it should be,
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the prepared image is saved. More specifically, the metadata
related to this composite image such as the names of Els,
their respective position and dimension, within the global one
image, their links to some parts of the initial text are saved as
well.

The saved file will act as our data set. It will then be
processed by a deep learning model so that from a sentence
t =[to t1 --- t,_1] where t, is the token code for the nt"
word in t, a corresponding matrix tag M,, ,,, is generated. n
is the number of words in the sentence t and m is the number
of tag types. Hence, the matrix is defined by eq. 1:

to 0,0 Jo,1 Y0,m—1
M= | I z O
tne1 |Un-1,0 Un-11 Un—1,m—1

Yn,m 1s the tag m associated with the sentence’s word at
position n. For our study, m is equal to 3 since we attempt
to generate the word type (whether it is an object or not),
it’s size, and it’s position. Note that, we used the Beginning,
Inside, Outside (B-I-O) notation, for the tag’s representation
with reference to the “Named Entity Recognition” (NER)
information extraction technique [47]. This technique allows
capturing the action performed by an object (if animal type) in
the sentence. For each word in a sentence, we associate a three
tags vector. The first value of this tag vector is an image tag
that determines whether the image is an object and identifies
which word describes the action performed by the object. The
second one is the position tag, which determines the position
in which the FI will be placed. The third one, which is the
size tag, determines the size that the E'I will have within the
scene. The Table I illustrates an example of a phrase and its
different tags. It is worth mentioning that the Inside notation
is only applied to image tag generation because we want to
identify the action performed by an animal-type EI. Which is
not a necessity for position and size tags, which are spatial
tags.

e  The values of the “Image Tag” column allows identify-
ing the names of the Els in the sentence as well as the
actions they perform (if any). The names and actions
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TABLE I. A SENTENCE WITH THREE TAGS

Sentence | Image Tag | Position Tag | Size Tag
A o’ O’ O’
lion ’B-object” | 'B-w1Lh2B’ ’B-large’
lying "I-object’ o’ o’
in o’ O’ O’
the o o o
savannah | ’B-object’ | 'B-wORhOB’ | ’B-entire’
observes o’ O’ o’
a o o’ o’
gazelle ’B-object” | 'B-w1Rh1B’ | *B-middle’
o’ O’ O’

of these objects will make it possible to construct the
path to retrieve the appropriate EI. If we take for
example the sentence of Table I, the paths obtained
will be: .../lying/lion; .../savannah; .../gazelle. So the
E1s that will constitute the scene will be a lying lion,
a gazelle and the savannah. The savannah object like
other objects such as the street, the river etc. present
in our sentences are background objects. They are
associated with the size tag “B-entire”.

e  The “Position Tag” column allows defining the posi-

tion of E1s in the scene. Rather than considering the
exact positions in pixel, we have considered regions
landmark. In fact, the entire image is discretized or
split in n X p parts (where n and p are positive
numbers). Suppose that the image dimension is w X h
(where w represents its width and £ its height respec-
tively in pixels). The scene (i.e. the entire image) is
discretized in ¥ = wy +wz+ws+- - -+wy, width parts
and % = hi1+ho+hs+---+h, length parts. Based on
that, each E1 is associated with a position tag of type
B — w,Hh,V. Hence, w, indicates that the image
should be positioned from the %" width part of the
scene, starting in a H direction where H € {L, R} (L
for left, R for right) and h, to indicate to the system
that the image should be positioned from the 3" part
in the height of the scene, starting in a direction V'
where V' € {T, B} (T for top, B for bottom).
In the example shown in Fig. 3, the image is divided
in n = 6 width parts and p = 5 height parts. In this
scene we have three EI which are: the lion, the gazelle
and the savannah in the background. To each of these
images, the following position tags are respectively
assigned to them: B — wyLhoB, B — wiRh1B, B —
woLhoB .

e  The values of the “Size Tag” column allows defining
the size of the Els within the scene. In this column, we
have 4 different tags. Each one of them is associated
with a predefined width and height.

The next step is the learning model preparation.

B. Phase 2: Tag Matching

The tag matching stage involves associating a triplet of
tags with each word of the sentence. Due to their ability
of data extraction and high accuracy in classification and
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Fig. 3. Discretized image

prediction tasks [48], [49], we used stacked deep learning
models (Embedding, Bi-LSTM and Dense layers) to perform
the data extraction in the tag matching stage. Technically, we
subsequently pass our sentence input through an Embedding
layers, then into a Bi-LSTM layer and finally into a Dense
layer wrapped by a TimeDistributed layer. Their respective
roles are as follows:

e Embedding layer: it aims to associate with each word
of the sentence, a vector of real numbers encoding
the semantics of the latter and its relationship with
the other words.

e Bi-LSTM: it re-encodes vectors outputted from the
Embedding layer to another vectors of real numbers
for which the encoding process leverage on the se-
quential pattern existing in the input text.

e Dense layer: It extracts the information contained in
the vectors obtained from the Bi-LSTM layer. It is
wrapped by a TimeDistributed because a simple Dense
layer can only be fed by a single vector. In our case,
we have as many vectors as there are words in the
sentence, that is why we used a TimeDistributed layer.

As CRF [50] has achieved leading results in speech part
tagging, we appended it to our model for the tag matching
stage. Technically, the output of the Dense layer is passed
through three different CRF layers where, each one is ded-
icated to matching image, position, and size tags. The whole
architecture of the tag matching stage is depicted in Fig. 4.

These steps will be repeated during the training phase in
order to define the optimal parameters of the model. The loss
function for parameter optimization is defined as follows:

loss = 105Simage + 108Sposition + 10SSsize 2)
lossiag = —(In(p(y[t) s + In(p(y[t)s) 3)
eSy:t)
p(ylt) = ey €070 “)
N-1 N-1
S(y.t) = Z Ayi1yi+1 + Z Piy, &)
i=0 i=1
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Where tag € {image, position, size}, t the input sentence
vector, and y the corresponding tag vector. f stands for
forward-pass and b for backward-pass in the Bi-LSTM layer. S
is the cross-score function between words in t and tags iny. A
is a matrix where coefficients are the transition score from ;
to y;4+1. P is a matrix whose coefficients are the scores of the
pairs (¢;, y;). Once the matrix is generated, a mapping between
its values and all the E1S to build our scenes is performed.
In the next subsection, we formally describe how scenes are
constructed.

C. Phase 3: Scene Construction

In phase 3, the scene constructor system is ready to map
a new story to a scene by mapping the words of the input
sentence which their corresponding images base on the tags in
M. It is formally described as follows:

J(t,M,Els) =S (6)

Where § represents the scene built from the sentence t.
The first objective of the function f, is to map each word
(if they are objects), to their corresponding elementary image
EI € EIs. Second, each EI will be positioned in the
scene respecting its generated size and position. The Pseudo-
Algorithm 1 presents the mains steps for Scene Constructor.

Algorithm 1 Scene Constructor f

Require: M, t, Els
Ensure: S

1: S« init(Matrix) > We initialize the scene, i.e. we
create an image with only white pixels.

2: Tags + getTags(M) > Tags, is a
matrix where each row ¢ represents the path (Tags|[¢, 0]),
the position (Tags|i, 1]) and size (Tags][i, 2]) of an object
in t. The path is processed based on the generated image
tags.

3: for i,tgs < enumerate(Tags) do

4: EI + getEI(tgs[0], Els)

5: if tgs[l] # "B — entire” then

6: Draw(S, EI, tgs[1], tgs[2]) > This
function draws EI in the scene according to their position
and their size.

7: else

8: k<«

9: end if

10: end for

11: EI < getEI(Tags[k,0], EIs) > After saving the index

1 associated with the object with B-integer as size tag, we
draw this object at the end to avoid overlapping other Els.
12: Draw(S, E1, Tags|k, 1], Tags[k, 2])
13: return S

IV. EXPERIMENTAL STUDY

In this section, we first present the dataset used to evaluate
our model and the hyperparameters retained after a grid
search. Second, we benchmark the model against state-of-
the-art competitors. For the implementation, we used Python
machine learning libraries: TensorFlow and Keras. NumPy,

www.ijacsa.thesai.org

898 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

Scene Drawing Tool

Setence

Save Els
Y
Save metadata Lza_mn
Encoding
\J
— i
Embeddig >
Bi-LSTM —

Vol. 14, No. 1, 2023

Multimedia Repository
—- Sky Savannah
Panther
‘ v l
CRF 90,0 Jo,1 Yo,m—1
(Image tag) :
In—1,0 Un—1,1 Un—1,m—1

CRF ¢

(Position tag)
Loss
CRF 4
(Size tag)
Yo,0 Yo Yo,m—1

v

Ground-truth

Yn—1.0 Yn—1,1 Yn—1,m—1

Fig. 4. Tags prediction model architecture: learning phase.

Pandas and Matplotlib were also used for the preprocessing
stage and the scene construction stage.

A. Dataset

The dataset we used (see Table II) consists of 210 sentences
that describe the behavior of 52 animals and their interactions
with 34 objects that are not animals (e.g. vegetables, wood,
etc.). We used 190 sentences for training (90%) and 21
sentences for testing (10%).The sentences are the same ones
we used to manually build scenes and record metadata in the
graphical tool. They are organized in such a way that the same
action can be associated with different Els of the animal type.
This allows the model to better understand that actions are
more related to words representing Els of animal type. Take
the example of the sentences “Lions eat meat” and “Cats eat
meat in front of the door”. These two sentences are similar.
Lions and cats, which are Els of animal type, perform the same
action: eating. Thus, the model will figure out that the action
of eating is more related to animal-type Els than to other Els
in the sentence.

B. Hyperparameters

After a grid search, the different hyperparameters of the
layers that make up our model were set as follows:

a) Embedding layer:
e  The number of distinct words in the corpus 166.

e The dimension of the vector space into which each
word initially encoded with the one-hot encoding
technique will be projected is set to 40.

e The fixed length of the input sentence is 100.

e The Boolean parameter that specifies whether the
token 0 is a padding token or not is set to T'rue. This
is because the input sentences are of different lengths.

b) BI-LSTM layer:

e The number of cells in each of our LSTM forward
and LSTM backward networks is 100.

e  The Boolean parameter allowing to indicate whether
the BI-LSTM network should return either a sequence
of token (in vector forms) or just one token is set to
True because, we need to match a tag for each word
in the input sentence.

e  The recurrent dropout, which is a regularization tech-
nique that prevents over-fitting [51], [52] is set to 0.7.
This means that the probability that a Bi-LSTM cell
is skipped during training is 0.7.
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TABLE II. TRAINING SET DESCRIPTION

| Total number of objects | Total number of distinct objects

Animal objects 258
Other objects 153
Total 411

c) Time Distributed:

e the TimeDistributed layer is a layer that wraps each
Bi-LSTM output in a Dense layer. The number of cells
in this Dense layer is set to 100. We used the Relu
activation function in this layer.

d) CRF:

e  The CRF parameter we set here is the number of tags
that could match for each EI in the input sentence.
Each EI can have 3 image tags which corresponds to
the number of units in the CRF layer dedicated to
the image tag; 54 position tags which corresponds to
the number of units in the CRF layer dedicated to
the position tag; 5 size tag which corresponds to the
number of units in the CRF layer dedicated to the size
tag.

For the training phase, we set the number of epochs to 300
and the batch size to 3. We used the gradient descent optimizer
[53], [54], to update the model weights.

In the next section, we present the results obtained, and the
metrics used to evaluate them.

C. Experimental Results

To evaluate the tag generation component, we considered
the Fl-score metric [55] computed from precision and recall.
They are defined as follows :

e  Precision: Designates the number of classes different
from the class “O” which are correctly predicted by
the system divided by the total number of positive
classes predicted by the system [55].

[true positives|

7
|true positives| + | false positives| M
e Recall: Designates the number of classes different
from the class “O” which are correctly predicted by
the system out of the total number of classes which

are not “O” [55].

[true positives|

®)

|true positives| + | false negatives|

e  The Fl-score: Designates the ratio of the product of
the recall by the precision on their sum [55].

PR
B32P+ R
Where § = 1 determines the balance coefficient between

precision and recall. The results, in Table III, summarize the
F1 score obtained for the image, position and size generation.

Fs = (1+ 8% ©9)

52
34
86

We can see that they are quite satisfactory. The lower F1
score obtained with the position tag generation component is
explained by its high number of tags, which makes it less
stable. On the other hand, due to their low number of tags,
the image and size tag components have higher F1 scores. We
hypothesize that the F1 score of the image tag component is
better than that of the size tag component (which has a similar
number of tags) due to the use of the Inside notation, which
reinforces the generation process.

The evaluation we performed with the F1 score just allowed
us to find the optimal hyperparameters for the generation of
the tag matrices. In the next section, we present the scenes
built from these tag matrices.

V. BUILDING SCENES

To build scenes, we will couple our tag prediction model to
our scene building tool. The latter will take as input a sentence
t; , its corresponding tag matrix (the one predicted by the
model) M; as well as all of our Els. For application, 21 test
sentences and their corresponding tag matrix are considered.
The results obtained are presented in Tables IV, V.

Among the 21 sentences, 18 images correctly reflect the
corresponding input texts. So we have a success rate of 18/21
or 85.7%. However, if our system succeeds in: placing EI in
positions that reflect the interactions between them; producing
very realistic scenes thanks to a position label class that
allows the entire background to be painted with an EI and;
clearly representing the action performed by the EI, errors and
anomalies are to be underlined. First, we can see in Table V
line 1, that the predicted tag matrix contains errors. The model
classifies the word “next” as an action performed by the object
“elephant”, which is inconsistent. Secondly, in Table V line 2,
we see that for the dimension tag, the class assigned to “fly”
is “B-entire” so the latter is considered as a background EI.
Therefore, since its dimension is smaller than the background,
it cannot cover it completely. In the opposite case (if it has
the same dimension as the background), it would make no
sense to have a “fly” as a background image. Although errors
are observed when predicting the tags, the model is still able
to provide images that are more or less correlated with the
sentences.

After evaluating our model with our corpus, we will eval-
uate it with another corpus and compare the results obtained
against those of state-of-the-art text-to-image systems and
models.

VI. EVALUATION OF THE MODEL AGAINST THE GOOGLE
IMAGE SEARCH ENGINE, THE MULTIMEDIA SYSTEM AND
A GAN MODEL

This approach, which consists of building scenes manually
rather than automatically from elementary images, has already
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TABLE III. F1 SCORE OF IMAGE, POSITION AND TAG GENERATION COMPONENT

Metric Image tag Position tag  Size tag  Average
Fl1-score(%) 78.2 60.2 70.9 69.77

TABLE IV. SENTENCES, THEIR TAG MATRIX AND CORRESPONDING SCENES

Sentences t; Tags Matrix M, Scene
o
A 0] (0] (0]
fish B —object B —small B —w3Lh2B
in (@] (0] (0]
the 0] (0] (0]
sea B — object B —entire B —w0LhOB
(@] (0] (0]
Horses B — object B — middle B — w2Lh3B
in (0] (@] (@)
the (0] (0] (0]
fence B — object B —entire B — w0OLhOB
(@) (@) (@]
Bears B — object B — middle B — w3LhlB
in (@) (@] (0]
the (0] (0] (0]
forest B — object B —entire B — w0OLhOB
(0] (0] (0]
o
100
200
300
400
A (@) (0] 0] 500 ® .
mouse B —object B —small B — w2Lh2B . ‘ . .
eat I — object (0] (0] 200 00 B0 500
nuts B — object B —small B — w3Lh2B
(0] (0] (0]

been proposed. [45]. In order to evaluate our model, we will
compare the results obtained by this multimedia system to see

whether automatic construction can be as efficient as manual
construction. In addition, we will also compare it to Google
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TABLE V. SENTENCES, THEIR TAG MATRIX AND RELATED SCENES, PART 2

Sentence t; Tag Matrix M; Scene
r A r 0] 0] @) 1
elephant B —object B —large B —w2Lh2B
lying I — object 0] 0]
next I — object 0] (0]
to 0] 0] (0]
a 0] 0] 0]
river B — object B —entire B —wOLROB
L J L 0] 0] (0] ]
o
100
200 -
300 4
400
A (0] (@] 0] w00 ]
frog B — object B —middle B —w2LhlB &F
observes (0] 0] 0] & 50 &0 a0
a (0] 0] 0]
fly B — object B —entire B —wlRh2B
. (0] 0] 0]
o
100 4
200 4
300 4
A 9, 9, 0 -
kangaroo B — object B — middle B — w3Lh2B 0 =0 0 i
Jjumping I — object 0] 0]
. 0] 0] 0]
A 0] 0] (@]
bear B —object B —large B —w3Lh2B
plunged I — object 0] O
in 0] 0] (@]
the 0] 0] 0]
river B — object B —entire B —w0OLhOB
0] 0] (@]

image and to the GAN model.

A. Corpus of Sentences

To evaluate our model, the chosen corpus of sentences will
be used to evaluate the multimedia system [45]. This choice is

simply justified by the fact that our model is an improvement
of the previous one. Instead of building the scenes manually,
as is the case in this multimedia system, we will build them
automatically. The number of sentences contained in this
corpus is 20. All relating to animal behavior. We will take
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8 for our evaluation. It should nevertheless be noted before
the evaluation that our model does not yet take into account
the cardinality of Els. For example, in the following sentences,
“two birds” and “three flowers”, the model cannot draw 2 birds
or 3 flowers.

B. Results

In this section, we present the different results provided by
the multimedia system, Google image, the GAN model and our
system. As far as the multimedia system and Google image are
concerned, we will simply retrieve the results from [45]. For
each sentence we associate its related image as provided by
each system. The results are depicted in Tables VI, VII, VIII,
IX and X.

Vol. 14, No. 1, 2023

For the comparison analysis, we consider three criteria.
The first one is Principal actors (PA). It allows evaluating to
what extent the objects present in the sentence are present in
the generated image. The second criterion, the event (EV),
consists in evaluating to what extent the event described in
the text is represented in the generated image. The third and
last criterion assess to what extent the spatial positions of the
objects and the temporal aspect (S & T) are respected. Each of
these evaluations will be out of five as indicated in the Table
XI. Thereafter, we will calculate an average specific to each
sentence for each model and for each model we will calculate
the average of each criterion obtained for all eight sentences.

We can see through the Table XI that our model outper-
forms both the Google Image system and the GAN model. The
latter is the worst one. However, still our previous multimedia
system [45] gives the best results since the construction of
the scenes is done manually. However, still the multimedia
system [45] gives the best results since the construction of the
scenes is done manually. However, our model can be used for
short texts that might be addressed to a large young learners
students.
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In this paper, we have discussed how we could capture
a user expertise to produce a new tool for automatic Stories
illustration. The requirement is an available set of elementary
images representing different types of objects that a user (or a
tutor) uses from a toolbox and draw a scene related to a given
story. The originality of our work is that we suggest capturing
the “know-how” of the tutor and make it transfer to a deep-
learning based model. The latter is coupled with a drawing
tool in order to build automatically stories illustration by
images compositions. We have conducted several experiments
to find the optimal values for the deep-learning model such
as: “Loss function”, “Batch size”, “Number of epochs”, etc.
In addition, comparisons with existing approaches that make
scene generation were also presented. Obviously, the quality
of the “manually” constructed scenes remains the best one,
nevertheless, our new approach gives very interesting results.

CONCLUSION

Even though we obtain satisfactory results, we agree that
our approach face some limitations. One of them is that the
Mask-CNN that we used to extract the Els is not trained in end-
to-end fashion. In our future work, we plan to train it in this
way so that the model becomes more accurate. As we noticed
in the results Subsection VI-B, in some cases the model fails to
construct the scene (empty background) as the appropriate EI
was not available on our Multimedia Repository. Therefore, we
also plan to diversify the sources of image databases so that the
MASK-CNN can extract more Els. Due to the complexity of
the sentences, we specifically focused our work on sentences
related to animal’s behaviors. We then plan to incrementally
integrate sentences related to other facts to make the model
more generic.

ACKNOWLEDGMENT

This work was funded by the University of Jeddah, Jeddah,
Saudi Arabia, under grant No. (UJ-22-DR-96). The authors,
therefore, acknowledge with thanks the University of Jeddah
for its technical and financial support.

REFERENCES

[11 F M.-N. A. Ramisa, F. Yan and K. Mikolajczyk, “Break-
ingnews:article annotation by image and text processing,” arXiv preprint
arXiv:1603.01354, 2016.

[2] R. Agrawal, S. Gollapudi, A. Kannan, and K. Kenthapadi, “Enriching
textbooks with images,” in Proceedings of the 20th ACM international

conference on Information and knowledge management. ACM, 2011,
pp. 1847-1856.

[3] A. Vatani, M. Taleby, and M. Rahimi, “An effective automatic image
annotation model via attention model and data equilibrium,” Interna-
tional Journal of Advanced Computer Science and Applications, vol. 9,
no. 3, 2018.

[4] R. Agrawal, S. Gollapudi, A. Kannan, and K. Kenthapadi, “Vishit:
A visualizer for hindi text,” Proceedings - 2014 4th International
Conference on Communication Systems and Network Technologies,
Bhopal, pp. 886-890, 2014.

[5] S. Aramini, E. Ardizzone, and G. Mazzola, “Automatic illustration
of short texts via web images,” in Proceedings of the 6th Interna-
tional Conference on Information Visualization Theory and Applications
(IVAPP-2015), 10-14 January 2015.

[6] D. Delgado, J. M. aes, and N. Correia, “Automated illustration of
news stories,” in Proceedings of the 2010 IEEE Fourth International
Conference on Semantic Computing, Pittsburgh, vol. I, 2010, pp. 1035-
1040.

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

Vol. 14, No. 1, 2023

A. B. Goldberg, J. Rosin, X. Zhu, and C. R. Dyer, “Toward text-
to-picture synthesis,” in NIPS 2009 Symposium on Assistive Machine
Learning for People with Disabilities, 2009.

H. Li, J. Tang, G. Li, and T.-S. Chua, “Word2image: Towards visual
interpretation of words,” in MM’08 - Proceedings of the 2008 ACM
International Conference on Multimedia, with co-located Symposium
and Workshops, Vancouver, 2008, pp. 813-816.

M. C. Potter, J. F. Kroll, B. Yachzel, E. Carpenter, and J. Sherman,
“Pictures in sentences: understanding without words.” Journal of Ex-
perimental Psychology: General, vol. 115, no. 3, p. 281, 1986.

C. Bob and R. Sproat, “Wordseye: an automatic text-to-scene conversion
system,” in Proceedings of the 28th annual conference on Computer
graphics and interactive techniques. ACM, 2001, pp. 487-496.

X. Zhu, A. B. Goldberg, M. Eldawy, C. R. Dyer, and B. Strock, “A text-
to-picture synthesis system for augmenting communication,” in AAAI,
vol. 7, 2007, pp. 1590-1595.

A. Yamada, T. Yamamoto, H. Ikeda, T. Nishida, and S. Doshita,
“Reconstructing spatial image from natural language texts,” in COLING
1992 Volume 4: The 14th International Conference on Computational
Linguistics, 1992.

R. Mihalcea and C. W. Leong, “Toward communicating simple sen-
tences using pictorial representations,” Machine translation, vol. 22,
no. 3, pp. 153-173, 2008.

1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial net-
works,” Communications of the ACM, vol. 63, no. 11, pp. 139-144,
2020.

M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee,
“Generative adversarial text to image synthesis,” arXiv preprint
arXiv:1605.05396, 2016.

A. Dash, J. C. B. Gamboa, S. Ahmed, M. Liwicki, and M. Z. Afzal,
“Tac-gan-text conditioned auxiliary classifier generative adversarial
network,” arXiv preprint arXiv:1703.06412, 2017.

H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N.
Metaxas, “Stackgan: Text to photo-realistic image synthesis with
stacked generative adversarial networks,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 5907-5915.

——, “Stackgan++: Realistic image synthesis with stacked generative
adversarial networks,” IEEE transactions on pattern analysis and ma-
chine intelligence, vol. 41, no. 8, pp. 1947-1962, 2018.

L. Gao, D. Chen, J. Song, X. Xu, D. Zhang, and H. T. Shen,
“Perceptual pyramid adversarial networks for text-to-image synthesis,”
in Proceedings of the AAAI conference on artificial intelligence, vol. 33,
2019, pp. 8312-8319.

Z. Zhang, Y. Xie, and L. Yang, “Photographic text-to-image synthesis
with a hierarchically-nested adversarial network,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018, pp.
6199-6208.

S. Ruan, Y. Zhang, K. Zhang, Y. Fan, F. Tang, Q. Liu, and E. Chen,
“Dae-gan: Dynamic aspect-aware gan for text-to-image synthesis,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 13960-13 969.

T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, and X. He,
“Attngan: Fine-grained text to image generation with attentional gener-
ative adversarial networks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 1316-1324.

W. Huang, R. Y. Da Xu, and I. Oppermann, “Realistic image gener-
ation using region-phrase attention,” in Asian Conference on Machine
Learning. PMLR, 2019, pp. 284-299.

B. Li, X. Qi, T. Lukasiewicz, and P. Torr, “Controllable text-to-
image generation,” Advances in Neural Information Processing Systems,
vol. 32, 2019.

H. Tan, X. Liu, X. Li, Y. Zhang, and B. Yin, “Semantics-enhanced
adversarial nets for text-to-image synthesis,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp.
10501-10510.

www.ijacsa.thesai.org

910 |Page



[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

(IJACSA) International Journal of Advanced Computer Science and Applications,

H. E. M. Shamardan, “All in focus image generation based on
new focusing measure operators,” International Journal of Advanced
Computer Science and Applications, vol. 7, no. 12, 2016. [Online].
Available: http://dx.doi.org/10.14569/IJACSA.2016.071217

S. M. and R. Aarthi, “Text to image gans with roberta and fine-grained
attention networks,” International Journal of Advanced Computer Sci-
ence and Applications, vol. 12, 01 2021.

G. Yin, B. Liu, L. Sheng, N. Yu, X. Wang, and J. Shao, “Semantics
disentangling for text-to-image generation,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2019, pp. 2327-2336.

M. Cha, Y. L. Gwon, and H. Kung, “Adversarial learning of semantic
relevance in text to image synthesis,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 33, 2019, pp. 3272-3279.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp.
2223-2232.

Q. Lao, M. Havaei, A. Pesaranghader, F. Dutil, L. D. Jorio, and
T. Fevens, “Dual adversarial inference for text-to-image synthesis,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 7567-7576.

T. Qiao, J. Zhang, D. Xu, and D. Tao, “Mirrorgan: Learning text-to-
image generation by redescription,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
1505-1514.

D. M. Souza, J. Wehrmann, and D. D. Ruiz, “Efficient neural architec-
ture for text-to-image synthesis,” in 2020 International Joint Conference
on Neural Networks (IJCNN). 1EEE, 2020, pp. 1-8.

D. Stap, M. Bleeker, S. Ibrahimi, and M. ter Hoeve, “Conditional image
generation and manipulation for user-specified content,” arXiv preprint
arXiv:2005.04909, 2020.

M. Yuan and Y. Peng, “Bridge-gan: Interpretable representation learning
for text-to-image synthesis,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 30, no. 11, pp. 4258-4268, 2019.

A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for
high fidelity natural image synthesis,” arXiv preprint arXiv:1809.11096,
2018.

T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
for generative adversarial networks,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 4401—
4410.

S. Sharma, D. Suhubdy, V. Michalski, S. E. Kahou, and Y. Bengio,
“Chatpainter: Improving text to image generation using dialogue,” arXiv
preprint arXiv:1802.08216, 2018.

T. Niu, F. Feng, L. Li, and X. Wang, “Image synthesis from locally
related texts,” in Proceedings of the 2020 International Conference on
Multimedia Retrieval, 2020, pp. 145-153.

S. Frolov, S. Jolly, J. Hees, and A. Dengel, “Leveraging visual question
answering to improve text-to-image synthesis,” in Proceedings of the

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Vol. 14, No. 1, 2023

Second Workshop on Beyond Vision and LANguage: inTEgrating Real-
world kNowledge (LANTERN), 2020, pp. 17-22.

S. A. J. Zaidi, A. Buriro, M. Riaz, A. Mahboob, and M. Riaz, “Im-
plementation and comparison of text-based image retrieval schemes,”
International Journal of Advanced Computer Science and Applications,
2019.

K. Joseph, A. Pal, S. Rajanala, and V. N. Balasubramanian, “C4synth:
Cross-caption cycle-consistent text-to-image synthesis,” in 2019 IEEE
Winter Conference on Applications of Computer Vision (WACV). 1EEE,
2019, pp. 358-366.

J. Cheng, F. Wu, Y. Tian, L. Wang, and D. Tao, “Rifegan: Rich
feature generation for text-to-image synthesis from prior knowledge,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 10911-10920.

S. Elloumi, J. M. AlJa’am, and J. Zakraoui, “Building multimedia
repository for composing images perspective,” SN Applied Sciences,
vol. 1, no. 9, p. 1116, 2019.

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961-2969.

V. Yadav and S. Bethard, “A survey on recent advances in
named entity recognition from deep learning models,” arXiv preprint
arXiv:1910.11470, 2019.

Y. Tang and A. Duan, “Using deep learning to predict the east asian
summer monsoon,” Environmental Research Letters, vol. 16, no. 12, p.
124006, 2021.

W. Zhang, S. Yan, J. Li, X. Tian, and T. Yoshida, “Credit risk prediction
of smes in supply chain finance by fusing demographic and behavioral
data,” Transportation Research Part E: Logistics and Transportation
Review, vol. 158, p. 102611, 2022.

J. Laerty, A. McCallum, and F. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” in
Proceedings of ICML, 2001.

T. Poggio, K. Kawaguchi, Q. Liao, B. Miranda, L. Rosasco, X. Boix,
J. Hidary, and H. Mhaskar, “Theory of deep learning iii: explaining the
non-overfitting puzzle,” arXiv preprint arXiv:1801.00173, 2017.

X. Sun, X. Ren, S. Ma, and H. Wang, “meprop: Sparsified back
propagation for accelerated deep learning with reduced overfitting,” in

Proceedings of the 34th International Conference on Machine Learning-
Volume 70. JMLR. org, 2017, pp. 3299-3308.

L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proceedings of COMPSTAT 2010.  Springer, 2010, pp.
177-186.

Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng,
“On optimization methods for deep learning,” in Proceedings of the
28th International Conference on International Conference on Machine
Learning. Omnipress, 2011, pp. 265-272.

L. Derczynski, “Complementarity, f-score, and nlp evaluation,” in Pro-

ceedings of the Tenth International Conference on Language Resources
and Evaluation (LREC’16), 2016, pp. 261-266.

www.ijacsa.thesai.org

911 |Page



