
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

703 | P a g e

www.ijacsa.thesai.org

Univariate and Multivariate Gaussian Models for

Anomaly Detection in Multi Tenant Distributed

Systems

Prof. Pravin Ramdas Patil
1
, Dr. Geetanjali Kale

2

Assistant Professor
1

Head of Department and Associate Professor
2

Department of Computer Engineering, SCTR‟s Pune Institute of Computer Technology,

Pune, Maharashtra, India
1, 2

Abstract—Due to the flaws in shared memory, settings, and

network access, distributed systems on a network always have

been susceptible to cyber intrusions. Co-users on the same server

give attackers the chance to monitor the activity of many other

users and launch an attack when those users' security is at risk.

Building completely secure network topologies immune from

risks and assaults has traditionally been the goal. It is also hard

to create an architecture that is 100 percent safe due to its open-

ended nature. The precise parameters and infrastructure design

whereby the strike is instantiated are a constant which can

always be detected regardless of the sort of attack. This work

now have the chance to simulate any abnormality and

subsequent attack possibilities using network parameter values

thanks to the increased usage of algorithms for machine learning

and data-gathering tools. This work proposes a Gaussian model

to forecast the likelihood of an attack occurring depending on

certain system parameters. This work model a univariate and a

multivariate Gaussian model on the training dataset. This work

makes use of various threshold values to predict whether the data

point is an inlier or an outlier. This research examines accuracies

for various threshold values. An important challenge in an

anomaly detection situation is class imbalance. As long as this

work just utilizes training data, a class imbalance is not a

problem. Our data-driven results show that combining machine

learning with Gaussian-based models might be a useful tool for

analyzing network intrusions. Although more steps are being

made to boost digital space security, machine learning algorithms

may be utilized to examine any abnormal behavior that is left

uncontrolled.

Keywords—Multi-tenant distributed system; anomaly detection;

outlier detection; machine learning; Gaussian model

I. INTRODUCTION

One of today's most demanding technologies is cloud
computing. Cloud computing offers an infinite quantity of IT
facilities to deliver amazing computing speed, but on the flip
side, it has serious security problems with public clouds for
multitenant cloud environments. Most government and
commercial companies are compromising with the limited IT
resources and performance from existing resources since they
are not migrating their sensitive and private data over the
public cloud due to security concerns. The aforementioned
problems will be solved by finding a way to protect private
space over public clouds.

Multiple clients can use the services provided by multi-
tenant distributed systems. As a result, each client has access to
the activity of the others. By being one of the clients of such a
system and taking advantage of such surveillance, attackers can
launch assaults against one or more other tenants of the system
[1]. To stop any entity in the system from suffering damage,
such an attack must be promptly detected [2]. The scourge of
attacks in such distributed systems has been a hot topic among
researchers despite improvements in cyber security measures.
Although cyber security protections have improved, experts
continue to focus on the problem of intrusions in such
distributed multi-tenant systems. Multiple tenants can cohabit
on the same network thanks to multi-tenant distributed systems
(MTDS). The MTDS service provider does not inquire about
the tenant's motivations when they request co-allocation. This
situation presents a chance for renters with bad intentions to
observe and collect confidential information about the target
occupants. [4] Because the attacker tenant has access to
sensitive information, the tenant may prepare an attack that has
a greater likelihood of success. [3]

There have already been several attempts to use a variety of
techniques to identify the existence of intrusions in distributed
applications. [5], [6] Earlier, the emphasis was on applying
statistical techniques to compute specific function values, but
more recently, cutting-edge approaches including deep learning
have been applied. In this regard, artificial neural networks
have been investigated.

Although rule-based engines were used to identify assaults,
they frequently fall short of spotting any newly discovered
threats. Transfer learning may be helpful in this situation, but
there is no guarantee that the variables of the source work and
the destination job are identical, which has been a significant
obstacle to its application. [7]

This work suggests a Gaussian-based classifier strategy in
this research for identifying the potential for intrusions in a
multi-tenant distributed system to identify inliers and outliers.
This work defines a threshold value. This work also looks at
the accuracy of different threshold values. Authors are thankful
to Patil and Ingale [8] for providing us with the dataset.

Section II of paper includes literature survey of research
work done in the area of network attack detection. It explores

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

704 | P a g e

www.ijacsa.thesai.org

Machine learning algorithms used to detect network attacks
and to improve cyber security. Section III describes
experimentation performed to create and collect dataset. As
network attack is not a continuously or regularly occurring
event hence lesser number of attacks are performed to create
dataset. This dataset includes majority non attack instances and
very few attack instances. This section includes statistical and
graphical representation of collected dataset. Section IV
explains creation of univariate and multivariate Gaussian
models for anomaly detection and respective models
performance analysis. Section V contains conclusion of
research work done.

II. RELATED WORK

Network attack detection has historically made heavy use
of signature-based detection. This approach uses an analysis of
an attack's "signature," or distinctive qualities, to foretell
potential hazards in the future [9]. Methods to discover the best
attack signatures were suggested by Hilker et al. [10]. Han et
al. [11] advocated crafting network traffic using several
attributes. The system cannot identify any new attacks that
were previously undiscovered owing to a lack of knowledge
about them, which is a significant problem with this technique.
Additionally, each new effort to locate signatures requires
human labor in addition to time.

Additionally, there have been initiatives to employ machine
learning algorithms in this field. Algorithms based on
supervised learning have traditionally been used to identify
network attacks. [12] For assault detection, Zseby et al.
favoured the use of selecting features and subsequent mapping
[13]. Evolutionary algorithms were used by Rafique et al. [14]
to evaluate the effectiveness of classifying malware. The
chance of assault is extremely low, it should be highlighted,
therefore a model may get away with forecasting all data as
non-negative and yet show good accuracy, making the entire
process exceedingly costly.

Prior strategies likewise emphasized the application of
boosting techniques and feature reduction in transfer learning.
TrAdaBoost was introduced by Dai et al. [15] and reweights
the data from the positive and negative classes to give the
uncommon examples that indicate attacks more weight in the
outcome. TCA-transfer component analysis was used by Pan et
al. to feature project the domains closer to one another in the
common space [16]. HeMap is a technique created by Shi et al.
[17] that projects features using linear transformations. Patil
and Ingale [8] tackled the class imbalance problem and used an
ensemble based meta classifier to detect anomaly.

The detection of assaults has also been done using model-
based methods. This strategy falls under the category of
transfer learning and makes the crucial assumption that the
source task and the target task share at least some parameters
or model priors. Bekerman demonstrated how transfer learning
may help increase the resilience of malware detection in
uncharted situations. [17].

A noteworthy finding in all of these prior methods was that
the stark class disparity seen in network assaults was hardly
discussed. Additionally, due to this imbalance, effectiveness of
other measures should also be discussed in order to shed light

on the results that were produced. We model a Gaussian model
on the training dataset. The advantage of this method is that
class imbalance does not cause any hindrance.

Research community is contributing towards improving
cyber security and security of multi-tenant distributed systems.
Despite being all these efforts, attackers are successfully able
to place compromised or virtual machine having anomaly to
reside with target virtual machine. This leads to increase in the
probability of having successful attack on a target virtual
machine. Detection of new types of attack possible because of
co-residence, co-location and co-tenant of attacker virtual
machine with a target virtual machine is still remains a
challenge to researchers. Univariate and Multivariate Gaussian
models are created to detect network attacks. Performance
analysis of individual models created is performed.

III. DATASET PREPARATION

A. Dataset Collection

Dataset has been collected by Patil and Ingale [8] by using
Netdata, a programme for real-time performance monitoring
that creates system logs. The logs have been collected across
28 files. This work combines all the files into a single dataset
for easy handling. The dataset consists of 4986 inliers instances
and 60 outlier instances with 63 columns. All the columns
names are noted in Table I.

B. Dataset Preparation

Contributors dropped the column „anomaly score‟ as it is
generated by the software. Authors also separate „label‟ from
the remaining dataset. Authors also drop the columns whose
standard deviation is less than 0.3 but also store the original
dataset. Contributors are left with 36 columns in the remaining
dataset. This work plot some of the important columns as a
categorical plot except anomaly score from Fig. 1 to 12.
Authors don‟t have to worry about class imbalance because
model on the training dataset while training is done.

TABLE I. COLUMN NAMES

Sr. No. Column name

1 app_cpu_sys_netdata

2 app_cpu_sys_apps.plugin

3 app_cpu_sys_tc-qos-helper

4 app_cpu_sys_go.d.plugin

5 app_cpu_sys_logs

6 app_cpu_sys_ssh

7 app_cpu_sys_system

8 app_cpu_sys_kernel

9 app_cpu_sys_other

10 app_cpu_usr_netdata

11 app_cpu_usr_apps.plugin

12 app_cpu_usr_tc-qos-helper

13 app_cpu_usr_go.d.plugin

14 app_cpu_usr_logs

15 app_cpu_usr_ssh

16 app_cpu_usr_system

17 app_cpu_usr_kernel

18 app_cpu_usr_other

19 app_mem_netdata

20 app_mem_apps.plugin

21 app_mem_tc-qos-helper

22 app_mem_go.d.plugin

23 app_mem_ssh

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

705 | P a g e

www.ijacsa.thesai.org

24 app_mem_cron

25 app_mem_system

26 app_mem_other

27 app_mem_X

28 app_soc_ssh

29 app_soc_system

30 app_soc_other

31 app_soc_X

32 sda_writes

33 ops_sda_writes

34 utilization

35 packets_received

36 packets_sent

37 packets_delivered

38 socket_used

39 udp_packets_received

40 udp_packets_sent

41 avail

42 Dirty

43 Writeback

44 sys_cpu_softirq

45 sys_cpu_user

46 sys_cpu_system

47 sys_cpu_iowait

48 switches

49 interrupts

50 io_out

51 ip_received

52 ip_sent

53 net_received

54 net_sent

55 pgio_out

56 Running

57 Free

58 Used

59 Cached

60 Buffers

61 Uptime

62 Label

63 anomaly_score

Fig. 1. Categorical plot of app_cpu_apps.plugin_x.

Fig. 2. Categorical plot of app_cpu_apps.plugin_y.

Fig. 3. Categorical plot of app_cpu_go.plugin_x.

Fig. 4. Categorical plot of app_cpu_go.plugin_y.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

706 | P a g e

www.ijacsa.thesai.org

Fig. 5. Categorical plot of app_cpu_kernel_x.

Fig. 6. Categorical plot of app_cpu_kernel_y.

Fig. 7. Categorical plot of app_cpu_sys_apps.plugin.

Fig. 8. Categorical plot of app_cpu_usr_go.d.plugin.

Fig. 9. Categorical plot of app_cpu_netdata_x.

Fig. 10. Categorical plot of app_cpu_kernel_y.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

707 | P a g e

www.ijacsa.thesai.org

Fig. 11. Categorical plot of free.

Fig. 12. Categorical plot of uptime.

Authors then standardize the dataset as there is need to
perform PCA on it. PCA is applied by a keeping 98% variance.
After applying PCA, Dataset have 38 columns in the original
dataset and 18 columns in the dataset on which columns were
removed having standard deviation less than 0.3. This work
plots the first two components of the new dataset on a 2D axis
as shown in Fig. 13. Authors also perform PCA on the original
dataset.

Fig. 13. First two components of the dataset after PCA.

This work, as shown in Fig. 14, plots the first three
components of the new dataset on 3D axes. Here authors can
clearly see a separation between inliers and outliers.

Fig. 14. First three components of the dataset after PCA.

Now authors have two datasets, one with all columns and
another with columns left after removing columns with a
standard deviation less than 0.3. Authors apply PCA to both
datasets. This work split both datasets into three sets, train, test,
and cross-validation set. The training set consists of 4000
inliers. The testing set consists of 586 inliers and 30 outliers.
The cross-validation set consists of 400 inliers and 30 outliers.

IV. GAUSSIAN MODEL FOR ANOMALY DETECTION

A. Univariate Gaussian Model

Gaussian distribution is a continuous probability density
function for a real-valued random variable in statistics. It is
given by Eq. (1).

 ()

 √

(

)

 (1)

Where f(x) is the probability density function, µ is the
mean and σ is the standard deviation.

This work calculates the mean and standard deviation of
each column of both datasets and model a Gaussian
distribution on all columns. The final probability is calculated
by taking the product of the probabilities of all columns.
Negative logarithms of probabilities are plotted as histograms
as shown in Fig. 15 to 19. Fig. 15 shows probabilities of train
inliers. Fig. 16 shows probabilities of test set. Fig. 17 shows
probabilities of test set with columns having standard deviation
less than 0.3 removed. Fig. 18 shows probabilities of cross
validation set. Fig. 19 shows probabilities of cross validation
set with columns having standard deviation less than 0.3
removed.

Fig. 15. Probabilities of train inliers.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

708 | P a g e

www.ijacsa.thesai.org

Fig. 16. Probabilities of test set.

Fig. 17. Probabilities of test set with columns having standard deviation less

than 0.3 removed.

Fig. 18. Probabilities of cross validation set.

Fig. 19. Probabilities of cross validation set with columns having standard

deviation less than 0.3 removed.

Authors set a threshold probability value to classify the test
and cross-validation set. Different thresholds are set and
accuracy is observed. Table II and III show accuracies for the
original dataset.

TABLE II. VARIATION OF ACCURACY WITH DIFFERENT THRESHOLD

VALUES FOR TRAIN AND TEST INLIER SET

Threshold Train accuracy Test inlier accuracy

1e-10 0 0

1e-15 63.625 64.16

1e-20 89.725 89.078

1e-25 95.925 96.075

1e-30 97.825 97.78

1e-35 98.625 98.12

1e-40 99.05 98.63

1e-45 99.175 98.63

TABLE III. VARIATION OF ACCURACY WITH DIFFERENT THRESHOLD

VALUES FOR TEST OUTLIER, CROSS-VAL INLIER AND OUTLIER SET

Threshold
Test outlier

accuracy

Cross Val

inlier

accuracy

Cross Val

outlier

accuracy

1e-10 100 0 100

1e-15 100 66.25 100

1e-20 100 91.75 100

1e-25 100 96.75 96.66

1e-30 96.66 98.0 93.33

1e-35 96.66 98.5 90.0

1e-40 93.33 99.25 90.0

1e-45 93.33 99.25 90.0

Table IV and V shows accuracies for the dataset whose
columns were removed which had a standard deviation of less
than 0.3.

TABLE IV. VARIATION OF ACCURACY WITH DIFFERENT THRESHOLD

VALUES FOR TRAIN INLIERS, TEST INLIERS AND TEST OUTLIERS SET

Threshold
Train

accuracy

Test inlier

accuracy

Test outlier

accuracy

1e-10 82.475 83.95 100

1e-15 98.475 98.805 96.66

1e-20 99.4 99.65 93.33

1e-25 99.575 99.65 93.33

1e-30 99.6 99.65 99.65

1e-35 99.675 99.658 90.0

1e-40 99.725 99.82 90.0

1e-45 99.725 99.82 90.0

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

709 | P a g e

www.ijacsa.thesai.org

TABLE V. VARIATION OF ACCURACY WITH DIFFERENT THRESHOLD

VALUES FOR CROSS-VAL INLIERS AND OUTLIERS

Threshold
Cross Val inlier

accuracy
Cross Val outlier accuracy

1e-10 86.25 96.66

1e-15 98.25 96.66

1e-20 99.5 90

1e-25 100 86.66

1e-30 100.0 86.66

1e-35 100.0 83.33

1e-40 100.0 80.0

1e-45 100.0 76.66

B. Multivariate Gaussian Model

The multivariate normal distribution, multivariate Gaussian
distribution, or joint normal distribution are expansions of the
one-dimensional normal distribution to higher dimensions in
probability theory and statistics. It models the probability in
one shot instead of calculating individual probabilities and
multiplying them. Multivariate Gaussian distribution is given
by the Eq. (2).

 ()

()

| |

 {

() () }(2)

Where µ is the length-d row vector of means of all
columns, ∑ is the covariance matrix of shape d x d. d is the
number of features.

Authors calculate the mean and covariance matrices of both
datasets to model a multivariate Gaussian distribution. Authors
set a threshold value and classify the dataset between inlier and
outlier and calculate accuracies for various threshold values.
Negative logarithms of probabilities are plotted as a histogram
as shown in Fig. 20 to 24. Fig. 20 shows probabilities of train
inliers. Fig. 21 shows probabilities of test inliers and test
outliers. Fig. 22 shows probabilities of test inliers and test
outliers with columns having standard deviation less than 0.3
removed. Fig. 23 shows probabilities of cross-val inliers and
cross-val outliers. Fig. 24 shows probabilities of cross-val
inliers and cross-val outliers with columns having standard
deviation less than 0.3 removed.

Fig. 20. Probabilities of train inliers.

Fig. 21. Probabilities of test inliers and test outliers.

Fig. 22. Probabilities of test inliers and test outliers with columns having

standard deviation less than 0.3 removed.

Fig. 23. Probabilities of cross-val inliers and cross-val outliers.

Fig. 24. Probabilities of cross-val inliers and cross-val outliers with columns

having standard deviation less than 0.3 removed.

Table VI and VII show accuracies for the original dataset.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

710 | P a g e

www.ijacsa.thesai.org

TABLE VI. VARIATION OF ACCURACY WITH DIFFERENT THRESHOLD

VALUES FOR TRAIN INLIERS, TEST INLIERS, AND TEST OUTLIERS SET

Threshold
Train

accuracy

Test inlier

accuracy

Test outlier

accuracy

1e-10 0.0 0.0 100.0

1e-15 29.2 30.88 100.0

1e-20 83.1 84.47 100.0

1e-25 93.075 94.02 100.0

1e-30 96.325 97.26 100.0

1e-35 97.575 97.78 93.33

1e-40 98.5 98.80 90.0

1e-45 98.8 99.146 90.0

TABLE VII. VARIATION OF ACCURACY WITH DIFFERENT THRESHOLD

VALUES FOR CROSS-VAL INLIERS AND CROSS-VAL OUTLIERS SET

Threshold
Cross Val inlier

accuracy
Cross Val outlier accuracy

1e-10 0.0 100.0

1e-15 30.0 100.0

1e-20 82.5 100.0

1e-25 94.0 100.0

1e-30 96.0 100.0

1e-35 97.5 96.66

1e-40 98.25 96.66

1e-45 98.75 96.66

Table VIII and IX show accuracies for the dataset whose
columns were removed which had a standard deviation of less
than 0.3.

TABLE VIII. VARIATION OF ACCURACY WITH DIFFERENT THRESHOLD

VALUES FOR TRAIN INLIERS, TEST INLIERS, AND TEST OUTLIERS

Threshold
Train

accuracy

Test inlier

accuracy

Test outlier

accuracy

1e-10 16.675 16.21 100.0

1e-15 94.125 93.68 100.0

1e-20 97.2 97.95 96.66

1e-25 98.625 99.48 93.33

1e-30 99.125 100.0 93.33

1e-35 99.325 100.0 93.33

1e-40 99.4 100.0 93.33

1e-45 99.45 100.0 93.33

TABLE IX. VARIATION OF ACCURACY WITH DIFFERENT THRESHOLD

VALUES FOR CROSS-VAL INLIERS AND CROSS-VAL OUTLIERS

Threshold
Cross Val inlier

accuracy
Cross Val outlier accuracy

1e-10 18.0 100.0

1e-15 93.25 100.0

Threshold
Cross Val inlier

accuracy
Cross Val outlier accuracy

1e-20 97.25 96.66

1e-25 98.0 93.33

1e-30 98.75 93.33

1e-35 99.25 90.0

1e-40 99.5 90.0

1e-45 99.5 90.0

V. CONCLUSION

This work states that univariate and multivariate Gaussian
models for anomaly detection are successfully created. Data
imbalance is not an issue here because these models fit on the
train set and this work uses a threshold to predict inliers and
outliers. This work examines the trend between various
threshold values and accuracies. The proposed method, a
Gaussian model to forecast the likelihood of an attack
occurring based on certain system parameters uses a univariate
and a multivariate Gaussian model on the training dataset and
examines accuracies for various threshold values. It also
addresses the challenge of class imbalance in anomaly
detection situations. This method presents the successful
creation of univariate and multivariate Gaussian models for
anomaly detection. The data imbalance is not an issue in these
models because they fit on the train set and use a threshold to
predict inliers and outliers. The study also examines the
relationship between various threshold values and accuracies.
For univariate Gaussian model variation of accuracy with
different threshold values ranges up to 99.175 percent and for
train accuracy up to 98.6 percent for test inlier accuracy and up
to 100 percent for test outlier accuracy. For multivariate
Gaussian model variation of accuracy with different threshold
values ranges up to 99.45 for train accuracy, up to 100 for test
inlier accuracy and up to 100 for test outlier accuracy with
validation.

Future work is about using deep learning techniques such
as auto encoders. Machine learning is revealing a plethora of
potential for cybersecurity aficionados to explore as more and
more data is gathered, specifically with the data that they
already own. When this work talks about escalating warfare in
the internet age, timely automated identification of any threats
or suspicious conduct can avoid a number of mistakes from
occurring.

REFERENCES

[1] Mohammad-Mahdi Bazm, Thibaut Sautereau, Marc Lacoste, Mario
Sudholt, Jean-Marc Menaud, ¨ ”Cache-Based Side-Channel Attacks
Detection through Intel Cache Monitoring Technology and Hardware
Performance Counters”, FMEC2018 - The Third IEEE International
Conference on Fog and Mobile Edge Computing, Apr 2018, Barcelona,
Spain. IEEE, pp.1-6. ¡hal-01762803¿

[2] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware guard extension: Using sgx to conceal cache attacks”, arXiv
preprint arXiv:1702.08719,2017.

[3] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen, “Prime+abort:
A timer-free high-precision l3 cache attack using intel TSX”, in 26th
USENIX Security Symposium (USENIX Security 17), (Vancouver,
BC), pp. 51–67, USENIX Association, 2017.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 3, 2023

711 | P a g e

www.ijacsa.thesai.org

[4] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of cache-
based side-channel attacks using hardware performance counters”,
Applied Soft Computing, vol. 49, pp. 1162–1174, 2016.

[5] Ziqi Wang, Rui Yang, Xiao Fu, Xiaojiang Du, and Bin Luo, ”A shared
memory based cross-vm side channel attacks in iaas cloud”, In
Computer Communications Workshops (INFOCOM WKSHPS), IEEE
Conference on, pages 181–186. IEEE, 2016.

[6] A. Valdes, K. Skinner, Adaptive, ”Model-Based Monitoring for Cyber
Attack Detection”, International Workshop on Recent Advances in
Intrusion Detection, Berlin, Heidelberg, 2000.

[7] Deri, Luca, and Alfredo Cardigliano. "Using cyberscore for network
traffic monitoring." In 2022 IEEE International Conference on Cyber
Security and Resilience (CSR), pp. 56-61. IEEE, 2022.

[8] P. Patil and R. Ingle, "Meta-ensemble based classifier approach for
attack detection in multi-tenant distributed systems," 2020 International
Conference for Emerging Technology (INCET), 2020, pp. 1-6, doi:
10.1109/INCET49848.2020.9154077.

[9] A. Valdes, K. Skinner, Adaptive, ”Model-Based Monitoring for Cyber
Attack Detection”, International Workshop on Recent Advances in
Intrusion Detection, Berlin, Heidelberg, 2000.

[10] Michael Hilker, Christoph Schommer,” Description of bad-signatures
for network intrusion detection”, n Conf.s in Research and Practice in
Information Technology Series, vol. 54, ACSW, 2006, pp. 175–182

[11] N. Stakhanova, M. Couture, A. A. Ghorbani, ”Exploring network-based
malware classification”, 2011 6th International Conference on Malicious
and Unwanted Software

[12] F. Iglesias, T. Zseby, ”Analysis of network traffic features for anomaly
detection”, Mach. Learn.101(1-3), 59–84 (2014).

[13] M. Z. Rafique, P. Chen, C. Huygens, W. Joosen, ”Evolutionary
algorithms for classification of malware families through different
network behaviors”, Proceedings of the 2014 Annual Conference on
Genetic and Evolutionary Computation, Pages 1167-1174.

[14] W. Dai, Q. Yang, G. -R. Xue, Y. Yu, ”Boosting for transfer learning”,
24th International Conf. on Machine Learning(ICML) 2007

[15] S. J. Pan, I. W. Tsang, J. T. Kwok, Q. Yang, ”Domain adaptation via
transfer component analysis”, IEEE Transaction on Neural Netw.22(2),
199–210, 2011.

[16] Shi, Q. Liu, W. Fan, P. S. Yu, R. Zhu, ”Transfer learning on
heterogenous feature spaces via spectral transformation”, IEEE
International Conf. on Data Mining (ICDM), 2010.

[17] D. Bekerman, B. Shapira, L. Rokach, A. Bar, ”Unknown malware
detection using network traffic classification”, 2015 IEEE Conference
on Communications and Network Security (CNS).

