
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 3, 2023 

485 | P a g e  

www.ijacsa.thesai.org 

Image Denoising using Wavelet Cycle Spinning and 

Non-local Means Filter 

Giat Karyono
1
, Asmala Ahmad

2
, Siti Azirah Asmai

3
 

Faculty of Computer Science, Universitas Amikom Purwokerto, Purwokerto, Indonesia
1
 

Faculty of Information and Communications Technology, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia
2, 3

 

 

 
Abstract—Removing as much noise as possible in an image 

while preserving its fine details is a complex and challenging 

task. We propose a wavelet-based and non-local means (NLM) 

denoising method to overcome the problem. Two well-known 

wavelets: dual-tree complex wavelet transform (DT-CWT) and 

discrete wavelet transform (DWT), have been used to change the 

noise image into several wavelet coefficients sequentially. NLM 

filtering and universal hard thresholding with cycle spinning 

have been used for thresholding on its approximation and detail 

coefficients, respectively. The inverse two-dimensional DWT was 

applied to the modified wavelet coefficients to obtain the 

denoised image. We conducted experiments with twelve test 

images on the set12 data set, adding the additive Gaussian white 

noise with variances of 10 to 90 in increments of 10. Three 

evaluation metrics, such as peak signal noise to rate (PSNR), 

structural similarity index metric (SSIM), and mean square 

error (MSE), have been used to evaluate the effectiveness of the 

proposed denoising method. From these measurement results, 

the proposed denoising method outperforms DT-CWT, DWT, 

and NLM almost in all noise levels except for the noise level of 10. 

At that noise level, the proposed denoising method is lower than 

NLM but better than DT-CWT and DWT. 

Keywords—Image denoising; discrete wavelet transform 

(DWT); dual-tree complex wavelet transform (DT-CWT); non-local 

means (NLM); cycle spinning 

I. INTRODUCTION 

The emergence of noise in digital images is possible during 
image acquisition, transmission, and processing steps [1]. The 
additive Gaussian noise is the type of noise most often found 
[2]. Hence, suppressing this noise type from digital images is 
necessary before further processing like texture analysis, 
feature extraction, and segmentation [3]. Maintaining the 
essential features of the images, such as edges and textures, is 
one of the main issues faced during the denoising process [4]. 
However, since noise, texture, and edge are high-frequency 
components, it is arduous to distinguish them in the denoising 
process, and the denoised images could ineluctably lose some 
details [5]. 

Numerous denoising methods have been developed in the 
literature. Among such methods, wavelet transforms and non-
local means (NLM) filters are one of the suggested denoising 
methods [6]. In the wavelet transforms method, the noisy 
image is decomposed into the low- and high-frequency sub-
bands, followed by wavelet thresholding on these frequency 
sub-bands. The wavelet thresholding is quite effective applied 
to the high-frequency sub-bands but fails when applied to the 
low-frequency sub-band [7]. In most of them, discrete wavelet 

transform (DWT) was widely used, but it has three other main 
issues. These issues are lack of poor directionality, shift-
invariant, and aliasing [8]. Conversely, the non-local means 
filter is highly effective in retaining the proper morphology of 
the signal at low-frequency. At the same time, the NLM filter 
fails to properly denoise the high-frequency [7]. Another 
drawback is a very time-consuming process. 

The ill effects of noise can be reduced by addressing the 
shortcomings of both above-denoising methods. Motivated by 
this, a denoising method is proposed by utilizing the efficacy of 
both wavelet- and NLM-based methods. The NLM is more 
efficient in denoising the low-frequency content, and applying 
it in the wavelet domain can significantly decrease the 
processing time [9]. On the other hand, although DWT offers 
the advantages of smoothness and adaptation, as Coifman and 
Donoho [10] suggest, DWT exhibits visual artefacts known as 
Gibbs phenomena in the vicinity of discontinuities. To address 
this issue, the translation-invariant denoising method called 
cycle spinning is applied to remove such artefacts. Meanwhile, 
DT-CWT is a well-known method introduced to solve the main 
issues of DWT. Its implementation is to be combined with 
NLM can be found in [11] [12] [13]. Two well-known 
wavelets, i.e., DT-CWT and DWT with one-level 
decomposition, are applied sequentially. Only the low-
frequency sub-band is denoised utilizing the NLM filtering. 
Since the high-frequency sub-bands contain noises, those are 
denoised using hard thresholding with cycle spinning-based. 
The inverse DWT on the modified sub-bands are used to 
reconstruct the image. 

The main contributions of the proposed denoising method 
are summarized below: 

1) The proposed denoising method utilizes the advantages 

of the wavelet- and NLM-based methods for eliminating high-

frequency and low-frequency noises present in the noisy 

image, respectively. 

2) The main disadvantage of DWT, i.e., it does not 

effectively eliminate the low-frequency noise, lack of poor 

directionality, shift-invariant, and aliasing, is mainly resolved 

by NLM, cycle spinning, and DT-CWT. 

The fundamentals of the DWT, DT-CWT, wavelet 
thresholding, cycle spinning, and non-local means filter are 
summarized in the Section „„Theoretical Background‟‟, and the 
proposed denoising algorithm to suppress noise is explained in 
the Section „„The Proposed Method‟‟. In the Section 
„„Experimental Results‟‟, the performance of the proposed 
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denoising method is evaluated using test images simulated with 
additive white Gaussian noise. Section „„Conclusion‟‟ 
describes our conclusions. 

II. THEORETICAL BACKGROUND 

Discrete Wavelet Transform 

In general, the discrete wavelet transform (DWT) is an 
image decomposition at the sub-band frequency of the image. 
The wavelet transforms sub-band component is generated by 
decreasing the decomposition level. DWT implementation can 
be done by passing the signal through a low and high pass 
filter. Filterization itself is a function used in signal processing 
[9]. The decomposition of averages and differences plays a 
vital role in understanding the wavelet transform. Averaging is 
done by calculating the average value of 2 pairs of data using 
Eq. (1). 

  

where, p is pixel in the digital image, x is the first number 
in decimal is obtained, and y is the second number in decimal 
is obtained. 

While the reduction is carried out with the following 
Eq. (2). 

   

The decomposition process is carried out on the results of 
the flattening process. The result of the decomposition process 
is a combination of the flattening process results with all the 
image pixel reduction processes. The decomposition process is 
carried out in two stages. The first stage is performed on all 
rows, and then is carried out in the column direction on the 
resulting image of the first stage. 

The signal is passed through a high-pass filter and a low-
pass filter, and then half of each output is taken as a sample 
through a down-sampling operation or referred to as a one-
level decomposition process. The output of the low-pass filter 
is used as input for the next level of the decomposition process. 
This process is repeated until the desired level of the 
decomposition process. The decomposition process produces 
the wavelet coefficient, a combination of the output of the last 
high-pass and low-pass filters. The wavelet coefficient contains 
compressed transformed signal information. 

The one-level decomposition is written using the 
mathematical expressions in Eq. (3) and (4): 

 

 

where  is the result of high pass filter (which is a 

detail of signal information),  is the result of low pass 
filter (which is a rough approximation of the scaling function), 

 is source signal,  is high pass filter, and  is low 
pass filter. 

Using this DWT coefficient, the Inverse Discrete Wavelet 
Transform (IDWT) process can be carried out to reconstruct it 
into the original signal, as shown in Eq. (5). 

 

In the discrete wavelet transform, an image is decomposed 
into sub-images (sub-bands) at different frequencies and 
orientations, namely low-low (LL), low-high (LH), high-low 
(HL), and high-high (HH). An illustration of the discrete 
wavelet transform is shown in Fig. 1. 

 
Fig. 1. Two dimensional discrete wavelet transform. 

Several parameters, such as the selected mother wavelet 
function and decomposition level, should be chosen carefully 
when DWT-based processing methods are used [14]. Due to 
improper selection of the mother wavelet function and the 
number of decomposition levels may cause distortion or under 
denoising of the signal [15]. To ensure an effective denoising 
procedure of the image denoising, we selected the mother 
wavelet families of Coiflets with the order of 4 (Coif4) and 
one-level decomposition. 

Dual-Tree Complex Wavelet Transform 

Dual-Tree Complex Wavelet Transform (DT-CWT) was 
the combination of the advantages of DWT and CWT 
(complex wavelet transform). It is shift invariance, perfect 
reconstruction, either in directional selectivity, has a little 
redundancy, and the minimalist computation algorithm. DT-
CWT transformation was a variation of DWT implementation, 
but the main difference is DT-CWT uses two tree filters, as 
shown in Fig. 2. 
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Fig. 2. Two dimensional dual-tree complex wavelet transform. 

Unlike the DWT, the DT-CWT is built through a complex-

valued wavelet function  and a complex-valued 
scaling function. The complex-valued wavelet function is built 
as follows: The complex-valued scaling function is expressed 
similarly [16]. 

  

where  is even and real,  is odd and imaginary, 

but  is real. In addition,  and  form a Hilbert 
transform pair. 

Consider 2D DT-CWT associated with the row-column 
implementation of the 1D DT-CWT. 

  

where  and  are given by formula (6). To 
represent an integrated real 2D signal completely, the row or 
column of the complex conjugate filter is required. Three sub-
bands are produced in both the first and second quadrants, 

corresponding to six directions in space: , and 

. 

We used one-level decomposition when applying DT-CWT 
in this study. 

Wavelet Thresholding 

Wavelet thresholding is a method that maintains wavelet 
coefficients whose value is greater than a particular threshold 
value and ignores small wavelet coefficients. This value is 
called the threshold value, and the estimator can be written as: 

 

where  is threshold value,  represents the indicator 
function of set A. The estimator in Equation (8) can be 
considered a non-linear operator in the coefficient vector, 

which produces vector  of coefficient estimation. The 
thresholding estimator is defined as. 

  

with  is thresholding function and  is threshold 
parameter. 

The thresholding steps can be sequenced as follows: select 

thresholding function, value estimation , and selection of 
threshold parameter. 

1) Thresholding function: According to Coifman and 

Donoho [10], there are two thresholding functions: hard and 

soft thresholding. Both can be written with their respective 

equations as follows: 

 



The hard thresholding function is better known because 
there is a discontinuity in the function, so the t values above the 
threshold λ are not touched. On the other hand, the soft 
thresholding function is continuous since the t value is above 
the threshold λ. In this study, we used hard thresholding rules. 

2) Value estimation : Wavelet thresholding is enforced 

rules where at least to estimate the value  because  its 

value is usually unknown. The value  is deviation standard 

value from the observation . The authors 

in [14] proposed an estimation  is based on empirical 

wavelet coefficient at the high level resolution. This 

consideration is because, at the highest coefficient level, there 

is usually a lot of noise. Given in [17], the Median of Absolute 

Deviation (MAD) estimation to estimate value is expressed as 

 

with . Because coefficient 

 close to zero, then it can be replaced 

median value (  above with zero. 
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3) Selection of threshold parameter: There are two 

selection categories to select the optimal threshold value: 

selecting one threshold value for all resolution levels (global 

selection) and selecting a threshold that depends on the 

resolution level (level-dependent thresholding). Ogden [17] 

provides two threshold choices for global threshold selection 

that only depend on the number of n observation data. Both are 

tabulated by Donoho and Johnstone [17], known as the 

universal threshold and the minimax 

threshold. Minimax threshold values are always smaller than 

universal threshold values for the same sample size. Choosing 

a threshold that depends on the level of resolution means 

choosing  depending on the resolution j. Thus there is a 

possibility of differences in the threshold value  selected 

from for each level of wavelet j. This study used the universal 

threshold, which applied to the detail coefficients. 

Cycle Spinning 

References [14] introduced a translation-invariant 
denoising method called cycle spinning. This method 
calculates different estimates of noisy image by shifting images 
to different phases and then linearly averaging these estimates. 
The cycle spinning will result in different estimates of the 
original image with statistically other noises reduced by the 
averaging. 

If we show the two-dimensional circular shift by Sij, the 
denoising operator by T, and the thresholding operator by η, 
then cycle spinning can be expressed as: 



where  and  are the maximum number of shifts. In this 
study, we used two shifts. 

Non-local Means 

The non-local means (NLM) was proposed by Buades et al. 

[17]. Given the 2D noise image , where k 
is the pixel index and K is the number of pixels, then the NLM 
is calculated as a weight average of all the pixels in an image, 

 

where  is a square neighborhood of the pixel k referred to 

as the search window,  is the weight depend on the 
similarity between the pixels a and b, and satisfying the 

conditions  and . The weight is 
built as follows. 

 

where  is a square neighborhood of fixed size and 

centered at a pixel a referred to as the similarity window,  
denotes the vector of pixel values within the similarity 

windows, and  is the normalizing factor, 

 

where the parameter filter h controls the degree of filtering. 
We set the parameter of NLM as follows: the patch size is 7x7 
pixels, the search window is 5x5 pixels, and the filtering 
parameter h is obtained from the deviation standard value. 

III. PROPOSED METHOD 

The wavelet-based and NLM denoising techniques are 
efficient and have complementary benefits and drawbacks. 
Therefore, combining both can produce a powerful denoising 
method. However, the direct cascading of these methods will 
result in a denoising system that is ineffective and costly in 
computation. Henceforth, this study combines wavelet-based 
and NLM techniques to get the desired results. 

 

Fig. 3. Block diagram of the proposed denoising method. 

The block diagram of the proposed denoising method is 
shown in Fig. 3. It consists of three steps: decomposition of the 
noisy image using DT-CWT and DWT, denoising of the low- 
and high-frequency sub-bands, and reconstruction. A detailed 
description of the proposed denoising method and its 
advantages over DWT, DT-CWT, and NLM is discussed in the 
following. 

Step 1: Decomposition: Decompose the noise image into 
one real and imaginary approximation coefficient and the six 
real and imaginary detail coefficients using 2D DT-CWT with 
one-level decomposition. Process the real approximation 
coefficient through DWT to obtain the high- and low-
frequency sub-bands. The decomposition process, including 
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the selection of the decomposition level and the mother 
wavelet function, has already been briefed in Section II. 

Step 2: Denoising of the low- and high-frequency sub-
bands: Denoise the low-frequency sub-band obtained in one 
level of decomposition using the non-local means filter. Next, 
carry out the hard-thresholding-based cycle spinning to the 
high-frequency sub-bands. The selection of NLM parameters 
and wavelet threshold has already been briefed in Section II. 

Step 3: Reconstruction: Reconstruct the denoised image by 
inverse 2D-DWT using denoised low-frequency and high-
frequency sub-bands. The reconstruction process has already 
been briefed in Section II. 

In the proposed denoising method, the thresholding of 
high-frequency sub-bands will effectively eliminate the high-
frequency noise components present in the noisy image. 
Besides, the NLM filter will denoise the low-frequency sub-
band and retain the morphological structure of the image. The 
proposed denoising process consists of only one-level DWT 
decomposition in contrast to the earlier DWT method requiring 
more significant decomposition levels to effectively denoise 
the low-frequency components. In addition, hard thresholding-
based cycle spinning of the high-frequency and NLM filter of 
the low-frequency sub-band can be performed simultaneously. 
As a result, the overall computing cost of the process is 
significantly decreased. 

IV. EXPERIMENTAL RESULTS 

As was the case with the experiment carried out by 
Balasubramanian et al. [8], the effectiveness of the proposed 
denoising method is evaluated on four standard test images: 
Lena, the boat, the house, and the cameraman corrupted by 
AWGN with zero mean and standard deviation σ=10 to 90 
with increment 10. The proposed denoising method has been 
implemented by writing Python code. Python function random 
is used to add additive white Gaussian noise to the test images. 

During experiments, to evaluate the effectiveness of the 
denoising performance, apart from the peak signal-to-noise 
ratio (PSNR) and mean square error (MSE), which is the 
general measure of denoising performance, we also measure 
the structural similarity index (SSIM). 

As we stated earlier, our proposed denoising method is 
compared with the conventional DT-CWT, DWT, and NLM 
using PSNR, MSE, and SSIM. The parameters of each method 
have been set according to our experiment to have uniformity 
in comparison. The denoising experiment has been performed, 
and the results of PSNR, MSE, and SSIM are tabulated in 
Table I. 

A detailed examination of the tabulated results led to the 
following findings: 

 Cameraman image: The proposed denoising method 
outperforms DT-CWT, DWT, and NLM when the noise 
level of 40 and above for all measurement results. In 
contrast, the obtained PSNR and MSE are lower than 
NLM when the noise level of 30 and below. However, 
still better than DT-CWT. Lower than DWT when the 
noise level is 10 when measured using PSNR. Including 
a noise level of 20 when measured using MSE. For the 
SSIM result, the proposed denoising method 
outperforms all except the noise level of 10. At that 
noise level, NLM is better than the proposed denoising 
method. 

 House and Boat images: When observing both images 
using PSNR, MSE, and SSIM results, the proposed 
denoising method is superior to DT-CWT, DWT, and 
NLM in almost all the noise levels except for 10. At 
that noise level, NLM is better than the proposed 
denoising method. However, the proposed denoising 
method is still better than DT-CWT and DWT. 

 Lena image: Out of these three other test images; Lena's 
image is the only best gain of our proposed denoising 
method because it the superior to all techniques used for 
comparison in all noise levels with different 
measurement techniques results. 

To compare the visual quality of the denoising methods, the 
free noise, noisy, and denoised images when AWGN added 
with variances of 70 are shown in Fig. 4. 

 Cameraman image: Based on denoising results on this 
image show the proposed denoising method has better 
appearance of the denoising result. The noise in the 
texture of clothes and background can be effectively 
removed, including the noise present at edges. 

 House image: The proposed denoising method results 
on house image can be seen in Fig. 4. It can be seen that 
the proposed denoising method is better in removing 
amount noise on the texture of house wall and sky as 
background. Comparatively, noise present in the edges 
also can be removed very well. 

 Lena image: Like the cameraman and house images, the 
result of the proposed method in removing the noise in 
the hat, skin, mirror, hair, and wall is better than other 
denoising method. 

 Boat image: Visually, the proposed method result is 
more effective in suppressing the noise in the boat 
image. 

From the analysis above, it can be stressed that the 
suggested work effectively addresses the individual limitations 
of NLM and DWT approaches. 
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TABLE I. THE PSNR, MSE, AND SSIM RESULTS OF THE DENOISING METHOD 

 

Cameraman Image 

DT-CWT DWT NLM The Proposed Method 

PSNR MSE SSIM PSNR MSE SSIM PSNR MSE SSIM PSNR MSE SSIM 

10 28.4022 0.001445 0.9154 29.9913 0.001002 0.9129 32.7869 0.000526 0.9583 28.9348 0.001278 0.9305 

20 26.2598 0.002366 0.8391 26.6179 0.001357 0.8982 28.6740 0.001357 0.8982 27.5517 0.001757 0.9001 

30 24.6384 0.003437 0.7501 24.5911 0.003474 0.7579 26.5071 0.002235 0.8363 26.4572 0.002261 0.8742 

40 23.1465 0.004846 0.6617 23.0228 0.004986 0.6795 24.9824 0.003175 0.7726 25.5801 0.002767 0.8497 

50 21.8069 0.006596 0.5811 21.8012 0.006605 0.6069 23.6854 0.004280 0.7072 24.8014 0.003310 0.8242 

60 20.6161 0.008677 0.5116 20.7957 0.008326 0.5414 22.5294 0.005585 0.6421 24. 0689 0.003918 0.7972 

70 19.5441 0.011107 0.4527 19.8959 0.010243 0.4824 21.5184 0.007049 0.5807 23.3722 0.004600 0.7686 

80 18.5698 0.013900 0.4031 19.0999 0.012303 0.4302 20.6467 0.008617 0.5254 22.7298 0.005334 0.7399 

90 17.6842 0.017044 0.3612 18.3364 0.014667 0.3829 19.8715 0.010300 0.4757 22.1486 0.006097 0.7108 

House Image 

10 32.6951 0.000538 0.9154 32.6901 0.000538 0.9129 34.0484 0.000394 0.9583 34.0112 0.000397 0.9305 

20 29.3708 0.001156 0.8391 29.0037 0.000896 0.8982 30.4759 0.000896 0.8982 31.9477 0.000639 0.9001 

30 26.7387 0.002119 0.7501 26.6371 0.002169 0.7579 28.1672 0.001525 0.8363 30.3818 0.000916 0.8742 

40 24.6448 0.003432 0.6617 24.8644 0.003263 0.6795 26.3344 0.002326 0.7726 29.0941 0.001232 0.8497 

50 22.9206 0.005104 0.5811 23.4535 0.004515 0.6069 24.8298 0.003289 0.7072 27.8881 0.001626 0.8242 

60 21.4704 0.007128 0.5116 22.2593 0.005944 0.5414 23.5629 0.004403 0.6421 26.8096 0.002085 0.7972 

70 20.2175 0.009511 0.4527 21.1955 0.007594 0.4824 22.5096 0.005611 0.5807 25.8506 0.002600 0.7686 

80 19.1169 0.012255 0.4031 20.2345 0.009474 0.4302 21.5705 0.006966 0.5254 25.0130 0.003153 0.7399 

90 18.1388 0.015350 0.3612 19.3887 0.011512 0.3829 20.7281 0.008457 0.4757 24.2695 0.003742 0.7108 

Lena Image 

10 33.4483 0.000452 0.9446 32.4713 0.000566 0.9315 34.0168 0.000397 0.9541 34.5822 0.000348 0.9591 

20 29.8266 0.001041 0.8726 29.0362 0.000897 0.9012 30.4733 0.000897 0.9012 32.0975 0.000617 0.9360 

30 27.0414 0.001976 0.7813 26.7845 0.002097 0.7903 28.1826 0.001520 0.8374 30.3599 0.000920 0.9113 

40 24.8681 0.003260 0.6884 25.1226 0.003074 0.7151 26.4086 0.002286 0.7686 29.0039 0.001258 0.8852 

50 23.1044 0.004893 0.6026 23.7793 0.004189 0.6442 24.9782 0.003178 0.7011 27.8807 0.001629 0.8585 

60 21.6281 0.006874 0.5273 22.6338 0.005453 0.5785 23.7495 0.004217 0.6358 26.9452 0.002021 0.8320 

70 20.3576 0.009210 0.4624 21.6339 0.006865 0.5196 22.7007 0.005369 0.5766 26.1415 0.002431 0.8057 

80 19.2434 0.011903 0.4069 20.7259 0.008461 0.4669 21.7584 0.006670 0.5221 25.4331 0.002862 0.7796 

90 18.2538 0.014949 0.3597 19.9004 0.010232 0.4207 20.9137 0.008103 0.4733 24.8001 0.003311 0.7541 

Boat Image 

10 30.7026 0.000851 0.9208 29.9916 0.001002 0.8925 32.4293 0.000572 0.9402 31.4759 0.000712 0.9320 

20 28.1594 0.001528 0.8556 27.0997 0.001317 0.8762 28.8032 0.001317 0.8762 29.3409 0.001164 0.8935 

30 26.0124 0.002505 0.7750 25.2269 0.003001 0.7441 26.7378 0.002119 0.8097 27.8329 0.001647 0.8578 

40 24.1782 0.003821 0.6919 23.8144 0.004155 0.6724 25.1766 0.003036 0.7422 26.6872 0.002144 0.8253 

50 22.6114 0.005481 0.6138 22.6575 0.005423 0.6050 23.9009 0.004073 0.6769 25.7502 0.002661 0.7948 

60 21.2535 0.007493 0.5434 21.6454 0.006846 0.5428 22.8124 0.005233 0.6154 24.9365 0.003209 0.7653 

70 20.0659 0.009849 0.4821 20.7611 0.008392 0.4871 21.8690 0.006503 0.5591 24.2396 0.003767 0.7373 

80 19.0109 0.012558 0.4290 19.9742 0.010060 0.4389 21.0205 0.007906 0.5075 23.6396 0.004326 0.7108 

90 18.0658 0.015611 0.3833 19.2500 0.011885 0.3964 20.2594 0.009420 0.4615 23.1187 0.004877 0.6856 
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Cameraman =70 DT-CWT DWT NLM The Proposed Method 

      
House  =70 DT-CWT DWT NLM The Proposed Method 

      
Lena =70 DT-CWT DWT NLM The Proposed Method 

      
Boat =70 DT-CWT DWT NLM The Proposed Method 

Fig. 4. The comparison denoising results. 

V. CONCLUSION 

Noise shows the image quality that has begun to lose detail, 
where large numbers of dots will appear in the image. Noise 
appearance dramatically affects an image's sharpness, clarity, 
and quality. Therefore, noise within an image must be 
appropriately addressed to minimize noise while maintaining 
fine image details, such as edges and textures. This paper 
presents the denoising method to handle such issues. The 
proposed denoising method utilizes the efficacy of wavelet- 
and NLM-based denoising. In the proposed denoising method, 
the noisy image is first decomposed using the DT-CWT, 
followed by DWT, to obtain the low- and high-frequency sub-
bands. The high-frequency sub-bands are then threshold in the 
output of DWT to eliminate high-frequency noise using hard 
thresholding with cycle spinning. Meanwhile, the NLM 
removes the low-frequency noise. When the proposed method 
is applied to Lena, the boat, the house, and the cameraman 

images with AWGN variance noise of 10 to 90 in increment 
10, the effectiveness outperforms the conventional DT-CWT, 
discrete wavelet transforms, and NLM. This superiority is 
numerically analyzed using three evaluation metrics: SSIM, 
PSNR, and MSE, also including when analyzed based on its 
visual quality results. 

Future improvement is needed to increase the capability of 
the proposed denoising method, such as by selecting the 
mother wavelet and decomposition level, NLM parameter 
setting, and experimenting with another image to know the 
capability of the proposed denoising method in a different case. 
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