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Abstracts—Unsupervised Neural Machine Translation is a 

crucial machine translation method that can translate in the 

absence of a parallel corpus and opens up new avenues for 

intercultural dialogue. Existing unsupervised neural machine 

translation models still struggle to deal with intricate 

grammatical relationships and linguistic structures, which leads 

to less-than-ideal translation quality. This study combines the 

Transformer structure and syntactic knowledge to create a new 

unsupervised neural machine translation model, which enhances 

the performance of the existing model. The study creates a neural 

machine translation model based on the Transformer structure 

first, and then introduces sentence syntactic structure and 

various syntactic fusion techniques, also known as the 

Transformer combines grammatical knowledge. The results show 

that the Transformer combines grammatical knowledge paired 

with Bi-Long Short-Term Memory proposed in this research has 

better performance. The accuracy and F1 value of the combined 

model in the training dataset are as high as 0.97. In addition, the 

time of the model in real sentence translation is controlled within 

2s, and the translation accuracy is above 0.9. In conclusion, the 

unsupervised neural machine translation model proposed in this 

study has better performance, and its application to actual 

translation can achieve better translation results. 
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I. INTRODUCTION 

With the progress of globalization and the increasing 
frequency of information exchange, machine translation, is an 
important artificial intelligence technology, plays an important 
role in connecting different languages and cultures [1-2]. 
Machine Translation (MT) is the process of using computer 
software to convert text or speech from one natural language 
to another. MT, as a branch of computer-assisted translation, 
aims to achieve barrier-free language communication between 
people. Unsupervised Neural Machine Translation (UNMT) 
belongs to one kind of MT, and the use of UNMT model to 
carry out translation tasks can not only improve the translation 
speed and save the cost, but also be able to deal with multiple 
languages at the same time, which is an important value of 
language utilization. As a research direction that has been 
developing rapidly in recent years, the main purpose of 
UNMT is to provide the best solution to the problem in the 
field of unsupervised translation, and to provide the best 
solution to the problem. Its main purpose is to carry out 
automatic translation without parallel corpus, so as to improve 
the speed and accuracy of machine translation [3-4]. Currently, 

the traditional UNMT model is still facing a series of 
challenges, for example, in the environment without parallel 
corpus, UNMT is often difficult to obtain effective linguistic 
correspondences, thus affecting the quality and accuracy of 
translation [5]. Against this background, the emergence of the 
Transformer structure has revolutionized the field of machine 
translation, especially its demonstrated efficiency in 
sequence-to-sequence learning [6]. At the same time, how to 
better integrate grammatical knowledge into the UNMT model 
has become an urgent challenge. Based on the above problems 
and challenges, this study aims to deeply explore and propose 
a novel UNMT model, which not only incorporates the 
advantages of the Transformer structure, but also the 
theoretical features of grammatical knowledge. The newly 
constructed UNMT model aims to achieve higher translation 
quality and effect, and at the same time solve the technical and 
theoretical problems of the traditional UNMT model in 
machine translation, so as to provide certain technical 
reference value for the field of machine translation. 

In order to facilitate readers to better understand the 
content of the article and the framework of the article, this 
research divides the article into a total of six sections, which 
are the introduction, literature review, method design, result 
analysis, discussion and conclusion chapters. Section I mainly 
introduces the background of the study, the current status of 
the study, the research methodology, and the significance of 
the study. The literature review chapter mainly analyzes and 
summarizes the related studies of others so as to prove the 
novelty of this research which is mentioned in Section II. The 
research methodology in Section III mainly explains how to 
build the optimized UNMT model and introduces some related 
machine translation techniques. The result analysis section 
mainly tests the performance and practical application effect 
of the UNMT model, so as to prove the effectiveness of the 
model which is mentioned in Section IV. The discussion in 
Section V is mainly to further analyze and summarize the 
reasons for the better performance of the model according to 
the experimental results. The conclusion in Section VI is a 
concise summary of the whole paper. 

II. RELATED WORK 

UNMT is an approach to MT whose main feature is to 
translate without a parallel corpus. Currently, it has been 
optimised by a number of experts in combination with deep 
learning. In order to address the drawback that remotely 
supervised relation extraction is seriously affected by 
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mislabelling in practical applications, Xiao et al. proposed a 
Transformer module for remotely supervised relation 
extraction with multi-instance learning using a hybrid 
attention mechanism. On the remote supervised relation 
extraction task, experimental results demonstrated that the 
method developed by the research performed better than the 
state-of-the-art algorithms at the time [7]. The Transformer 
concept has additionally been used in the machining sector. 
The apriori knowledge of the target text could not be fully 
utilised by the conventional automatic speech mistake 
detection systems, according to Zhang et al. Therefore, Zhang 
et al. proposed to apply the Transformer model to it, and the 
results of this study showed that the method could obtain a 
relative improvement of 8.4% on the F-1 scoring metrics, 
which is advancing significance for the optimisation of 
automatic speech error detection methods [8]. Li et al. 
concluded that the existing anomaly detection methods in the 
power industry do not fully exploit the potential value of the 
data. Therefore, an anomaly detection model based on graph 
attention and Transformer was proposed. Li et al. designed 
experiments based on power data in a region of China [9]. Li 
et al. argued that current neural TTS models suffer from 
robustness problems thus leading to audio anomalies. In order 
to construct a Neural network (NN) model capable of 
synthesising both natural and stable audio, thus a Transformer 
based TTS model called RobuTrans was proposed in [10]. 
Through experiments, it was found that the model solves the 
robustness problem that exists in the TSS model. According to 
Xiao et al., the current entity and relation extraction suffers 
from noise labelling issues and is unable to recognise the 
relationship between relations and phrases. This led to the 
proposal of a hybrid depth NN model based on Transformer 
and other models. The outcomes of many experiments 
demonstrated that the model was superior at entity and 
relation extraction and could filter noisy words [11]. 

As a posteriori regularisation technique to direct the 
training efficiency of unsupervised MT models during 
repeated reverse translation, Ren et al. presented a 
phrase-based statistical MT model. This study jointly 
optimises the SMT and NMT models under a unified 
expectation maximisation framework and gradually improves 
the performance of both models during the iterative process. 
The results of the study show that the proposed scheme can 
achieve two advantages. Filtering the noise in the phrase table 
by SMT can promptly mitigate the negative impact of errors 
during iterative back translation. Meanwhile, NMT can make 
up for the inherent lack of fluency in SMT [12]. Li et al. 
utilised spatio-temporal maps obtained from videos and the 
spatial and temporal interactions of objects to facilitate 
potential spatial alignment and remove translation ambiguity 
in UNMT. The designed model employs multimodal 
backtranslation and feature pseudo-visual hubs, and learns a 
shared multilingual visual-semantic embedding space that 
fuses visual hub subtitles as additional weak supervision. The 
proposed model is validated on the VATEX Translation 2020 
and HowToWorld datasets for translation in sentences and 
words with good generalisation performance [13]. Sun et al. 
empirically investigated the performance of four different 
languages (French, German, Chinese, and Japanese) on the 
English UNMT model. In addition, a simple general method is 

proposed for improving the translation performance of these 
four language pairs. To address the shortcoming that different 
language pairs have significant delayed convergence in the 
denoising process, Sun H et al. proposed a pseudo-data based 
UNMT [14]. 

In summary, a number of scholars have carried out a series 
of studies on Transformer structure and UNMT model. 
Among them, the research on Transformer structure mainly 
focuses on the detection of various abnormal signals and data, 
while the research on UNMT model focuses on the 
optimisation of model translation effect. Based on the above 
background, this research innovatively fuses the Transformer 
structure with GK and uses the fused model in the field of 
UNMT, aiming at better extraction of English grammatical 
error features and detection of its incorrect grammar. 

III. UNMT MODEL CONSTRUCTION BASED ON GK 

IMPROVEMENT 

The emergence of neural MT models has led to the gradual 
replacement of end-to-end single MT, and the continuous 
optimisation of neural MT models has also made the 
translation effect of various small language translation models 
closer and closer to that of human translation. In this research, 
the traditional Long Short-Term Memory (LSTM) and the 
neural MT model under the Transformer structure are firstly 
introduced, and then it is optimised by combining with the GK 
(Grammatical Knowledge) structure, and a new UNMT model 
is proposed. 

A. Research on Neural MT Modelling Based on Transformer 

Structure 

With the continuous combination of deep learning and MT 
technology, the neural MT model has become the most 
mainstream intelligent translation model. The biggest 
advantage of Recurrent Neural Network (RNN) in English 
translation is its ability to remember the historical information 
of a sentence, to expand the individual words in a sentence in 
time steps, and to check its grammar [15]. RNN automatically 
corrects grammatical errors by transforming the input natural 
language text into the output of the RNN so that grammatical 
errors can be corrected automatically. The standard expression 
form of the RNN is shown in Eq. (1) and Eq. (2). 

 1t h h t h t hh W x U h b      (1) 

In Eq. (1), 
tx  denotes the input of the time step at 

moment t  and  1, 2,t m . 
th  denotes the implied state 

of the output of the time step at moment t . 
hW , 

hU , and 

hb  denote the relevant parameters of the output implied state, 

respectively. 
h , on the other hand, denotes the nonlinear 

activation function of the output implied state [16]. 

 t y y t yy W h b      (2) 

In Eq. (2), 
ty  denotes the output of the network at the 

moment t . 
yW  and 

yb  are the relevant parameters of the 

output state of the network, respectively. 
y  denotes the 
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nonlinear activation function of the network output. 
Researchers optimised the RNN and designed new loop units 
by adjusting the nonlinear activation function in the network. 
The common LSTM gradually gets new applications in MT 
problems. The unit structure of LSTM is shown in Fig. 1. 

tanh

tanh

tS

tC

tS

tf ti
to

tX

1tS 

1tC 

 

Fig. 1. LSTM cell structure diagram. 

In Fig. 1, the LSTM consists of three gate structures, and 
selectively receives information through memory units. Where 

tX  denotes the input data of the input layer at the moment t . 

tS  denotes the neuron state of the hidden layer at the moment 

t . tC  denotes the memory unit at the moment t . The three 

  in Fig. 1 indicate the three gate structures in LSTM from 

left to right. tf , ti , and to  indicate the parameters of the 

three gates, respectively [17]. 

1

f f

t x t s t ff W X W S b 
       (3) 

In Eq. (3), f

xW , f

sW  denotes the weight matrix, 
fb  

denotes the input gate bias vector.    denotes the input gate. 

tf  denotes the input gate parameters. 

1

i i

t x t s t ii W X W S b 
       (4) 

In Eq. (4), i

xW  and i

sW  denote the weight matrix, 
ib  

denotes the forgetting gate bias vector.    denotes the 

forgetting gate. 
1tS 
 denotes the neuron state at the moment 

of 1t  . 
ti  denotes the forgetting gate parameter. 

1

o o

t x t s t oo W X W S b 
       (5) 

In Eq. (5), o

xW , o

sW  denotes the weight matrix, 
ob  

denotes the output gate bias vector.   denotes the output 

gate. 
to  is the output gate parameter. 

 1tanh c c

t x t s t cc W X W S b       (6) 

In Eq. (6), 
tc  is the output of the memory cell obtained 

by the forgetting gate parameter 
ti  after the calculation of the 

tanh function. c

xW  and c

sW  denote the weight matrix. 
cb  

denotes the bias vector of the forgetting gate after the 
calculation of the tanh function. 

1t t t t tc i c f c      (7) 

In Eq. (7),  denotes the Hardamard product. 

 tanht t tS o c     (8) 

Eq. (8) is the equation for the neuron state of the hidden 
layer at moment t . 

Since both RNN and LSTM are prone to the problems of 
gradient vanishing and gradient explosion when performing 
parameter updates, the study builds a small language 
translation model by combining the Transformer structure. 
Transformer is an NN structure used for sequence-to-sequence 
learning, which is better able to deal with the problem of long 
text. The structure of Transformer is shown in Fig. 2. 
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Fig. 2. Structure of the transformer model. 
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Fig. 2 depicts the Transformer model’s structural layout. 
The operation flow of the encoder and decoder is shown in Eq. 
(9) and Eq. (10) [18]. 

 1 2, , , 1, 2, ,me e e encoder X X Xm (9) 

In Eq. (9), 
1 2, , , me e e  denotes a string of input text 

sequence.  1, 2, ,encoder X X Xm  denotes the encoder for 

encoding. 

 1 2 1, , , , 1, 2,t m tY decoder e e e Y Y Y  (10) 

In Eq. (10), 
tY  denotes the probability distribution vector 

of the decoded data, which is obtained by calculating the 

SoftMax function.  1 2 1, , , , 1, 2,m tdecoder e e e Y Y Y 
 

denotes the decoding operation on the probability distribution 
vector. 

B. Study of UNMT Modelling Incorporating the Transformer 

Structure and GK 

Since the traditional Transformer model tends to ignore the 
semantic information of the sentence in the translation process, 
which leads to the translation result deviating from the actual 
meaning, this study further proposes an optimized UNMT 

model based on the traditional Transformer structure 
combined with GK, notated as Transformer combines 
grammatical knowledge (TCGK). Traditional UNMT is an 
approach for training in MT tasks without using parallel 
corpus, i.e., corresponding sentence pairs between source and 
target languages. Fig. 3 depicts the UNMT model’s 
fundamental structure. 

Fig. 3 depicts the UNMT model’s overall structure. Two 
monolingual semantic repositories, a language modelling 
board, and a reverse translation board are the primary 
components of the UNMT architecture shown in Fig. 3 [19]. 
When the words in the two monolingual semantic repositories 
are input into the model, they first need to be initialised. In the 
initialisation process, the main purpose is to encode the words, 
phrases and words so that each word can be recognised by the 
UNMT model, thus achieving the purpose of training the 
model. After the initialisation process, language modelling is 
required. In the modelling process, the encoder-decoder 
structure is used for denoising and at the same time allowing 
the encoder to learn the semantic information of the 
monolingual data. The mathematical expression for language 
modelling is shown in Eq. (11). 

     min log logs s t tL E P x C x E P x C x 
      
   

(11) 

X monolingual corpus Y monolingual corpus
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Fig. 3. Unsupervised neural machine translation model structure. 
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In Eq. (11), 
minL  denotes the minimum loss in the 

modelling process. C  denotes the noise model. x  denotes 

the sentence in the X  monolingual semantic base. 
s sP

 

denotes the source-side encoder-decoder combination. 
t tP

 

denotes the target-side encoder-decoder combination. E  

denotes the energy consumption in the modelling process. The 
mathematical expression for reverse translation is shown in Eq. 
(12). 

     min log logs t t sL E P y u y E P x v x 
         
   

(12) 

In Eq. (12), 
minL  denotes the minimum loss in the reverse 

translation process. y  denotes a sentence in the Y  

monolingual semantic base.  u y  denotes translating the 

source language according to the target language.  v x  

denotes translating the target language according to the source 
language. 

s tP
 denotes the direction of translation from the 

target language to the source language. 
t sP

 denotes the 

direction of translation from the source language to the target 
language. 

In order to learn the translation relationships between the 
source and destination languages, neural MT models typically 
need a sizable parallel corpus for training that comprises 
corresponding sentence pairs between the two languages. 
However, UNMT does not rely on parallel corpus, but is 
trained by using monolingual corpus. The UNMT model is 
obtained by optimising the encoder-decoder structure, and the 
basic idea is to learn the correspondence between source and 
target languages through self-supervised learning of 
monolingual corpus, so as to achieve the MT task. This study 
takes GK and syntactic structure into account for the model’s 
optimisation on the basis of the conventional UNMT model in 
order to give the UNMT model a better translation effect that 
can accurately translate according to the syntactic structure 

and be close to the actual semantic environment. Firstly, the 
sentence syntactic structure is introduced, as shown in Fig. 4. 

Fig. 4 shows the syntactic tree structure diagram of the 
sentence. To translate a complete sentence according to the 
actual context and grammatical structure, it is necessary to 
split its sentence syntactic structure first [20]. In Fig. 4, it can 
be seen that a complete sentence is composed of sentences or 
phrases. For phrase structure, its extracted syntactic labels 
contain constituent categories and phrase structure information. 
The hierarchical output of the phrase structure syntax contains 
the information of the various categories of words and the 
attributes of the words. 

In order to allow unsupervised MTs to have a better 
knowledge of syntax, this research decided to use the results 
of the syntactic analysis to optimise the translation results of 
the model. After linearising these results and extracting their 
syntactic labels, and then combining them with the 
corresponding sentences, the combined data is used to train 
the source side of the denoising autoencoder. In this way, 
sentences and syntactic information can be jointly encoded 
into a new vector, thus creating a language model that 
incorporates syntactic information. The process of training the 
model with fused syntactic knowledge is shown in Fig. 5. 

A flowchart of the model training process incorporating 
syntactic knowledge is demonstrated in Fig. 5. In Fig. 5, the 
optimised model has adapted the inputs of the denoising 
autoencoder, and multiple encoders are used to process the 
monolingual corpus, lexicality, phrase structure, and 
dependency syntax, respectively. During training, the model 
absorbs lexical and syntactic information and optimises the 
shared encoder and decoder parameters to better capture the 
implicit syntactic information in sentences. When decoding, 
the model utilises semantic, lexical and syntactic information 
to assist in the predictive generation of target words. By 
incorporating lexical and syntactic knowledge, the challenge 
of not being able to explicitly learn syntax can be addressed 
and the accuracy of the translation can be improved. 
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Fig. 4. Sentence syntactic tree structure. 
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Fig. 5. Flow chart of model training incorporating syntactic knowledge. 

In addition to adopting the approach of fusing syntactic 
knowledge in Fig. 5, the study also uses Bi-Long Short-Term 
Memory (Bi-LSTM) in NN to extract vectors of features for 
syntactic analysis sequences and splice them with sentence 
vectors to obtain a vector containing semantic and syntactic 
information, and uses this vector to train TCGK, so as to 
improve the translation quality of the TCGK model. The flow 
chart of Bi-LSTM extraction of syntactic vectors is shown in 
Fig. 6. The flowchart of Bi-LSTM for extracting syntactic 
vectors is shown in Fig. 6. 

Word data
Syntactic 

information

Bi-LSTM

EmbeddingEmbedding

Position 
Embedding

Transformer 
layers

Decoder

Start

 

Fig. 6. Flow chart of sentence normal vector extraction under Bi-LSTM. 

As shown in Fig. 6, Bi-LSTM is used to extract syntactic 
vectors. In order to more closely combine monolingual 
sentences and explicit syntactic information, the syntactic tree 
sequence is first linearised. At the input of Transformer, this 
study combines sentence vectors with syntactic vectors 
processed through Bi-LSTM to form new fusion vectors. The 
syntactic features are first transformed into high-dimensional 
vectors through the word embedding layer of the NN and then 
spliced with the sentence vectors, and this resulting integrated 
feature vector does not involve modifying the syntactic 
content. Using this fused vector, the encoder-decoder starts 
iterative training and stops iterative training until the model 
has better translation results. 

IV. PERFORMANCE ANALYSIS OF UNMT MODELS USING 

TRANSFORMER STRUCTURE AND GK 

The result analysis section tested the performance of 
various types of translation models before testing the UNMT 
model created in the aforementioned study. This demonstrated 
that the translation performance of the model used in this 
study was superior through the indicators of detection 
accuracy, change of loss curves, and F1 value. In addition, the 
study further compares the translation effect of each 
translation model in practical applications. The results of the 
study found that the UNMT model combined with Bi-LSTM 
has higher translation accuracy and teacher-student 
satisfaction. 

A. Performance Analysis of Different Translation Models 

The News Crawl dataset was first chosen as the 
experimental dataset, and Newstest2020 and Newstest2021 
were chosen as the experimental training dataset and test 
dataset, respectively, to test the performance of the model 
under the Transformer structure. In Newstest2020 and 
Newstest2021, there were 5000 corpora each. The corpus for 
Newstest2020 and Newstest2021 is 5000. Table I displays the 
settings for the experimental model’s parameters. 

The basic network parameters in the Transformer model 
are given in Table I, including the number of its 
encoder-decoder layers, the number of layers of the 
multi-head attention mechanism, the dimensions of the word 
embedding and hidden layers, and the learning rate. The 
detailed composition of the Newstest2020 and Newstest2021 
experimental dataset information is shown in Table II. 

Table II shows the details of the Newstest2020 and 
Newstest2021 experimental datasets, describing the source of 
the datasets, the composition of the language pairs, the 
number of samples, and the purpose of the dataset usage, 
respectively. In addition to utilizing the Newstest2020 and 
Newstest2021 experimental datasets for testing, the study also 
selected some public language datasets for testing. In order to 
compare the performance of the two syntactic fusion methods 
in the model TCGK, this study notated the syntactic fusion 
approach in Fig. 5 as TCGK+Common coding, and the 
syntactic fusion approach in Fig. 6 as TCGK+Bi-LSTM, and 
introduced the traditional Transformer model as well as the 
LSTM model for the comparison of the model translation 
performance. The detection accuracy of the four models in 
different datasets is shown in Table III. 
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TABLE I. PARAMETER SETTING OF THE EXPERIMENTAL MODEL 

Transformer model parameters Parameter values 

Number of encoder and decoder layers 4 layers 

Number of layers of multi-head attention mechanism 8 layers 

Dimension of word embedding and hidden layers 1024 

Learning rate under Adam’s optimization method 0.001 

Batch Size 32 

Model regularization Dropout 0.1 

TABLE II. EXPERIMENTAL DATA SET INFORMATION TABLE 

Data set 

information 
Introduction 

Source 
It mainly contains news texts, which are sourced from 
various news websites and agencies. 

Language 

pair 

These two datasets cover multiple language pairs. For 
example, English to German, English to French, English to 

Chinese, etc. 

Sample size 
The number of corpus in Newstest2020 and Newstest2021 is 
5000. 

Aim 
Evaluate the translation performance of machine translation 

models. 

In Table III, a total of five public datasets, Newstest2020, 
Newstest2021, Para Crawl, Europarl, and Common Crawl, are 
selected for testing. Europarl dataset is a dataset based on the 
records of the European Parliament, covering 21 European 
languages. Common Crawl is a multilingual aligned dataset 
based on web crawling. Para Crawl is a multilingual parallel 
corpus for large-scale web crawling. As shown in Table III, 
the detection accuracies of LSTM in Newstest2020, 
Newstest2021, ParaCrawl, Europarl, and Common Crawl are 
0.78, 0.77, 0.71, 0.66, and 0.69, respectively. Transformer in 
Newstest2020, Newstest2021, ParaCrawl, Europarl, and 
Common Crawl with detection accuracies of 0.82, 0.83, 0.75, 
0.71, and 0.72, respectively. TCGK+Common coding in 
Newstest2020, Newstest2021, Para Crawl, Europarl, and 
Common Crawl were 0.88, 0.89, 0.86, 0.82, and 0.83, 
respectively. The detection accuracy of TCGK+Bi-LSTM in 
Newstest2020, Newstest2021, Para Crawl, Europarl, Common 
Crawl are 0.96, 0.97, 0.91, 0.92, and 0.93, respectively. 
Among them, the TCGK+Bi-LSTM model is able to achieve 
the highest detection accuracy in the datasets Newstest2020 
and Newstest2021. The translation performance of the four 
models will be further tested in combination with the datasets 
Newstest2020 and Newstest2021. 

In Fig. 7, the incorrect syntax detection accuracy values 
for the various translation models in the training dataset and 
test dataset are displayed. Fig. 7(a) and Fig. 7(b) among them 
illustrate the detection accuracy of the four translation models 
for the training dataset and the test dataset, respectively: 
LSTM, Transformer, TCGK+Common Coding, and 
TCGK+Bi-LSTM. The four translation models’ detection 
accuracies for faulty grammar samples exhibit an increasing 
trend as the number of detected samples rises, as shown in Fig. 
7(a) and Fig. 7(b). The four translation models, LSTM, 
Transformer, TCGK+Common coding, and TCGK+Bi-LSTM, 
each have detection accuracy scores in the training dataset that 
are 0.78, 0.82, 0.90, and 0.97, respectively. In the testing 
dataset, the highest detection accuracy values of the four 
translation models, LSTM, Transformer, TCGK+Common 
coding, and TCGK+Bi-LSTM, are 0.78, 0.82, 0.90, and 0.97, 
respectively. In the testing dataset, the highest detection 
accuracy values of the four translation models, LSTM, 
Transformer, TCGK+Common coding, and TCGK+Bi-LSTM, 
are 0.77, 0.81, 0.88, and 0.96, respectively. 

The graphs of the variation of loss values for different 
translation models are shown in Fig. 8. Among them, all the 
figures in Fig. 8 show the actual loss curves and the specific 
changes of the training loss curves of the four translation 
models, namely, LSTM, Transformer, TCGK+Common 
coding, and TCGK+Bi-LSTM, in the training process, 
respectively. Comparing the loss change curves of the four 
models, it can be found that compared to the other three 
models, the training loss curve and the actual loss curve of 
TCGK+Bi-LSTM basically overlap during the training 
process, so the stability of this model is better during the 
training process, and there will not be large data fluctuations. 

The variance of F1 values for various translation models in 
the training dataset and test dataset is depicted in Fig. 9. The 
study introduces F1 values for testing to better represent the 
detection performance of each model. The F1 values obtained 
by the four models in the training dataset and test dataset are 
displayed in Fig. 9(a) and Fig. 9(b), respectively. In Fig. 9(a), 
the highest F1 values of the four translation models, LSTM, 
Transformer, TCGK+Common coding, and TCGK+Bi-LSTM, 
are 0.76, 0.81, 0.90, and 0.97, respectively. In Fig. 9(b), the 
highest F1 values of the four translation models, LSTM, 
Transformer, TCGK+Common coding, and TCGK+Bi-LSTM, 
the highest F1 values of the four translation models are 0.75, 
0.80, 0.89, and 0.96, respectively. 

TABLE III. DETECTION ACCURACY OF FOUR MODELS IN DIFFERENT DATA SETS 

Model 
Data set type 

Newstest2020 Newstest2021 ParaCrawl Europarl Common Crawl 

LSTM 0.78 0.77 0.71 0.66 0.69 

Transformer 0.82 0.83 0.75 0.71 0.72 

TCGK+Common coding 0.88 0.89 0.86 0.82 0.83 

TCGK+Bi-LSTM 0.96 0.97 0.91 0.92 0.93 
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Fig. 7. Translation accuracy values for the different translation models. 
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Fig. 8. Loss values for the different translation models. 
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Fig. 9. Translation F1 values for the different translation models. 
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B. Analysis of the Effectiveness of the Application of Different 

Translation Models 

The results of the analysis of the above performance 
indicators show that TCGK+Bi-LSTM has better performance 
compared with the other three translation models. 
TCGK+Bi-LSTM not only has better error grammar 
recognition accuracy values and F1 values, the change of the 
loss curve of this network during training is also basically the 
same as the actual change. To test the effectiveness of the four 
models in real English sentence translation, the study 
randomly selected 10 English utterances from a high school 
English textbook for testing. The translation accuracy and 
translation time of the two optimised UNMT models in real 
translation are shown in Fig. 10. 

The translation accuracy and translation time of 
TCGK+Common coding and TCGK+Bi-LSTM in different 
English utterances are demonstrated in Fig. 10. Fig. 10(a) and 
(b) shows the translation accuracy and translation time of 
TCGK+Common coding and TCGK+Bi-LSTM, respectively. 
Comparing the translation effects of the two models in ten 
English utterances, it can be seen that the highest translation 
accuracies of TCGK+Common coding and TCGK+Bi-LSTM 
are 0.93 and 0.99, respectively. The shortest translation times 
of TCGK+Common coding and TCGK+Bi-LSTM take 3.2s 
and 0.5s, respectively. In addition, the translation accuracies 
of TCGK +Common coding model has a large change in the 
accuracy value during the translation process, and its 
translation elapsed time fluctuates more. Therefore, compared 
with TCGK +Common coding, TCGK +Bi-LSTM has better 
translation effect in practical applications. 
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Fig. 10. Translation accuracy and translation time of the two translation 

models in practice. 
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Fig. 11. Satisfaction of university teachers and students with the four 

translation models. 

Fig. 11 shows the satisfaction scores of university students 
and teachers for the four translation models in practical 
applications. As shown in Fig. 11, the satisfaction scores of 
university students for the four translation models LSTM, 
Transformer, TCGK+Common coding, and TCGK+Bi-LSTM 
are 77.6, 82.9, 90.0, and 96.5, respectively. The satisfaction 
scores of university teachers for the four translation models 
LSTM, Transformer, TCGK+Common coding, and 
TCGK+Bi-LSTM are 81.7, 84.8, 93.4, and 98.8, respectively. 
In conclusion, TCGK+Bi-LSTM not only have better 
translation performance in practical applications, but also have 
higher satisfaction of university teachers and students for this 
model. 

V. DISCUSSION 

In order to improve the accuracy and efficiency of 
machine translation, this research combines the fusion of 
Transformer structure and grammar knowledge to optimize 
the unsupervised neural machine translation model, and finally 
builds the TCGK+Bi-LSTM translation model. By comparing 
and analyzing the performance of various types of models as 
well as their practical application effects, the following 
discussion is derived from this research. 

From the experimental results of error syntax detection 
accuracy, it is obvious that the TCGK+Bi-LSTM model has 
better error syntax detection effect compared to LSTM, 
Transformer, and TCGK+Common coding. The 
TCGK+Bi-LSTM model outperforms the other three models 
in terms of test accuracy and F1 value in both the training 
dataset and the test dataset. The reason behind the high 
detection accuracy and F1 value of the TCGK+Bi-LSTM 
model is that the combination of the deep self-attention 
mechanism of the Transformer structure and the Bi-LSTM 
network enables the model to better capture long-distance 
dependencies and complex syntactic structures in sentences. In 
addition, the TCGK+Bi-LSTM model has a better loss profile 
compared to LSTM, Transformer, and TCGK+Common 
coding, which further illustrates that the Transformer structure 
and the Bi-LSTM network can improve the stability of the 
model during the training process, which enables the model to 
obtain more accurate test values. 
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In addition, although translation accuracy is the primary 
index of the machine translation task, fast translation speed is 
also very critical in practical applications. Especially in 
situations where a large number of translations are required, 
such as online services or real-time translation applications, 
efficient translation speed can greatly improve the user 
experience. The TCGK+Bi-LSTM model also has a 
significant advantage in translation time compared to the other 
three models. This is because the introduction of the 
Transformer structure and the Bi-LSTM network enables the 
model to process the information features faster, thus 
achieving fast translation. Finally, the TCGK+Bi-LSTM 
model was also able to achieve a high level of teacher and 
student satisfaction in real-world applications, thus proving 
the value of this technique in real-world applications. 

Although this study provides valuable insights into the 
performance of the proposed model in Chinese-English 
translation tasks, there are some limitations. First, the 
experiments were mainly conducted based on specific datasets 
and specific tasks, and the performance of the proposed model 
should be further validated on more datasets and multiple 
language pairs in the future. In addition, although this 
experiment examined the performance of several models, 
there are still more existing and emerging modeling 
approaches that deserve further exploration and comparison. 
Based on the current findings, future research can further 
examine the performance of the models on other language 
pairs or larger datasets. In addition, it can also explore how to 
further optimize the structure or parameters of the model to 
improve its performance in specific tasks or scenarios. In 
summary, this study provides valuable insights into 
unsupervised neural machine translation models that 
incorporate Transformer structural and syntactic knowledge, 
and provides useful directions for future research. 

VI. CONCLUSION 

This research utilizes the knowledge of Transformer 
structure and syntax to construct a new UNMT model that 
aims to improve the performance and translation accuracy of 
existing translation models. The results of the study show that 
the proposed TCGK+Bi-LSTM model model significantly 
outperforms the other three models in terms of detection 
accuracy and F1 value on both training and testing datasets. In 
addition, the TCGK+Bi-LSTM model exhibits higher 
translation accuracy and translation speed than the 
TCGK+Common Coding model in real translation tests 
involving English sentences. Finally, the TCGK+Bi-LSTM 
model gained high satisfaction among university teachers and 
students, further validating its effectiveness. Since this study 
mainly focused on the performance of the model in 
Chinese-English translation tasks, it does not have 
comprehensive coverage, and subsequent studies should 
further extend the scope of the study to examine the 
performance of the model on more language pairs. 
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