(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 4, 2023

A Review of Trending Crowdsourcing Topics in
Software Engineering Highlighting Mobile
Crowdsourcing and Al Utilization

Mohammed Alghasham, Mousa Alzakan, Mohammed Al-Hagery
Department of Computer Science, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia

Abstract—Today’s modern technologies and requirements
make the utilization of crowdsourcing more viable and applicable.
It is one of the problem-solving models that can be used in
various domains to reduce costs and time. It is also an excellent
way to find new and different ideas and solutions. This paper
studies the use of crowdsourcing in software engineering and
reveals adequate details to highlight its significance. A few recent
literature reviews have been published to address specific topics
or study general attributes of papers in crowdsourced software
engineering. This paper, however, explores all recent publications
related to software and crowdsourcing to find the trends and
highlight mobile and AI usage in software crowdsourcing. The
findings of this paper show that most research papers are in
the areas of software management and software verification and
validation. The results also reveal that machine learning and
data mining techniques are predominant in software manage-
ment crowdsourcing and software verification and validation.
Furthermore, this study shows that the methods and techniques
used in general crowdsourcing apply to mobile crowdsourcing
except in mobile testing, where there is a need for clustering and
prioritization of test reports.

Keywords—Software engineering; crowdsourcing; mobile
crowdsourcing; software management; software verification and
validation

I. INTRODUCTION

The word engineering in the field of software was inspired
by the field of architecture engineering, where the design and
building go through defined steps, even though the software
has different characteristics. For example, a step in designing
a building, for example, should take many considerations,
such as budget, before sketching the design of the building.
Similarly, when building software, the first step should not be
coding the software, especially in large software and systems.
The globalization of the current world forced both fields to
adopt and use outsourcing, dispatch part of the software or
building steps/processes to another company, to compete and
evolve, especially when they lack time, workers, expertise, or
other reasons. Consequently, the availability of the Internet to
a tremendous number of users with various backgrounds and
expertise adds more opportunities and challenges to the current
working process, which leads to the use of heterogeneous users
of the Internet in the working process for both fields. This new
methodology was later called crowdsourced and defined by [1]
in 2006, and also, different terminologies could refer to the
same methodology as provided by [2].

In the crowdsourcing era, in its early days, it has been
preliminarily defined as a problem-solving model [3], and

recently, it has been reviewed in a wide range of domains
[4]; software engineering, in between, has gained a consid-
erable share in this emerging field [5], [6]. The notion of a
problem-solving model for crowdsourcing is suggested by [3]
for various applications while providing model examples and
denoting contentious points such as crowds diversity, crowds
exploitations, and intellectual labor, as well as other topics.
A recent comprehensive literature review of all various fields
where crowdsourcing has been utilized is authored by [4],
which is the first literature to investigate all possible domains
related to crowdsourcing. As crowdsourcing has been adopted
in various domains, it has become an important topic. One
of these domains is software engineering, which started with
two publications in 2008 and a total of 509 publications at the
end of 2020 [6]. For example, one publication [5] shows the
possibility of engaging in empirical studies with crowdsourcing
and presents the lesson learned to others for a successful
one. Nevertheless, crowdsourcing is a promising technique
employed in uncountable areas of SE regardless of other fields,
and it is still ongoing research.

A number of recent literature reviews have been published
that address crowdsourcing in software engineering. The study
of the relationships for both co-authors and citations through
social network analysis without considering the contextual
content of papers is presented by [6]. Despite that, the research
provides cohesive and extensive relationships and connectivity
regarding basic publication attributes, such as authors’ loca-
tions. The paper researches and reviews all of the publications
until 2020. Another review [7] provides a baseline under-
standing of microtasks and explores previous research within
crowdsourcing while listing and verifying microtask activities
and their categories, which could be helpful for researchers
and platforms. For integrating agile development methodology
with crowdsourcing, a literature review is carried out to specify
challenges and summarize them into five categories [8]. An
overview of key processes and platforms, as well as other
matters, to facilitate the adaptation of CSSD by organizations
and highlight obstacles that make organizations reluctant to
recognize CSSD is conducted by [9].

This paper is structured as follows: in this section, an intro-
duction and motivation to crowdsourced software engineering
is provided. Section II discusses the research methodology,
research questions, and how the research is conducted. Then,
Section III describes the literature outcomes, which are divided
into areas related to software engineering. In Section IV, the
research questions are answered by listing and discussing the
findings. The conclusion of this literature review is in Section

www.ijacsa.thesai.org

777 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

V. Finally, suggestions for future work are in Section VI.

II. RESEARCH METHODOLOGY

The research methodology is an essential and well-defined
step in literature review papers. Hence, this section presents
the research questions and discusses the process for searching
and selecting research papers and extracting and approaching
the data.

A. Research Questions

This section provides answers to the following three listed
questions:

e RQ1: What are the directions and trends in crowd-
sourced software engineering? The aim is to inves-
tigate and analyze the recent topics in crowdsourced
software engineering.

e RQ2: Did the papers focus on mobile crowdsourc-
ing? Can general crowdsourced software engineer-
ing methods be used in mobile crowdsourcing? The
aim is to examine mobile crowdsourcing and con-
ventional methods within mobile software engineering
crowdsourcing.

e RQ3: Did the papers in the review use AI? What
type of Al did the papers use? In what areas did the
papers use AI? The aim is to explore the algorithms
that the literature uses and in which areas of software
engineering they are employed.

B. Conducting the Research

The first step in each research topic is to choose relevant
keywords to find all relevant papers. Unrelated keywords could
lead to small numbers of papers without any further hope of
obtaining additional suitable research papers. Subsequently,
gradually, more keywords are added, and the list of all
keywords that are used within advanced search queries is as
follows:

e (“Crowdsourcing” OR “crowdsourced” OR “crowd”
OR “crowdsource”) as (CrowdKeywords)

The first query, (CrowdKeywords), is used in conjunction with
the following ones:

e (CrowdKeywords) AND (“Software Engineering”)
e (CrowdKeywords) AND (“Software Development”)
e (CrowdKeywords) AND (“Software Design”)

e (CrowdKeywords) AND (“Requirements” or “‘crow-
dRE”)

e (CrowdKeywords) AND (“Software” or “testing” or
“test” or “defect”)

As shown in Fig. 1, the search is first established through
scholarly search engines online, without engaging in manual
search activities, such as printed journals, and excluding books
and thesis. There are a large number of databases. The papers
are collected from IEEE, ACM, Science Direct, SpringerLink,

Vol. 14, No. 4, 2023

Wiley Online Library, MDPI, AIMSciences, and Airiti. Ad-
ditionally, this review focuses solely on recent papers and
contributions, so any research paper published before 2022
is filtered out. After the preliminary collection of more than
100 publications, stored in a reference manager software, by
reading just titles and keywords, all the collection papers are
validated against the following criteria:

1) Papers must be very recent, and there are no dupli-
cations.

2) For quality control, remove preprinted or publications
that are not peer-reviewed.

3) To ensure the relevance of collected publications,
at least two authors review each paper’s abstract to
check whether the paper is related to the scope of the
research or not.

I
I
I
Sl%lrt
i
I
v

Searching for Papers Add Check
i

Reference Manager —Export—» Copy —Import-»

[

Spreadsheet

I
1

1 Read/
: write
i v

L——> Extract the Data Fetch

Keep/Delete—»

| —» SelectingaPaper — — - Filtering by Criteria

— — — = Analysis — -output—»

Fig. 1. Research methodology.

Next, the remaining 41 papers are exported from the refer-
ence manager to a spreadsheet. The spreadsheet contains the
main attributes of each research paper and other details related
to this research, such as the paper title, type, library, authors,
date, the software engineering area, subarea, keywords, aim,
objectives, main points, and summary. When the paper is
selected to be included in the spreadsheet file, all details need
to be obtained and filled out in the spreadsheet. With the
help of the reference manager software, the keywords are also
exported instead of manually filling them out. Still, several
papers’ keywords are manually extracted, which indicates in-
consistent standardization between databases. These keywords
are processed differently, and a program is developed that
is executed inside the spreadsheet to handle the data. The
program simply fetched all keywords with their corresponding
paper and then clustered them based on each keyword.

III. LITERATURE OUTCOMES

In this section, the papers selected for review are discussed.
This literature review is divided into five subsections based
on the problems the research papers solve. The subsections
are software management, software specification, software
development, software verification and validation, and software
evolution. Fig. 2 depicts these subsections. Furthermore, two
subsections: software management and software verification
and validation, are further divided into subsubsections.

A. Software Management

Since software management is an extensive topic, its topics
are further divided into subsections according to what is
discussed in the selected papers. These subsections are produc-
tivity and motivation, task and crowd worker recommendation,
trust issues, task pricing, and project documentation. Fig. 3
shows the subsections of software management.

www.ijacsa.thesai.org

778 |[Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Software Management

Software Verification and Validation

Review Areas

Software Specification

—

Software Development

Software Evolution

Fig. 2. Literature outcome main areas.

Productivity and Motivation
’ Task and Crowd Worker Recommendation

Software Management

Task Pricing
Project Documentation

Fig. 3. Software management subareas.

1) Productivity and motivation: The authors of [10] inves-
tigate the collaboration of crowd workers in transient teams
versus solo developers using a data-driven empirical study. The
results show that the experience of teamwork affects the teams’
performance in both the long and short term. In particular, the
results show that individuals in each team can learn in the
short term by getting support and sharing ideas with other
members. Furthermore, in the long term, the members learn
from working with other experienced team members. The
paper contributes strategies for collaborative contest design-
ers, platform operators, and crowd workers. These strategies
include increasing the complexity of the contests, emphasizing
virtual teams in contests, or reducing the number of total
medals.

While [10] examines the effects of working solo as a
developer or in teams on performance and learning, the authors
of [11] study the effects of game elements that exist in several
crowdsourcing platforms on individual contributors. Multiple
crowdsourcing platforms use game elements such as contests,
leaderboards, and rankings with the intent to motivate crowd
workers. The results show that there is a different effect on the
performance and effort of workers depending on their abilities.
Data from TopCoder shows that feedback has a positive effect
on high-scoring workers and a negative effect on low-scoring
individuals.

Unlike [10], [11], the writers of [12] define, explain,
and justify the area and use of the microtasks programming
approach, regarding functions programming, on the factors

Vol. 14, No. 4, 2023

such as team size, the time needed for new developers, and the
velocity of the whole project. Moreover, they have conducted
an experiment to study the positive and negative sides without
focusing on areas related to the design and maintenance of
microtasks. The experiment has shown several advantages of
adopting microtasks, especially for the short project schedule.
Overall, this study establishes a path for software corporations
and encourages them to use microtasks, which could lead
to the involvement of external developers, crowdsourcing in
particular.

2) Task and crowd worker recommendation: The authors
of [13] state that crowd workers often choose their testing
tasks from whatever is immediately available. This abrupt
choice could lead to wasted time and effort for both the tester
and the requester. Furthermore, it could lead the tester to
the inability to discover and find the bugs in the assigned
task. Thus, the authors of this paper propose a context-aware
personalized crowdsourced software testing method for task
recommendation named PTRec. This method uses contextual,
historical data and the preferences of the tester to recommend
the appropriate task. PTRec consists of two models that are
able to extract 60 features automatically to help the tester
choose a suitable task. The goal is to reduce wasted efforts
and the number of unpaid tasks. PTRec also uses the random
forest learner technique to find the proper testing task which
matches the workers’ interests and expertise. Tests on 2404
crowd workers and 636 tasks reveal that this approach has 82%
precision and saves the efforts of exploring tasks by 81%.

In addition to [13], another research [14] has proposed
a new recommendation model which considers users’ prefer-
ences. This method is a capability-corrected long- and short-
term attention network (CLEAN). It outperforms the existing
traditional models. The model considers the gradual interest
changes of workers and the constraints and skills needed to
perform the tasks while incorporating the contextual data of
tasks besides common attributes.

According to the authors of [15], existing studies use one-
time recommendations based on the knowledge of the worker
at the start of a new task. Furthermore, they assert that this
recommendation has a popularity bias. In other words, the
methods in these studies recommend almost all of the tasks to
users with the highest experience. To remedy these issues: this
study proposes iRec2.0, which is a context- and fairness-aware
in-process crowd worker recommendation method. iRec2.0
achieves its stated goals by modeling the dynamic testing
context, using a learning-based technique, and applying a
multi-objective optimization component. The outcomes of the
evaluations show that this method has the potential to divide
the tasks fairly among the users, decrease the testing process
time, and save costs.

In [16], the authors assert that the quantity and quality of
the completed tasks are directly affected by task recommenda-
tion. The authors also state that previous task recommendation
modules focus on one user only per task. Unlike [13], [15],
the authors of [16] present a method to recommend tasks and
coworkers for these tasks. This method operates on the user’s
performance history on previous tasks in combination with a
social network component for the coworker recommendation.
This method checks and informs users if it is best to complete
this task independently or if they should seek help from a

www.ijacsa.thesai.org

719 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

friend in their social network. This method factorizes a user-
task rating matrix to get the latent matrix. Then it applies
a greedy method to select tasks for each user. The method
calculates the intimacy data and the extroversion data of
users with their friends in the social network to recommend
coworkers. The results by the authors show that it outperforms
the current existing algorithms.

Crowdsource contribution is open to every qualified person.
This openness could pose a problem of malicious workers
and malicious task submissions. To tackle these problems, the
authors of [17] propose a method named Outlier Detection for
Streaming Task Assignment. Its goal is to detect malicious
crowd workers. This technique uses an evolving time series to
model the arrival of workers and their task submissions. This
framework has a novel method based on Generative Adver-
sarial Network (GAN), which is socially aware and can work
with time series. The authors also propose a novel method to
train the loss functions of GANs with social awareness. It also
has the capability to assign tasks to users similar to [13]-[16].
This method uses a greedy algorithm to improve the efficiency
of the process of task assignment.

Whereas [13]-[17] focus on task assignment, [18] focuses
on the reliability of recruits. In [18], the authors investigate
four different crowdsourcing platforms and a computer science
(CS) mailing list to determine the reliability of their recruits for
empirical software development studies. The crowdsourcing
platforms are Prolific, Appen, Clickworker, and Mechanical
Turk. The authors’ criteria of reliability are programming
skills, privacy, and security attitudes. For the university CS
students, the authors also consider self-efficacy. The results
show that while university CS students rated themselves lower
than other crowdsourcing participants in secure development
and self-efficacy, 89% of them answered all programming
skills correctly. Furthermore, the study shows that university
CS students are the most cost-effective recruits.

Out of all the studies on task management in this paper,
only one study highlights the need for coordination in the
platform for doing tasks related to software design between
designers and clients. Therefore, it identifies all potential co-
ordination limitations encountered in the process and promotes
coordination propositions with the help of a questionnaire.
The feedback from participations through the questionnaire
verifies the limitations and welcomes the purpose solution to
alleviate the lack of coordination in platforms [19]. Moreover,
another study proposes four steps to task flow from the
beginning of constructing the task until the aggregation of the
results, and this solution is evaluated in two ways. Also, the
crowdsourcing platforms have the advantage of incorporating
and implementing proposed approaches [20].

3) Task pricing: Is giving crowd workers the ability to
choose their preferred incentive will result in better perfor-
mance and solution quality? Is one type of incentive for all
participants an optimal motivator? In [21], the authors of this
paper empirically investigate the effects of giving the choice of
reward to participants on the quality of the solution submitted.
The results of this work show that when participants can
choose their preferred incentive, they will spend more time
on their assigned tasks and produce better-quality solutions
in contrast to participants who offered one type of incentive.
The results show the importance of having a flexible reward

Vol. 14, No. 4, 2023

structure and allowing participants to select what matches their
motives.

Both [21], [22] state that personalized pricing can yield
better resulting tasks than common pricing, which is pricing
with no personalization. The authors of [22], though, remark
that personalized pricing is arduous to incorporate into some
systems due to its complexity. Therefore, [22] investigate
two schemes: personalized pricing per worker and common
pricing with bonus payments after task completion to explore
their impacts. The results show that with the proper bonuses,
common pricing is close to an approximation of optimal
personalized pricing.

The authors of [23] argue that instead of having a fixed
price for tasks, there should be a dynamic system for pricing
tasks to incentivize crowd workers. Accordingly, The authors
of this paper propose a system called CrowdPricer, which
gives, in addition to the base payment for the accomplished
tasks, bonuses for completing tasks which is the recommended
method by [22]. In addition, CrowdPricer increases the utility
expectation of the requester to guarantee profits. To achieve its
stated goals, CrowdPricer learns the effect of bonuses on the
quality of the delivered tasks using deep time sequence mod-
eling. The authors’ experimentations using a crowdsourcing
platform and simulations show that using CrowdPricer results
in higher-quality task solutions and maximizes the utility of
the requester.

4) Trust issues: Several critical and ordinary trust issues
are raised in the crowdsourcing implementation. The authors
[24] present these issues by conducting a survey with practi-
tioners, listing nine critical issues as “deficient assistance to
best practices”, “malicious code”, “lack of licensed software
utilization”, “loss of data”, quality
of workers”, “social attacks”, “crowd legal action”, and “loss
of intellectual property”. Additionally, the study results are
validated via a focus group of four experts in academia. One
of the issues of intellectual property is investigated in the
context of testing reports by one paper [25]. It proposes a
system for intellectual rights confirmation with the integration
of blockchain and the implementation of other methods. This
system would overcome problems, such as code plagiarism,
and prevent unwanted modifications of data with the help
of the blockchain decentralized methodology [25]. Another
paper [26] indicates the need for implementing blockchain
to diminish unwelcome behavior raised by centralized sys-
tems. However, it showed that the quality of previous works
regarding keeping traceability or increasing privacy is less
than required. Therefore, it proposes STPChain based on
blockchain, which better preserves traceability and improves
privacy, including preventing wrong actions.

ELIT3

network security risks”,

5) Project documentation: The paper [27] studies the effect
of using various types of media as a documentation type and
focuses solely on instructional screencast documentation. As
the popularity of this type has recently increased, especially for
crowd-based content and new developers, the paper suggests a
platform for this content. In addition, the platform could have
essential functionalities such as making the content searchable
and linking its content to other artifacts.

www.ijacsa.thesai.org

780 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

B. Software Specification

As there is a vague overlap between crowd-based re-
quirements engineering (CrowdRE) and market research (MR)
primarily caused by the incremental use of automation, one
study explains and identifies them. Furthermore, after provid-
ing various scenarios and equivalent implementation of both
CrowdRE and MR, the study implies the overall benefits of
CrowdRE, which could be sufficient [28].

Specialized public web forums and general user stories
format are a great way to elicit crowd opinions and ex-
periences on many topics. The authors of [29] use Reddit
forums to collect requirement engineering data by analyzing
the discussion in the forums. In particular, the authors propose
crowdsourcing requirement engineering by valuation argumen-
tation (CrowdRE-VArg) to identify and prioritize issues, design
changes, and new features and decide on the appropriate
requirements. CrowdRE-Varg uses machine learning and nat-
ural language processing to analyze end-users supporting and
attacking arguments in discussions from users’ posts on Reddit.
Their results show the validity of the approach for using Reddit
as a platform for rational mining and the eliciting of opinions.
Another paper [30] analyzes user stories and proposes CREUS,
Crowd-based Requirements Elicitation with User Stories, as an
iterative process practical design for conducting pull feedback
after engaging in three case studies. It provides qualitative
analysis of user stories or feedback as the main contribution
besides quantitative results as usual case studies.

Software requirement engineering (RE) is a challenging
process, and it requires the constant availability of the stake-
holders, which is not guaranteed. To handle the problems
of RE, the author of [31] proposes a conceptual framework
that combines the crowdsource software development (CSSD)
approach with the SCRUM software development approach.
The framework collects the data from the crowd at large,
which increases efficiency and reduces costs. This framework
consists of four main layers designed to use the features of
both approaches. The layers deal with document preparation,
prioritization of tasks, planning, design, and retrospective
meeting. On the other hand, [32] present specific challenges
regarding requirements for a specific area. The authors show
and discuss the needs of older well-being adults for intel-
ligent assistance systems through crowd-based requirements
engineering (crowd-RE). Also, it demonstrates the crowd-RE
process and some challenges in this area.

One research [33] studies prototype validation. It develops
a platform that uses the crowd to obtain feedback and validate
the prototype iteratively before actual development. First, it
conducts a design science study to address the vague of
applying crowd-workers and prototype validation in platforms.
Then, through the formed knowledge and implementation, it
develops a platform that tackles the difficulties. Moreover,
the study is valuable for building new or enhancing current
mechanisms with the crowd-validation process.

C. Software Development

In [34], the authors aim to identify the percentages of vul-
nerabilities in code submitted by participants in code in com-
petitive programming (CP) platforms. This paper focuses on
data, 6.1 million submissions to be exact, from the CodeChef

Vol. 14, No. 4, 2023

CP platform. The results show that 34.2% of submissions have
software vulnerabilities. The authors did not find conclusive
evidence to correlate the number of vulnerabilities with the
leaderboard position of the participant. Furthermore, the study
shows that participants do not follow secure coding practices,
and even when a participant with perfect scores reattempts
the task, the study shows there are no security improvements
in the new submission. One way to mitigate these issues
is to use crowdsourcing. The authors of [20] suggest that
instead of using automated or manual anti-pattern detection
methods, which consume time and lack certainty, the use of
crowdsourcing and propose four steps for task flow.

D. Software Verification and Validation

On the subject of software verification and validation,
the selected papers solve problems in software testing and
usability, test report clustering and prioritization, and quality
of defects reports. Fig. 4 shows the subareas of software
verification and validation.

Software Testing and Usability ‘

Software Verification and Validation % Test Report Clustering and Prioritization

W Quality of Defect Reports

Fig. 4. Software verification and validation subareas.

1) Software testing and usability: After analyzing the prob-
lems that developers face in crowdsourced software develop-
ment (CSD), the authors of [35] concluded that crowdsourcing
is more fitting for software testing than software development.
The authors state that the main advantages of crowdsourced
software testing (CST) are reducing the time and cost of
software testing. Furthermore, the authors express that better
tools make developers work efficiently. Hence, the paper pro-
poses a new testing program that incorporates crowdsourcing
and open-source sharing techniques. An example of using
crowdsourcing in testing is [36]. The authors of [36] did a
comprehensive study to compare the cost and time of using
novice crowd and expert heuristics in usability inspection. A
single expert’s heuristic usability inspection leads the novice
crowd. The results show that, on average, both methods detect
the same usability issues. However, the novice crowd method
takes less time to identify the problems and costs less than the
expert heuristic usability inspection.

To overcome the challenges of testing human-Al interac-
tions and collaborations, the authors of [37] propose a Human-
Al INtergarion Testing framework (HINT). HINT is a crowd-
based framework that uses a humans-in-the-loop workflow to
test Al-based experiences. This framework aims to solve the
drawbacks of existing methods by simulating AI experiences
that evolve over time, allowing rapid testing, providing early
feedback during the development phase, and evaluating crowd
workers and Al in offline testing. In addition, to overcome
problems that exist in current testing implementation for IoTs,
another research [38] develops a new crowdsourcing test sys-
tem oriented toward the Internet of things with the integration
of blockchain technologies as a potential solution. The system

www.ijacsa.thesai.org

781 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

consists of two modes, online and offline testing. The device
or devices in the online mode, which are the main focus of
interest, are real devices. In this case, testers engage and test
the devices online with multi-thread technology implemented
to allow concurrent testers, which is helpful, especially for
limited hardware resources. The offline mode is to test the de-
vices physically. Besides all security that the system provides,
it contributes to a dependable online testing system for IoTs,
especially with the lack of online testing for IoTs.

Regarding fault localization and exploiting the power of
crowdsourcing, only one research [39] has investigated this
area. It has a distinguished and unfamiliar approach for au-
tomated fault localization (AFL) in crowdsourcing software
engineering by exploiting the solutions of all works and
making them one set of referenced solutions. The main point
is that when encountering fault statements, each statement in
buggy programs is referenced and evaluated with an equivalent
statement from other solutions.

2) Test report clustering and prioritization: The authors
of [40] assert that an issue of the previous research papers
dealing with the clustering of test reports is that the papers
do not take into account the semantic connection between
the screenshots and text in the analyzed test reports, which
results in suboptimal results, especially in the deduplication of
test reports. Therefore, This paper proposes a method using
semi-supervised clustering using deep image understanding
to analyze crowdsourced mobile application test reports. This
method is SemCluster. SemCluster creates semantic binding
rules from the semantic connection between screenshots and
text descriptions in test reports. The results of this paper show
that SemCluster outperforms the state-of-the-art method in six
metrics of clustering results. Another approach [41] uses a
fused features approach after obtaining text and screenshots
features and then using common classification algorithms.

Liu et al. in [42] state that in addition to the large number of
test reports produced by crowdsourcing that needs inspecting,
one specific issue of mobile application test reports is that
they have more screenshots than text descriptions of the tests.
In addition to this paper, [40], [41], [43], [44] deal with these
issues as well. To solve the issues of the number of reports
and screenshots, the authors of [42] propose a novel method to
understand text and images to cluster test reports. This method
uses natural language processing to calculate the distance
between reports. It also uses Spatial Pyramid Matching (SPM)
to compute the similarity of the screenshots in the reports. The
authors tested the method on 1400 screenshots and more than
1600 test reports from six industrial crowdsourced projects.
Tests show that this method results in up to 37% improvement
over the baseline in the average percentage of faults detected
(APFD). Moreover, only the following paper [41] points out
that existing automatic test report classification techniques are
incompatible with crowdsourced mobile test reports as they
contain incomplete texts, as well as the previously mentioned
screenshots.

In [43], the authors propose and evaluate a method adapted
from the prioritization of test reports in regression testing.
This method sorts test reports in two phases. First, to process
the text of the reports, this method uses natural language
processing and word segmentation. Second, to prioritize the
test reports, the paper uses a combination of a genetic algo-

Vol. 14, No. 4, 2023

rithm, two greedy algorithms, and an adaptive random test case
prioritization algorithm. It aims to make it easy and efficient
for developers to check reports according to their priority. The
results show that this method has promising performance in
prioritizing the test reports, with an average percentage of
faults detected (APFD) of more than 0.8.

The authors of [44] devise a new method called DivClass
to prioritize test reports. DivClass combines diversity and
classification strategies to order the reports for inspection. A
feature of this method is that it handles duplicate test reports
similar to the method proposed in [40], [42]-[44] in which they
use natural language processing to analyze the test reports in
one of their method steps. The next step in [44] is to build
a similarity matrix using an asymmetric computation strategy.
The final step consists of the previous two steps to prioritize
the reports. The authors state that it reduces the number of
tests to inspect, reducing the inspection cost. It also improves
DivRisk, the state-of-the-art method, by 14.12% on average
and has 0.8887 APFD.

3) Quality of defect reports: Three studies [45]-[47] pro-
vide ways to enhance the quality of the defect reports generated
by usually non-expert crowds. The first research [45] studies
the reports, which contain a good and bad description of
bugs, submitted by crowdsourcing, usually non-professional
testers. After it shows possible quality indicators, the paper
proposes CTRQS as a framework to qualify test reports using
analytical indicators based on dependency parsing. Therefore,
in the end, just the reports that describe the defect better
should be processed for localization and fixing. The second
paper [46] attempts to generate more promising defect reports
results by adding more than one tester participating together
to find and report defects instead of one tester working alone.
The result shows an enhancement regarding the quality of
the final report by decreasing the invalid reported defects
and increasing the report of difficulty defects. On the other
hand, the third research [47] states the need for improving
the crowd-workers instead of only establishing techniques for
the quality of crowdsourced testing reports. Also, it indicates
that enhancing the knowledge and abilities of testers from
the beginning will provide better-quality reports. Therefore,
this study proposes an assistant approach to suggest, guide,
and educate crowds by exploiting Android’s automated testing
results.

In a different area of software quality, one research [48]
suggests using crowdsourced workers, who meet minimum
quality requirements, as a third party to evaluate and certify
software meant for public users based on the available software
documents and templates. Then, a quantitative quality score is
assigned to the software-specific version, and the evaluation
process is repeated after each considerable change in the
current software version. Another area of research [49] claims
that almost all previous techniques study the duplicated defects
without false defects. Hence, this paper contributes by using
duplicated defects to build a model which can provide a
high estimation accuracy for valid defects. Furthermore, the
model accuracy increases when the approach is applied to
crowdsourced testing.

www.ijacsa.thesai.org

782 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

E. Software Evolution

In [50], Reis et al. use supervised machine learning meth-
ods with crowdsourced data collected over three years to
identify code smells. The authors focus on Java code and three
types of code smell, which are long methods, god classes, and
feature envy. The data is collected from about a hundred teams,
each team with an average of three members. The results of the
papers prove the feasibility of crowdsemlling using supervised
machine learning techniques applied to data collected from
software developers (wisdom of the crowd). However, the
authors state that further studies are needed to cover other
types of code smells. The authors are currently developing an
Ecplise IDE plugin which should simplify the crowdsourcing
process. This plugin collects data about the code, identifies
code smells, and gets the developer’s opinion regarding the
data detected by the plugin.

IV. RESULTS AND DISCUSSION

RQ1: What are the directions and trends in crowd-
sourced software engineering? After collecting and analyzing
the 41 papers published in 2022, This research reveals that
the collected papers discuss the following five areas: software
management, software specification, software development,
software verification and validation, and software evolution.
The most discussed area in crowdsourced software engineering
is the area of software management. Out of the 41 papers, 17
papers deal with various software management problems. This
review also determines that the least papers, one paper, are in
the area of software evolution, even though it is an essential
and costly activity in software engineering. Table I shows the
areas, the count of the papers, and the paper selected in these
areas.

TABLE I. AREAS OF THE SELECTED PAPERS

Area Selected ~ Papers

Software Management 17 [10], [11], [13]-[27]
Software Specification 6 [28]-[33]

Software Design & Implementa- 2 [20], [34]

tion

Software Verification & Valida- 15 [35]-[49]

tion

Software Evolution 1 [50]

Continuing the discussion on the directions and trends of
the research in crowdsourced software engineering, in this
review, both software management and software verification
and validation are divided into subareas based on the collected
papers. Table II shows the subareas of software management,
the collected and selected papers, and the number of papers in
each of the subareas. Software management has five subareas
shown in Table II. A look at the areas of software management
shows that most research papers in this literature review, which
are 7 out of 17, are on task and crowd worker recommenda-
tions. There are three papers in each of the following fields
productivity and motivation, task pricing, and trust issues in
software. The least number of papers which is one study is on
project documentation.

In the subarea of software verification and validation, there
are 15 papers spanning three subareas. There exist five studies

Vol. 14, No. 4, 2023

TABLE II. SUBAREAS OF SOFTWARE MANAGEMENT

Subareas Selected ~ Papers
Productivity & Motivation 3 [10]-[12]
Task & Worker Recommendation 7 [13]-[19]
Task Pricing 3 [21]-[23]
Trust Issues 3 [241-[26]
Project Documentation 1 [27]

in each one of the three subareas. Table III shows the details of
the subareas and papers of software verification and validation.

TABLE III. SUBAREAS OF SOFTWARE VERIFICATION AND VALIDATION

Subareas Selected Papers

Testing & Usability 5 [35]-(39]
Test Report Clustering & Prioritization 5 [40]-[44]
Quality of Defect Reports 5 [45]-{49]

The results of the Tables I, II, and III lead us to conclude
that the most trending topics in crowdsourced software engi-
neering are two. First, the topics that deal with software man-
agement especially managing tasks, workers, and motivation.
Second, all the subareas of software verification and validation.
These subareas are software testing and usability, test report
clustering and prioritization, and quality of defect reports.

Furthermore, an analysis of all keywords in the papers
was conducted to investigate the trending topics from different
viewpoints. The keywords are also used to see how diverse
the papers are in the context of subtopics. As a result, the
number of different keywords is more than 180 words from
41 papers. Table IV shows the keywords that appear in three
papers or more, only the top eight keywords are listed, and
the common keywords to the primary research topic are
excluded, such as crowdsourcing, software engineering, and
software. The results agree with the previous conclusion that
software management and testing are the most dominant topics.
Moreover, the selected papers in this review are more diverse,
covering various subtopics, as there are 162 keywords that are
unique and used only in one paper.

TABLE IV. MOST COMMON KEYWORDS THAT APPEAR IN PAPERS

Keywords Selected ~ Papers

Crowdsourced testing 9 [13], [15], [25], [41], [42], [44], [45],
[471, [49]

Task Analysis 7 [13], [19], [42]-[44], [47], [49]

Testing 5 [13], [37], [42], [45], [47]

Computer Bugs 5 [13], [42], [44], [45], [47]

Software Testing 4 [43], [44], [46], [49]

Requirements Engineering 3 [28], [31], [32]

Mobile Applications 3 [42], [45], [47]

Software Quality 3 [20], [26], [50]

RQ2: Did the papers focus on mobile crowdsourcing?
Can general crowdsourced software engineering methods
be used in mobile crowdsourcing? Mobile development
comes with its own set of problems, especially in software
testing [40]-[44] describe these issues. In this review, there
are ten papers that focus exclusively on mobile crowdsourcing,
specifically mobile testing. The remaining papers, 31 papers,

www.ijacsa.thesai.org

783 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

focus on general software engineering crowdsourcing, which
is applicable to mobile crowdsourcing as well. Table V lists
the papers with their focus area. These results lead us to
deduce that the crowdsourcing methods in general software
engineering crowdsourcing are suitable for mobile crowdsourc-
ing, except for mobile testing methods highlighted by [40]-
[44].

TABLE V. PAPERS Focus

Focus Selected Papers
[13], [15], [16], [40]-[45], [47]

[10]-[12], [14], [17]-[39], [46], [48]-[50]

Mobile Crowdsourcing 10
General Crowdsourcing 31

RQ3: Did the papers in the review use AI? What type
of Al did the papers use? In what areas did the papers
use AI?

TABLE VI. Al IN PAPERS

AI Methods Selected Papers
ML & DM 14 [13]-[171, [231, [29], [30], [40]-[44], [50]
None 27 [101-[12], [18]-[22], [24]1-[28], [31]-[39], [45]-[49]

Yes, 14 papers use Al techniques, while 27 do not. Specif-
ically, the papers use either Machine Learning (ML) or Data
Mining (DM) methods. Table VI list the papers that use the
Al methods. However, not all Al is applied to all the areas of
crowdsourced software engineering. Table VII shows the areas
and papers in which AI methods are employed. In Table VII,
the results show that test report clustering and prioritization
and task and worker recommendation use Al the most, with
five papers each. Two papers in software specification use Al.
Both task pricing and software evolution have one paper each
that uses Al techniques.

TABLE VII. ATl AREAS IN THE SELECTED PAPERS

Area Selected ~ Papers
Test Report Clustering & Prioritization 5 [40]-[44]
Task & Worker Recommendation 5 [13]-[17]
Software Specification 2 [29], [30]
Task Pricing 1 [23]
Software Evolution 1 [50]

V. CONCLUSION

This literature review examines and studies the latest papers
in crowdsourced software engineering to find the current trends
and directions of the research literature. This paper focuses
exclusively on all the publications of 2022 to get a clear and ac-
curate picture of the crowdsourcing landscape. This review also
answers a number of relevant and current questions. It answers
whether the papers focus solely on mobile crowdsourcing and
whether general crowdsourced software engineering methods
apply to mobile crowdsourcing. Furthermore, it discusses the
question of Al usage in the papers. In particular, this re-
search checks whether the selected papers incorporate machine
learning or data mining techniques into their proposed crowd-
sourcing solutions. The results of this literature review show
that the largest number of contemporary research focuses on

Vol. 14, No. 4, 2023

software management and software verification and validation.
In mobile crowdsourcing, the results show that while general
crowdsourcing methods work for most mobile crowdsourcing
activities, mobile testing requires specific techniques to deal
with the large number and the nature of tests. The results also
show the papers that use machine learning and data mining
methods to tackle specific crowdsourced software engineering
areas.

VI. FUTURE WORK

One of the least discussed topics in software engineering
crowdsourcing is secure software development. Crowd workers
come from diverse places and have different programming and
security backgrounds. Therefore, they will have various goals
to achieve and different experiences. In this research, paper
[34] shows the percentage of vulnerabilities in competitive
programming platform submissions. The study did not find a
connection between the leaderboard position of the participants
and the number of vulnerabilities in their submitted code.
Furthermore, even the resubmissions of full-scoring tasks did
not have security improvements. These results beg the follow-
ing research questions: Is it possible to have a crowdsourcing
platform for secure software development? How to incentivize
crowd workers to submit secure code? Can the incentivization
techniques in [21]-[23] be used to encourage secure coding
practices? Will it affect software verification and validation?
These are all questions that need further research.

There are many possible areas of improvement in the
quality of crowdsourcing that can be investigated. One of
them is the minimum number of crowd workers engaging in
one task. Each type of task requires a different number of
workers, and in this way, the power and quality of crowd
wisdom can be exploited in a cost-effective manner. Moreover,
the crowds must be certified for the required type of tasks
before joining crowdsourcing platforms. Certification will en-
sure higher quality workers. Alternatively, to encourage worker
certification, certified workers can be paid more than non-
certified ones. There could be several types of certifications
depending on the type of platform or task. In addition, to our
knowledge, there are no established crowdsourcing standards
of best practices that ensure continuity and portability for both
tasks and processes.

ACKNOWLEDGMENT

The researchers would like to thank the Deanship of Scien-
tific Research, Qassim University, for funding the publication
of this project.

REFERENCES

[1] J. Howe, “The rise of crowdsourcing,” Wired magazine, vol. 14, no. 6,
pp. 1-4, 2006, number: 6.

[2] A. Doan, R. Ramakrishnan, and A. Y. Halevy, “Crowdsourcing
systems on the World-Wide Web,” Communications of the ACM,
vol. 54, no. 4, . 86-96, Apr. 2011. [Online]. Available:
https://doi.org/10.1145/1924421.1924442

[3] D. C. Brabham, “Crowdsourcing as a Model for Problem Solving:
An Introduction and Cases,” Convergence, vol. 14, no. 1, pp. 75-90,
Feb. 2008, publisher: SAGE Publications Ltd. [Online]. Available:
https://doi.org/10.1177/1354856507084420

www.ijacsa.thesai.org

784 |Page

[4]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(IJACSA) International Journal of Advanced Computer Science and Applications,

N. Kasturi, S. G. Totad, and G. Ghosh, “Analysis on Potential Use of
Crowdsourcing in Different Domain Using Metasynthesis,” in Emerging
Technologies in Data Mining and Information Security, ser. Lecture
Notes in Networks and Systems, P. Dutta, S. Chakrabarti, A. Bhat-
tacharya, S. Dutta, and V. Piuri, Eds. Singapore: Springer Nature,
2023, pp. 747-756.

K. T. Stolee and S. Elbaum, “Exploring the use of crowdsourcing to
support empirical studies in software engineering,” in Proceedings of
the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ser. ESEM *10. New York, NY, USA:
Association for Computing Machinery, Sep. 2010, pp. 1-4. [Online].
Available: https://doi.org/10.1145/1852786.1852832

A. Alabduljabbar and S. Alyahya, “Leveraging Social Network
Analysis for Crowdsourced Software Engineering Research,” Applied
Sciences, vol. 12, no. 3, p. 1715, Jan. 2022, number: 3 Publisher:
Multidisciplinary Digital Publishing Institute. [Online]. Available:
https://www.mdpi.com/2076-3417/12/3/1715

M. Zulfigar, M. N. Malik, and H. H. Khan, “Microtasking Activi-
ties in Crowdsourced Software Development: A Systematic Literature
Review,” IEEE Access, vol. 10, pp. 24721-24737, 2022, conference
Name: IEEE Access.

S. Qayyum, S. Imtiaz, and H. H. Khan, “Challenges of Agile—Crowd
Software Development: A Systematic Literature Review,” Journal of
Circuits, Systems and Computers, p. 2330001, 2022, publisher: World
Scientific.

D. d. C. Candria and R. M. d. Araujo, “Crowdsourcing Software
Development - a possible path?” in XVIII Brazilian Symposium on
Information Systems, ser. SBSI. New York, NY, USA: Association
for Computing Machinery, Jun. 2022, pp. 1-8. [Online]. Available:
https://doi.org/10.1145/3535511.3535532

K. Huang, J. Zhou, and S. Chen, “Being a Solo Endeavor or
Team Worker in Crowdsourcing Contests? It is a Long-term Decision
You Need to Make,” Proceedings of the ACM on Human-Computer
Interaction, vol. 6, no. CSCW2, pp. 494:1-494:32, Nov. 2022, number:
CSCW?2. [Online]. Available: http://doi.org/10.1145/3555595

M. Tsvetkova, S. Miiller, O. Vuculescu, H. Ham, and R. A. Sergeev,
“Relative Feedback Increases Disparities in Effort and Performance
in Crowdsourcing Contests: Evidence from a Quasi-Experiment on
Topcoder,” Proceedings of the ACM on Human-Computer Interaction,
vol. 6, no. CSCW2, pp. 536:1-536:27, Nov. 2022, number: CSCW2.
[Online]. Available: http://doi.org/10.1145/3555649

E. Aghayi and T. D. LaToza, “A controlled experiment on
the impact of microtasking on programming,” Empirical Software
Engineering, vol. 28, no. 1, p. 10, Nov. 2022. [Online]. Available:
https://doi.org/10.1007/s10664-022-10226-2

J. Wang, Y. Yang, S. Wang, C. Chen, D. Wang, and Q. Wang, “Context-
Aware Personalized Crowdtesting Task Recommendation,” IEEE Trans-
actions on Software Engineering, vol. 48, no. 8, pp. 3131-3144, Aug.
2022, number: 8 Conference Name: IEEE Transactions on Software
Engineering.

Z. Peng, D. Wan, A. Wang, X. Lu, and P. M. Pardalos,
“Deep learning-based recommendation method for top-K tasks
in software crowdsourcing systems,” Journal of Industrial and
Management Optimization, pp. 0-0, Nov. 2022, publisher: Journal
of Industrial and Management Optimization. [Online]. Available:
https://www.aimsciences.org/en/article/doi/10.3934/jimo.2022223

J. Wang, Y. Yang, S. Wang, J. Hu, and Q. Wang, “Context-
and Fairness-Aware In-Process Crowdworker Recommendation,” ACM
Transactions on Software Engineering and Methodology, vol. 31,
no. 3, pp. 35:1-35:31, Mar. 2022, number: 3. [Online]. Available:
http://doi.org/10.1145/3487571

S. Chen, X. Zhao, J. Liu, G. Gao, and Y. Du, “Social-Network-
Assisted Task Recommendation Algorithm in Mobile Crowd Sensing,”
in Proceedings of the 7th International Conference on Information
and Education Innovations, ser. ICIEI '22. New York, NY, USA:
Association for Computing Machinery, Sep. 2022, pp. 136-142.
[Online]. Available: http://doi.org/10.1145/3535735.3535751

Y. Zhao, X. Chen, L. Deng, T. Kieu, C. Guo, B. Yang, K. Zheng,
and C. S. Jensen, “Outlier Detection for Streaming Task Assignment

in Crowdsourcing,” in Proceedings of the ACM Web Conference
2022, ser. WWW ’22. New York, NY, USA: Association for

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Vol. 14, No. 4, 2023

Computing Machinery, Apr. 2022, pp. 1933-1943. [Online]. Available:
http://doi.org/10.1145/3485447.3512067

M. Tahaei and K. Vaniea, “Recruiting Participants With Programming
Skills: A Comparison of Four Crowdsourcing Platforms and a CS
Student Mailing List,” in Proceedings of the 2022 CHI Conference on
Human Factors in Computing Systems, ser. CHI ’22. New York, NY,
USA: Association for Computing Machinery, Apr. 2022, pp. 1-15.
[Online]. Available: http://doi.org/10.1145/3491102.3501957

O. A. Hagbani and S. Alyahya, “Supporting Coordination among
Participants in Crowdsourcing Software Design,” in 2022 [EEE/ACIS
20th International Conference on Software Engineering Research, Man-
agement and Applications (SERA), May 2022, pp. 132-139, iSSN:
2770-8209.

R. Esmaeilyfard, “Improving detection of web service antipatterns
using crowdsourcing,” The Journal of Supercomputing, vol. 78,
no. 5, pp. 6340-6370, Apr. 2022, number: 5. [Online]. Available:
https://doi.org/10.1007/s11227-021-04134-3

E. N. Moghaddam, A. Aliahmadi, M. Bagherzadeh, S. Markovic,
M. Micevski, and F Saghafi, “Let me choose what I
want: The influence of incentive choice flexibility on the
quality of crowdsourcing solutions to innovation problems,”
Technovation, p. 102679, Dec. 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0166497222002309

S. Shin, H. Choi, Y. Yi, and J. Ok, “Power of Bonus
in Pricing for Crowdsourcing,” in Abstract Proceedings of the
2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International
Conference on Measurement and Modeling of Computer Systems,
ser. SIGMETRICS/PERFORMANCE °22. New York, NY, USA:
Association for Computing Machinery, Jun. 2022, pp. 43—44. [Online].
Available: http://doi.org/10.1145/3489048.3522633

X. Miao, H. Peng, Y. Gao, Z. Zhang, and J. Yin, “On Dynamically
Pricing Crowdsourcing Tasks,” ACM Transactions on Knowledge
Discovery from Data, Jun. 2022, just Accepted. [Online]. Available:

http://doi.org/10.1145/3544018

H. H. Khan, M. N. Malik, and Y. Alotaibi, “Trust Issues in Crowd-
sourced Software Engineering: An Empirical Study.” Journal of Infor-
mation Science & Engineering, vol. 38, no. 4, 2022, number: 4 ISBN:
1016-2364.

S. Huang, Z. Yang, C. Zheng, Y. Wang, J. Du, Y. Ding, and
J. Wan, “Intellectual Property Right Confirmation System Oriented to
Crowdsourced Testing Services,” in 2022 International Conference on
Blockchain Technology and Information Security (ICBCTIS), Jul. 2022,
pp. 64-68.

M. Li, L. Yang, Q. Xia, M. Fang, G. Liang, and C. Zuo, “STPChain: a
Crowdsourced Software Engineering Method for Software Traceability
and Fine-grained Privacy Based on Blockchain,” in 2022 IEEE 46th An-
nual Computers, Software, and Applications Conference (COMPSAC),
Jun. 2022, pp. 849-859, iSSN: 0730-3157.

P. Moslehi, J. Rilling, and B. Adams, “A user survey on the
adoption of crowd-based software engineering instructional screencasts
by the new generation of software developers,” Journal of Systems
and Software, vol. 185, p. 111144, Mar. 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121221002405

E. C. Groen, “Where Does Crowd-based Requirements Engineering
End and Market Research Begin?” in 2022 [EEE 30th International
Requirements Engineering Conference Workshops (REW), Aug. 2022,
pp. 136-138, iSSN: 2770-6834.

J. A. Khan, A. Yasin, R. Fatima, D. Vasan, A. A. Khan,
and A. W. Khan, “Valuating requirements arguments in the
online user’s forum for requirements decision-making: The
CrowdRE-VArg framework,” Software: Practice and Experience,
vol. 52, mno. 12, pp. 2537-2573, 2022, number: 12 _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3137. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3137

J. Wouters, A. Menkveld, S. Brinkkemper, and F. Dalpiaz, “Crowd-
based requirements elicitation via pull feedback: method and case
studies,” Requirements Engineering, vol. 27, no. 4, pp. 429-455, Dec.
2022, number: 4. [Online]. Available: https://doi.org/10.1007/s00766-
022-00384-6

M. N. Alatawi, “A conceptual framework for crowdsourcing require-
ments engineering in SCRUM-based environment,” IET Software, 2022,
publisher: Wiley Online Library.

www.ijacsa.thesai.org

785 |Page

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

(IJACSA) International Journal of Advanced Computer Science and Applications,

L. Radeck, B. Paech, F. Kramer-Gmeiner, M. Wettstein, H.-W. Wahl,
A.-L. Schubert, and U. Sperling, “Understanding IT-related Well-being,
Aging and Health Needs of Older Adults with Crowd-Requirements En-
gineering,” in 2022 IEEE 30th International Requirements Engineering
Conference Workshops (REW), Aug. 2022, pp. 57-64, iSSN: 2770-6834.

S. Gottschalk, S. Parvez, E. Yigitbas, and G. Engels, “Designing
Platforms for Crowd-Based Software Prototype Validation: A Design
Science Study,” in Product-Focused Software Process Improvement,
ser. Lecture Notes in Computer Science, D. Taibi, M. Kuhrmann,
T. Mikkonen, J. Kliinder, and P. Abrahamsson, Eds. Cham: Springer
International Publishing, 2022, pp. 334-350.

D. Das, N. S. Mathews, and S. Chimalakonda, “Exploring Security
Vulnerabilities in Competitive Programming: An Empirical Study,”
in Proceedings of the International Conference on Evaluation and
Assessment in Software Engineering 2022, ser. EASE ’22. New
York, NY, USA: Association for Computing Machinery, Jun. 2022, pp.
110-119. [Online]. Available: http://doi.org/10.1145/3530019.3530031

W.-T. Tsai, L. Zhang, and S. Hu, “From Crowdsourced Software
Development to Crowdtesting,” in 5th International Conference on
Crowd Science and Engineering, ser. ICCSE "21. New York, NY,
USA: Association for Computing Machinery, Mar. 2022, pp. 18-23.
[Online]. Available: http://doi.org/10.1145/3503181.3503185

M. Nasir, N. Ikram, and Z. Jalil, “Usability inspection:
Novice crowd inspectors versus expert,” Journal of Systems and
Software, vol. 183, p. 111122, Jan. 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121221002193

Q. Z. Chen, T. Schnabel, B. Nushi, and S. Amershi, “HINT:
Integration Testing for Al-based features with Humans in the
Loop,” in 27th International Conference on Intelligent User
Interfaces, ser. TUI ’22. New York, NY, USA: Association for
Computing Machinery, Mar. 2022, pp. 549-565. [Online]. Available:
http://doi.org/10.1145/3490099.3511141

Y. Lin, Z. Li, W. Yue, and J. Wen, “CrowdlIoT: The Crowd-Sourcing Test
System for IoT Devices Based on Blockchain,” Advances in Internet of
Things, vol. 12, no. 2, pp. 19-34, 2022, number: 2 Publisher: Scientific
Research Publishing.

LI Le-Ping, ZHANG Yu-Xia, and LIU Hui, “Crowdsourcing
Software Development Oriented Fault Localization,” Journal
of Software, pp. 1-18, Nov. 2022. [Online]. Available:

https://www.jos.org.cn/josen/article/abstract/6498

M. Du, S. Yu, C. Fang, T. Li, H. Zhang, and Z. Chen, “SemCluster: a
semi-supervised clustering tool for crowdsourced test reports with deep
image understanding,” in Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Vol. 14, No. 4, 2023

of Software Engineering, ser. ESEC/FSE 2022. New York, NY, USA:
Association for Computing Machinery, Nov. 2022, pp. 1756-1759.
[Online]. Available: http://doi.org/10.1145/3540250.3558933

Y. Li, Y. Feng, R. Hao, D. Liu, C. Fang, Z. Chen, and
B. Xu, “Classifying crowdsourced mobile test reports with
image features: An empirical study,” Journal of Systems and
Software, vol. 184, p. 111121, Feb. 2022. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0164121221002181

D. Liu, Y. Feng, X. Zhang, J. A. Jones, and Z. Chen, “Clustering
Crowdsourced Test Reports of Mobile Applications Using Image Un-
derstanding,” IEEE Transactions on Software Engineering, vol. 48,
no. 4, pp. 1290-1308, Apr. 2022, number: 4 Conference Name: IEEE
Transactions on Software Engineering.

P. Zhu, Y. Li, T. Li, H. Ren, and X. Sun, “Advanced Crowdsourced
Test Report Prioritization Based on Adaptive Strategy,” IEEE Access,
vol. 10, pp. 53 522-53 532, 2022, conference Name: IEEE Access.

Y. Yang and X. Chen, “Crowdsourced Test Report Prioritization Based
on Text Classification,” IEEE Access, vol. 10, pp. 92692-92 705, 2022,
conference Name: IEEE Access.

H. Zhang, Y. Zhao, S. Yu, and Z. Chen, “Automated Quality Assessment
for Crowdsourced Test Reports Based on Dependency Parsing,” in
2022 9th International Conference on Dependable Systems and Their
Applications (DSA), Aug. 2022, pp. 34—41, iSSN: 2767-6684.

S. Alyahya, “Collaborative Crowdsourced Software Testing,”
Electronics, vol. 11, no. 20, p. 3340, Jan. 2022, number: 20
Publisher: Multidisciplinary Digital Publishing Institute. [Online].
Available: https://www.mdpi.com/2079-9292/11/20/3340

X. Ge, S. Yu, C. Fang, Q. Zhu, and Z. Zhao, “Leveraging Android
Automated Testing to Assist Crowdsourced Testing,” IEEE Transactions
on Software Engineering, pp. 1-18, 2022, conference Name: IEEE
Transactions on Software Engineering.

R. Nandakumar, “Quantitative Quality Score for Software,” in 15th
Innovations in Software Engineering Conference, ser. ISEC 2022. New
York, NY, USA: Association for Computing Machinery, Feb. 2022,
pp. 1-5. [Online]. Available: https://doi.org/10.1145/3511430.3511457

K. Wu, S. Huang, Y. Shi, J. Zhu, and S. Tang, “Estimate the Precision
of Defects Based on Reports Duplication in Crowdsourced Testing,”
IEEE Access, vol. 10, pp. 130415-130423, 2022, conference Name:
IEEE Access.

J. P. d. Reis, F. B. e. Abreu, and G. d. F. Carneiro, “Crowdsmelling:
A preliminary study on using collective knowledge in code smells
detection,” Empirical Software Engineering, vol. 27, no. 3, p. 69, Mar.
2022, number: 3. [Online]. Available: https://doi.org/10.1007/s10664-
021-10110-5

www.ijacsa.thesai.org

786 |Page

