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Abstract—An accurate drug response prediction for each 

patient is critical in personalized medicine. However, numerous 

studies that relied on single-omics datasets continue to have 

limitations. In addition, the curse of dimensionality considers a 

challenge to drug response prediction. Deep learning has 

remarkable prediction effectiveness compared to traditional 

machine learning, but it requires enormous amounts of training 

data which is a limitation because the nature of most biological 

data is small-scale. This paper presents an approach that 

combines Bayesian Ridge Regression with Deep Forest. BRR 

relies on the Bayesian approach, in which linear model 

estimation occurs based on probability distributions rather than 

point estimates. It was utilized to integrate multi-omics, a feature 

selection that calculates the coefficient as the feature importance. 

DF reduces the computational cost and hyper-parameter tuning 

cost. The Cancer Cell Line Encyclopedia CCLE was used as a 

dataset to integrate the gene expression, copy number variant, 

and single nucleotide variant. Root Mean Square Error, Pearson 

Correlation Coefficient, and the coefficient of determination were 

used as the evaluation metrics. The obtained findings show that 

the proposed model outperforms Random Forest and 

Convolutional Neural Network regarding regression 

performance; it achieved 0.175 for RMSE, 0.842 for PCC, and 

0.708 for R2. 

Keywords—Bayesian ridge regression; deep forest; deep 

learning; drug response prediction; machine learning; multi-omics 

data 

I. INTRODUCTION 

Personalized medicine is a cancer therapy method that 
aims to find the most effective therapeutic solutions for each 
patient. The combination of genetic and drug-sensitivity data 
and the subsequent creation of drug-response associations 
allows for this discovery [1]. While personalized medicine is 
not yet utilized as a regular treatment, it is possible for most 
cancer patients due to the progress made in multi-omics 
features and drug-sensitivity testing [2]. Personalized 
treatment regimens based on genetics are one of the primary 
aims of systems medicine [3]. For the development of 
individualized cancer therapy treatments with a projected 
efficacy much above existing standard-of-care methods, the 
inferred models' ability to correctly forecast a tumor's 
responsiveness to a medicine or drug combination might 
benefit that process [3]. However, there has been a lack of 
progress in cancer treatment based on single-omics datasets 
such as those generated by the Human Genome Project and 
the early genomic profiling of the Cancer Genome Atlas 
(TCGA) projects [4]. The multi-omics analysis that has gained 
prominence in cancer research over the last several decades 

may be the only way to get a comprehensive view of cancer 
behavior and uncover new therapeutic vulnerabilities [5]. 

Moreover, the "curse of dimensionality" or large p, small 
n, is one of the most challenging issues in drug response 
prediction and when dealing with omics data in general [6] in 
other words, having many features p. However, only a few 
available data instances n create a particular barrier to using 
early concatenation in multi-omics integration. For instance, 
the human genome has more than 20,000 protein-coding 
genes, a significant number. As a result of this integration, 
multi-omics datasets may easily contain more than 50,000 
attributes when the genome, proteome, and transcriptome are 
all included. Regarding cancer data, the number of available 
tumor samples in a dataset is usually restricted, with cancer 
cohorts typically consisting of only a few hundred patient 
samples [5]. As a result, the features must be reduced through 
feature selection [7]. Feature selection works to identify the 
relevance of features and selects a collection of features or 
attributes based on a particular assessment criterion [8]. 

Despite the power of deep neural networks power, it 
appears to have drawbacks [9]. To begin with, it is noted that 
deep neural networks require enormous amounts (large-scale 
data) of training data are often needed, making them 
inapplicable to jobs having only small-scale data. Due to the 
high cost of class annotation, many real-world tasks currently 
lack adequate labeled data [9], [10], resulting in the poor 
effectiveness of deep neural networks in relation to those tasks 
[11]. Additionally, the success of deep learning is strongly 
dependent on carefully tuning several hyper-parameters [12]. 
Consequently, Zhou [11] introduced gcForest or Deep Forest 
(DF), which integrates multi-Grained and Cascade Forest as a 
deep learning alternative. gcForest is a new decision tree 
ensemble technique approach that outperforms deep learning 
across various applications. 

This paper introduced a method that combines Bayesian 
Ridge Regression (BRR) with Deep Forest (DF) called (BRR-
DF). BRR was used to integrate multi-omics which was 
utilized as a feature selection method that calculates the 
coefficient to determine the feature importance score. BRR 
relies on the Bayesian approach, in which linear model 
estimation occurs based on probability distributions rather 
than point estimates. In addition to the model parameters also 
coming from the distribution, the response is also generated 
from the probability distribution. The training inputs and 
outputs affect the posterior probability of the model 
parameters. 
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Furthermore, Ridge was embedded with Bayesian 
regression to reduce model complexity and multicollinearity 
by shrinking the coefficients. Most omics data is considered to 
be small-scale data; therefore, Bayesian is suitable for these 
cases. It integrates the prior knowledge of the parameter (prior 
parameter distribution) with the observed data. DF integrates 
Multi-Grained and Cascade Forest, which effectively capture 
the local features. The cascade forests utilize a network 
structure inspired by a multi-layer artificial neural network to 
continuously improve results. DF was suggested as a deep 
learning alternative to reduce complexity time in hyper-
parameter tuning that otherwise causes a computational cost in 
deep learning models. 

The contribution of the proposed method can be 
summarized in the following two points: 

 Using BRR as a feature selection method for 
integrating gene expression, copy number variant, and 
single nucleotide variant to improve drug response 
prediction. BRR can handle inadequate data or skewed 
distributed data by modeling linear regression models 
using probability distributions. By utilizing BRR, we 
aim to identify the most informative features from 
multiple genomic data sources and improve the 
accuracy of drug response prediction. 

 Using DF to reduce the computational cost of hyper-
parameter tuning; also, when the inputs have a high 
degree of complexity or dimensionality, DF can boost 
its representational learning capabilities to improve 
prediction. 

The rest of this paper is organized as follows. Section 2 
introduced the related work. Section 3 presented the methods 
and materials used in this study including datasets, framework 
of BBR-DP, and evaluation metrics. Section 4 elaborated 
results and discussion.  In Section 5, the conclusion and future 
work were presented. 

II. RELATED WORK 

The current studies have introduced various machine 
learning techniques for predicting drug sensitivity and 
discovering biomarkers affecting drug response. Examples of 
these techniques are Support Vector Machines (SVMs) [13], 
Graph Networks [14], [15], Bayesian multitask multiple 
kernel learning [16], [17], Random Forest (RF) [19–22], and 
Neural Network [22] models. However, there is still a 
significant opportunity to improve prediction effectiveness 
and model generalizability regarding these computational 
models. Deep Learning (DL) has also been employed 
successfully in other drug discovery-related tasks. The 
prediction effectiveness of Deep Learning algorithms is 
comparable to, if not better, than that of the approaches for the 
bulk of these tasks [23]. Numerous deep learning-based 
techniques for drug response prediction have been proven to 
be successful, including DeepProfile [24], CDRscan [25], 
DeepCDR [14], DeepDSC [26], and GraphDPR [15]. 

A Bayesian ridge regression-based approach (B-GEX) was 
developed by Wenjian et al. [27] to infer the gene expression 
profiles of various organs from blood gene expression 

profiles. A low-dimensional feature vector was derived from 
the complete blood gene expression profile using feature 
selection for each gene in a tissue. To train the inference 
models to capture the cross-tissue expression correlations 
between each target gene in tissue and its preselected feature 
genes in peripheral blood, they used The Genotype-Tissue 
Expression (GTEx) RNA sequencing (RNA-seq) data of 16 
tissues. 

Velten and Huber [28] proposed a method for guiding 
penalization in regression using information from external 
covariates. Their method penalizes the feature groups defined 
by the covariates differentially and adjusts the relative power 
of penalization according to the information content of each 
group. Their procedure combines shrinkage with feature 
selection and provides a scalable optimization scheme using 
techniques from the Bayesian tool set. The method accurately 
retrieves each feature group's accurate effect sizes and sparsity 
patterns in simulations. They evaluated the performance of 
their method for drug response prediction using leukemia data. 
Prediction performance improves when the groups' dynamic 
ranges differ significantly. 

Sharifi-Noghabi et al. [29] utilized deep learning to 
develop a method called MOLI (multi-omics late integration). 
MOLI integrates gene expression data, copy number 
alterations, and somatic mutation. Their model learns features 
for each omics data type by encoding subnetworks particular 
to it. MOLI is the first end-to-end late integration approach 
using deep learning that combines a "triplet loss function" and 
a "binary cross-entropy" to improve this representation. 
Responder cell lines are more comparable and distinct from 
non-responder cell lines, while the half maximal inhibitory 
concentration (IC50) values predicted by this depiction are 
more accurate. 

Malik et al. [30] proposed a late multi-omics integration 
framework for robustly quantifying survival and drug 
response in breast cancer patients, emphasizing the relative 
predictive ability of the available omics datatypes. A 
supervised feature selection algorithm, neighborhood 
component analysis (NCA), was used to select the relevant 
features from the multi-omics datasets retrieved from The 
Cancer Genome Atlas (TCGA) and Genomics of Drug 
Sensitivity in Cancer (GDSC) databases. 

A Deep Forest architecture, first presented by Zhou [31], 
was used by Su et al. [32] to develop the Deep-Resp-Forest 
anti-cancer drug response prediction model, which classifies 
the anti-cancer drug response as either sensitive or resistant. In 
Zhou et al.'s work, the Deep Forest, known as gcForest, was a 
cascade of forests. Su et al. achieved remarkable results when 
their model was tested against the Cancer Cell Line 
Encyclopedia (CCLE) and the Genomics of Drug Sensitivity 
in Cancer (GDSC). As they mentioned, regression is preferred 
for more accurate results. 

Table I shows some recent studies that were focused on 
applying ML and DL methods in drug response prediction by 
focusing on methods/techniques, contributions/advantages, 
and limitations/disadvantages. 
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TABLE I.  SUMMARY OF SOME RECENT STUDIES IN DRUG RESPONSE PREDICTION AND THEIR CONTRIBUTIONS AND LIMITATIONS 

Resource 

and Year 

Methods/ 

Techniques 

Merits, Contribution 

Advantages 

Demerits and limitations 

Disadvantages 
Datasets 

Sharifi-

Noghabi 

et al. [29], 

2019 

DNN 

Ridge 

regression 

They indicated that MOLI outperforms early integration multi-omics 

and single-omics techniques. 

They mentioned it was the first strategy to employ pan-drug transfer 

learning for targeted drugs, and it improved prediction effectiveness 

relative to drug-specific inputs. 

Although their research only employed DNA mutation, CNA, 

and gene expression profile, MOLI may be expanded to 

include other omics information and drug chemical structure. 

While they only explored the triplet loss for improving the 

concatenated representation, they observed that similar losses 

such as the contrastive loss function employed in the Siamese 

network [33] can be utilized instead. 

All utilized datasets have substantially skewed or imbalanced 

class distributions due to the few number of respondents’ vs 

non-responders. They solved that by oversampling 

minorities. However, this method typically leads to 

overfitting, especially for deep neural networks. 

GDSC 

PDX 

TCGA 

Liu et al. 

[14], 2020 

UGCN 

CNN 

Insufficient or imbalanced training examples can be supplemented with 

the proposed UGCN by random selection of multiple complementary 

graphs for each medication. In the classification task, they randomized 

the feature matrix, connected complementary networks at random, and 

positive training examples were augmented five times. 

DeepCDR may be utilized with molecular generation processes. 

Existing chemical generation models based on the Recurrent neural 

network (RNN) technique[66], generative adversarial networks (GANs)  

[34] and deep reinforcement learning [35] Concentrate on broad 

chemicals while ignoring the characteristics of specific cancer cells. 

Methods for cancer-specific or disease-specific innovative drug design 

may be presented by employing DeepCDR predicted CDR as prior 

knowledge or a reward score for driving chemical production. 

Top DL algorithms like DeepCDR and GraphDPR [15] 

perform better. For a drug-blind test, the examined deep 

learning approaches do not act as well as the SRMF, a matrix 

factorization-based method. To improve DL methods for 

predicting drug reactions, obtaining differentiating 

information from drug profiles is critical. Either create novel 

drug target fingerprint systems or use sophisticated “graph 

neural networks” to extract latent properties from drug data 

[36]. 

In future work, researchers can use huge amounts of omics 

data analyzed before and after treatment to determine how 

the tested drugs affect their molecular profiles. 

GDSC 

CCLE 

TCGA 

Jia et 

al.[37], 

2021 

VAE 

Elastic Net 

PCC 

PCA 

Accurate drug sensitivity data prediction in cancer samples would 

allow recapitalization of recognized and new biomarkers, which are 

commonly missing owing to cell line methods or limitation of sample 

size. 

Their categorization of chemicals by reaction profiles showed distinct 

groupings and signatures. Using TCGA data, they discovered a link 

between medicines and TMB that was previously infeasible using cell 

line models. 

To find pan-cancer genomic markers, they explored DNA mutations, 

CNVs, and gene expression. The positive correlations between 

AZD6244 and the earlier published 18-gene signature demonstrated 

how their results are robust. 

For some drugs, including LBW242, couldn't enhance 

prediction accuracy by fitting models. 

The model-fitting parameters of VAE-based models could 

not compete with PCA methods for several drugs (in-sample 

PCC and holdout R2). However, given insufficient data, the 

PCA-based model for paclitaxel failed to distinguish between 

pCR and non-pCR patients. So future validation is necessary 

to validate these prediction models. 

Moreover, while certain drugs had good prediction results in 

the cell line method, their response in cancer examples was 

variable. So studying drug response in cancer samples is 

substantially more difficult and involves various contexts and 

variables. 

GDSC 

CCLE 

TCGA 

Pouryahya 

et al. [38], 

2022 

Wasserstein 

distance 

Spearman’s 

correlation 

PCC 

Hierarchical 

clustering 

Random forest 

regression 

Using the optimal mass transport (OMT) theory and unsupervised and 

supervised ML models in conjunction with the CDCN model, they 

were able to show that random forest approaches in the consequent 

distinct pairs of cell-line and drug clusters can deliver more satisfactory 

predictive ability than the CDCN model used in previous studies. 

Using Wasserstein distances, which are calculated between invariant 

measurements of gene expression patterns, the researchers discovered 

that cell lines that were comparable in terms of Wasserstein distances 

responded similarly to (structurally identical) medicines. 

In the clustering of drugs, unsupervised removal of strongly 

correlated cheminformatic features while maintaining non-

redundant informative features. Despite the elimination of 

this feature, their strategy outperformed other approaches in 

terms of predictive power. 

Using mutation, CNV, and hyper-methylation data may 

enhance prediction results or provide new findings. 

GDSC 

HPRD 

CCLP 

PubChem 

OncoKB 

Wang et 

al. [39] 

2023 

GCNs 

AEs 

In order to overcome some of the shortcomings of recent studies, 

including ignoring the correlation between drug cell line pairs (DCPs), 

the GADRP was developed. Additionally, the issue of over-smoothing, 

in which the representation of each node becomes more similar as the 

number of layers grows, was not considered in recent research that used 

GCNs. So they built a sparse drug cell line pair (DCP) network 

incorporating data on drug, cell line, and DCP similarity before using a 

stacked deep AE to extract low-dimensional representations from cell 

line attributes. Later, to learn DCP features, initial residual and layer 

attention based GCN (ILGCN), which can resolve over-smoothing 

issues, was used. Finally, the prediction was performed using a fully 

connected network. 

First, ILGCN can only be regulated within five levels due to 

the scale of the DCP network and the constraints of computer 

storage capacity. 

Second, the GADRP deep learning model lacks biological 

entities like targets and disorders, which contribute to its 

level of inexplicability. Consideration should be given to 

including more entities and associations in cancer medication 

response prediction. Additionally, despite GADRP's potent 

prediction capabilities, its use in the clinic remains a 

significant issue because it is trained using in vitro data. 

PubChem 

PRISM 

CCLE 

GDSC: Genomics in Drug Sensitivity in Cancer 

UGCN: Uniform Graph Convolutional Network 

PDX: Patient-Derived tumor Xenograft 

CNN: Convolutional Neural Network 

CCLE: Cancer Cell Line Encyclopedia 

VAE: Variational Autoencoder 

TCGA: The Cancer Genome Atlas 

PCC: Pearson Correlation Coefficient 

CCLP: COSMIC Cell Line Project 

PCA: Principal Component Analysis 

HPRD: Protein Reference Database (HPRD) 

GCN: Graph Convolutional Network 

OncoKB: Precision Oncology Knowledge Base (OncoKB) 

AE:Autoencoder 

DNN: Deep Neural Network 
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Therefore, the drug response methods showed remarkable 
results when multi-omics were integrated. However, 
integration causes a curse of dimensionality which negatively 
affects prediction. In addition, multi-omics data is small-scale 
data, which needs a method to handle inadequate data or 
skewed distribution. 

III. METHODS AND MATERIALS 

The proposed solution works to reduce dimensionality and 
integrate the three omics, before using Deep Forest to improve 
the drug response prediction. The solution consists of four 
phases: datasets preparation, integrating multi-omics using 
Bayesian Ridge Regression, the Deep Forest phase, and the 
evaluation phase. The general framework is shown in Fig. 1; 
more details for each phase are discussed in the following 
points. Each single omics was processed independently; 
Bayesian Ridge Regression was utilized for each single data 
type. 

A. Datasets 

More than 1000 human cancer cell lines were gathered and 
molecularly described in the Cancer Cell Line Encyclopedia 
(CCLE) project [40] that has acquired and molecularly 
characterized over 1000 human cancer cell lines. The 
investigation discovered 24 anti-cancer drug sensitivity 
profiles among 504 cell lines. The CCEL [21], [40] dataset 
was used in this research. The half-maximal inhibitory 
concentration IC50 was used as the drug response for cell 
lines across the drugs (denoted by yres,c) c for a cell line. Three 
omics were used, including single-nucleotide mutation 
(denoted by xsnv,g ) g for gene, gene expression (denoted by 
xexp,g ), and copy number alternation/variation (denoted by 

xcnv,g) Gene expression and copy number alternation are real 
values, the single-nucleotide mutation use  binary values, "1" 
used for mutation and "0" for wild type. There are no missing 
values in the gene expression data. For copy number 
alternation and single-nucleotide mutation, rows with more 
than half of the cells missing values were removed. The mean 
weight approach was used to compensate for the missing 
values for the remaining cell lines. 

The distance was calculated to select the nearest k, which 
was used to impute the gene expression missing value, defined 
as follows: 

   (   )  ‖             ‖
 
 
 (1) 

where c is the cell line, k is the nearest cell line, and x is 
the gene expression value for each cell line. 

The mean value of the nearest cell lines was used to 
impute the missing value of cell line c in copy number 
alteration of genes g. 

      (   )  ∑
   (    )

∑    (    )
 
   

 
           (    )  (2) 

The values of the single-nucleotide mutation features are 
binary, with 1 indicating mutation and 0 indicating wild type. 
The mean feature value for cell line c among the k-nearest cell 
lines was used to compensate for the missing SNV (single-
nucleotide mutation or variation) value of gene g as follows: 

      (   )  

 {
     (∑       (    )   ∑ (         (    ))

 
     

   )
 

           

   (3) 

 

Fig. 1. The framework of BBR-DP to integrate multi-omics data for predicting drug response. 

In a similar way, the missing value of IC50 was imputed in 
the same way as the copy number alteration manner. The 

mean value of the nearest cell lines was used to impute the 
missing value of cell line c. 
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K=10 was selected for preparing the CCEL dataset. 

The IC50 matrix was converted to a tabular form which 
had 8712 rows, then all of the drug responses of each cell line 
were grouped by the mean for each cell line to be considered 
as the drug response that needed to be predicted in a 
regression problem. The final total samples were 363 for the 
IC50 data. Table II shows the total number of samples for the 
CCEL data. 

TABLE II.  THE TOTAL NUMBER OF SAMPLES FOR THE CCEL DATA 

Type Raw Data After Preprocessing 

Cell Lines 1061 363 

Drugs 24 24 

Gene expression 20049 (1061) 19,389 (363) 

Single-nucleotide mutation 1667 (1061) 1667 (363) 

Copy number alteration 24960 (1061) 24960 (363) 

B. Integrating Multi-Omics Bayesian Ridge Regression 

Bayesian Ridge Regression (BRR) was used as the feature 
selection method to reduce dimensionality and integrate multi-
omics. This method, which is based on a Bayesian approach, 
is concerned with selecting subsets of the independent 
variables in linear regression to predict a response variable. 
The response variable is first assigned a probability 
distribution via the specification of a family of prior 
distributions for the unknown parameters in the regression 
model. However, because the data influence this family's 
ultimate choice of the prior distribution, the independent 
variables are assumed to be distinct observables, and the 
corresponding regression coefficients are assigned 
independent prior distributions [41]. BRR fits a model where 
the weighted sum of the independent variables can predict the 
response variable. It works by determining a set of coefficients 
to utilize in the weighted sum to perform a prediction. These 
coefficients were used as feature importance scores to select 
the best features of each single omics data. 

                         (5) 

where y is the dependent variable (also known as the 
response variable) β is the coefficient or model parameter, x is 
the value of a predictor variable, and there is also an error 
term describing the effect of variables not included in a model 
or random sampling noise. 

From a Bayesian perspective, probability distributions 
rather than point estimates are used to build linear regression. 
The response, y, should be chosen from a probability 
distribution rather than evaluated as a single number. The goal 
of Bayesian Linear Regression is to ascertain the posterior 
distribution for the model parameters rather than to identify 
the one 'best' value of the model parameters. In addition to the 
model parameters also coming from a distribution, the 
response is also generated from a probability distribution. The 
training inputs and outputs affect the posterior probability of 

the model parameters [42], [43]. However, Ridge was 
embedded with Bayesian regression to reduce the model 
complexity and multicollinearity by shrinking the coefficients. 
Most omics data is considered to be small-scale; therefore, 
Bayesian is suitable for these kinds of cases. It integrates the 
prior knowledge of the parameter (prior parameter 
distribution) with the observed data. 

The three omics Exp, SNV, and CNV were tested as a 
single item of data and integrated in different combinations as 
follows: 1) EXP, 2) SNV, 3) CNV, 4) EXP and SNV, 5) EXP 
and CNV, 6) SNV and CNV, 7) EXP, SNV, and CNV. in 
addition, three experiments were implemented to evaluate the 
proposed solution and to study the multi-omics in various 
scenarios. 

In the first scenario, the Baseline, all features of each 
single/multi omics were included in the model. It was 
implemented to test how the three omics affect the drug 
response without feature selection methods. In the second 
scenario, BRR was utilized to select the essential features of 
each single-cell omic - integrating them with the other one. 
According to the literature review, as a common practice, the 
mean value of all coefficients was used as a threshold to select 
features with coefficients higher than or equal to the 
calculated mean [44]. Also, the coefficients computed by the 
BRR were used to select important features for each 
single/multi-omics. In this last scenario, the top 10% of 
coefficients higher than or equal to the calculated mean were 
selected as informative features. After implementing various 
experiments for the different ratios, the ratio of the top 10% 
was selected, and it was noted that this 10% achieved the best 
results. This ratio was also used to reduce the computational 
cost of the model. 

C. Drug Response Prediction Using Deep Forest 

Deep Forest is a new ensemble Random Forest or decision 
tree approach that integrates multi-Grained Cascade Forest. 
This approach utilizes a cascade ensemble to create a deep 
forest as an alternative to deep learning that supports 
representation learning in gcForest. When the inputs have a 
high degree of complexity or dimensionality, multi-grained 
scanning can boost its representational learning capabilities, 
possibly helping gcForest to be contextually or structurally 
knowledgeable [10], [31]. gcForest allows a model complexity 
to be automatically defined, it performs very well even on 
small-scale data, and the number of cascade stages may be 
adjusted adaptively. Additionally, the developers/researchers 
can tailor their training expenses to their available computing 
resources. While deep neural networks have many hyper-
parameters, gcForest has just a few. Its performance is 
relatively stable according to the hyper-parameter settings, it 
can achieve remarkable performance in most scenarios, even 
across datasets from diverse domains, by utilizing the default 
option. Through the use of external neural networks, gcForest 
may be trained and the theoretical analysis made more 
straightforward It is noted that ensemble methods or cascade 
trees are more accessible to analyze than deep learning [10], 
[45]. 
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Fig. 2. The flowchart of BBR to integrate multi-omics data. 

This phase consists of two stages, shown in Fig. 2: the 
Feature Vectorization Stage and Cascading and Optimization 
Stage. Deep Forest relies on multi-grained scanning, which 
effectively captures the local features. Also, the cascade 
forests utilize a network structure inspired by a multi-layer 
artificial neural network for continuously improving results. 

1) Feature vectorization stage: Multi-grained scanning, 

motivated by the multi-convolution kernels used in 

Convolutional Neural Networks (CNNs), can discover and 

handle feature relationships in the subsequent cascade forests. 

the sliding window technique utilizes a scanning process to 

determine the local features and convert the raw data into a 

chain or set of low-dimensional local feature vectors [9], [31]. 

These low-dimensional vectors are then used to train a series 

of forests to get the class distributions for the input vectors. 

Therefore, the raw features will be transformed into a 
high-dimensional feature vector using the multi-grained 
scanning, in this stage. Multi-Grained Scanning is utilized by 
sliding the windows to scan the original features and convert 
them into feature vectors. Suppose there is gene expression 
data as the sequence data; 400 raw features (dimensions) will 
be selected. Three sizes of sliding window will be used 100, 
200, and 300. After scanning for a window size of 100 
features, we will get 301 feature vectors according to this 
formula (total dimensions Nd - window size w)/ the stride of 
the sliding s + 1. The distance the window moves in each step 
is named the stride. Therefore, 400 - 100 / 1 + 1 = 301 feature 
vectors. A window with 100 dimensions will be generated, 
then 201 feature vectors will be processed for a window size 
of 200 and 101 feature vectors for a 300- dimensional. The 
final sample for training will be 903 instances for a window 
size of 100 features, one random forest, and three classes for 

prediction, as an example. If there are two random forests, the 
total number of samples will be 1806 instances when they are 
concatenated [31], [46]. 

2) Cascading and optimization stage: Cascade forests 

employ a network structure similar to a multi-layer artificial 

neural network, with each layer connected to the layer before 

it in the network hierarchy. It may be thought of as a 

collection of randomly generated forests that have been joined 

together [31]. Several random forests are used to construct 

each layer, and each decision tree inside a particular forest 

produces a drug response prediction independent of the others. 

In the following step, an overall drug response vector for the 

forest is created by taking the average of the drug responses 

provided by the decision trees in the forest. In the process of 

decomposition, the representation vector can be used as an 

input for the next cascade level in the process of 

decomposition. Processing is carried out in stages per each 

layer of the cascade, with each layer sending its results to the 

next and the processing results being passed on layer by layer 

until the prediction performance in the next level of the 

cascade does not increase [10]. 

D. Evaluation Metrics 

The 10-fold cross-validation approach was utilized to 
evaluate the performance of the proposed solution. The mean 
of 10 iterations was recorded as the final result. Three 
evaluation metrics were used in this research, Root Mean 
Squared Error (RMSE), Pearson Correlation Coefficient 
(PCC), and the coefficient of determination R-Squared (R²). 
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RMSE [25], [26] was utilized to measure the error, which 
is the difference between the actual drug response values and 
the predicted values. It is defined as: 

     
√∑(     ̃ )

 

 
  (6) 

where   is the real value of drug response,  ̃  is the 
predicted value of drug response, and N is the sample size. 

The PCC [47] value was used to measure the degree of 
relationship or correlation between the drug response and 
predictors produced due to the multi-omics integration, 
defined as: 

     
∑(    ̅) (    ̅)

√∑(    ̅)
  √∑(    ̅)

 
  (7) 

where    is the value of the predictors,    is the drug 
response value, and  ̅ and  ̅ indicate the mean of the values. 

R² [48]was used to measure how much of the variability of 
drug response can be explained by its relationship to the other 
predictors which could be formulated as: 

      
∑(     ̃ )

 

∑(     ̅ )
   (8) 

where   is the actual value of drug response, and   ̃  is the 
predicted value of drug response. 

E. Comparison Criteria 

The proposed Deep Forest was compared to Random 
Forest (RF) as a traditional machine learning method and 
CNN as a deep learning method. In addition, RF showed 
remarkable results according to various studies [19], [21], 
[49]. Furthermore, these algorithms were selected because 
CNN and an ensemble RF inspired Deep Forest. Therefore, 
they were employed to study which algorithm affects the Deep 
Forest the most. 

IV. RESULTS AND DISCUSSION 

The performance of the proposed solution was 
demonstrated using three scenarios: baseline, coefficient 
higher than or equal to the mean, and the top 10% of 
coefficients higher than or equal to the mean. 

A. Baseline Scenario 

In this scenario, all features were included in the model. It 
was used as a baseline result for measuring the effectiveness 
of the suggested BRR method. Table III shows the results of 
the three methods for the baseline. 

TABLE III.  THE RESULTS OF THE BASELINE SCENARIO FOR THE CCEL 

DATA 

Type Features RMSE R2 PCC 
Time 

(Sec) 

Deep Forest (DF) 

EXP 19389 0.196 0.639 0.8 204.6 

SNV 1667 0.238 0.002 0.029 28.1 

CNV 24960 0.221 0.161 0.398 242.4 

EXP, SNV 21056 0.196 0.624 0.79 138 

EXP, CNV 44349 0.198 0.588 0.767 447 

SNV, CNV 26627 0.222 0.159 0.396 328.8 

EXP, SNV, CNV 46016 0.198 0.587 0.766 550.2 

Random Forest (RF) 

EXP 19389 0.184 0.547 0.74 25.6 

SNV 1667 0.237 0.016 0.119 0.859 

CNV 24960 0.23 0.071 0.261 38.6 

EXP, SNV 21056 0.182 0.565 0.752 27.6 

EXP, CNV 44349 0.189 0.474 0.688 61.8 

SNV, CNV 26627 0.223 0.131 0.357 38 

EXP, SNV, CNV 46016 0.187 0.519 0.72 63.6 

CNN 

EXP 19389 0.212 0.329 0.572 186 

SNV 1667 0.252 0.004 0.047 21.4 

CNV 24960 0.243 0.032 0.168 240 

EXP, SNV 21056 0.206 0.383 0.618 195 

EXP, CNV 44349 0.244 0.297 0.544 426 

SNV, CNV 26627 0.237 0.05 0.217 251.4 

EXP, SNV, CNV 46016 0.24 0.407 0.637 443.4 

In general, DF showed the highest computational cost. 
Regarding R

2
 and PCC, DF achieved the best results, and 

CNN showed the worst results. RF showed the lowest results 
from the perspective of RMSE and computational time. When 
multi-omics were integrated, DF achieved no effect, with EXP 
having the highest score. RF displayed a 4% improvement 
ratio when EXP and SNV were integrated. Also, CNN showed 
a 24% improvement ratio when EXP, SNV, and CNV were 
integrated. 

Fig. 3 to 5 show the differences between the R2 training 
and testing results in the Baseline scenario. Those figures 
measure the differences between prediction results on training 
data compared to testing data in the term of R2. There was 
overfitting in the three models; this usually happens with 
small-scale data. The average ratio of overfitting for DF, RF, 
and CNN was 60%, 62%, and 72%, respectively. In which DF 
had the smallest differences between training and testing 
results and CNN showed the highest ratio. This means the 
models cannot be generalized and needs more data or other 
techniques to handle overfitting. 

 

Fig. 3. R2 results for the training and testing of the DF in the Baseline 

scenario. 
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Fig. 4. R2 results for the training and testing of the RF in the Baseline 

scenario. 

 

Fig. 5. R2 results for the training and testing of the CNN in the Baseline 

scenario. 

B. The Mean of Coefficients as a Threshold 

In this scenario, the coefficients of each feature were 
calculated using BRR. Each feature was considered significant 
when its coefficient was higher than or equal to the mean of 
all coefficients. Table IV shows the results of this scenario. 

TABLE IV.  THE RESULTS OF THE MEAN OF COEFFICIENTS SCENARIO FOR 

THE CCEL DATA 

Type Features RMSE R2 PCC 
Time 

(Sec) 

Deep Forest (DF) 

EXP 10204 0.199 0.594 0.771 89.4 

SNV 783 0.241 0.012 -0.097 47.1 

CNV 12538 0.226 0.095 0.304 130.8 

EXP, SNV 10987 0.197 0.643 0.802 122.4 

EXP, CNV 22742 0.201 0.526 0.725 211.2 

SNV, CNV 13321 0.226 0.094 0.303 137.4 

EXP, SNV, CNV 23525 0.201 0.53 0.728 370.2 

Random Forest (RF) 

EXP 10204 0.192 0.479 0.692 13.4 

SNV 783 0.258 0.021 -0.14 0.375 

CNV 12538 0.234 0.053 0.226 18.4 

EXP, SNV 10987 0.196 0.476 0.689 13.5 

EXP, CNV 22742 0.2 0.381 0.616 31.9 

SNV, CNV 13321 0.233 0.055 0.23 18.5 

EXP, SNV, CNV 23525 0.196 0.468 0.683 32.2 

CNN 

EXP 10204 0.171 0.664 0.814 85.2 

SNV 783 0.234 0.067 0.258 13.5 

CNV 12538 0.272 0.007 -0.069 122.4 

EXP, SNV 10987 0.166 0.617 0.785 90 

EXP, CNV 22742 0.184 0.519 0.72 204.6 

SNV, CNV 13321 0.251 0.015 0.114 129.6 

EXP, SNV, CNV 23525 0.206 0.595 0.771 208.8 

CNN showed the best results in terms of RMSE, R
2
, and 

PCC; it achieved 0.171, 0.664, and 0.814, respectively. Then 
DF came second best and finally RF. Both RF and CNN 
exhibited no effect when multi-omics were integrated because 
gene expression caused the highest results. DF presented an 
8% improvement ratio when EXP and SNV were integrated. 
Exp played an essential factor in achieving remarkable results, 
CNV, and SNV. 

 

Fig. 6. R2 results for the training and testing of the DF in the Mean of 

Coefficients scenario. 

 

Fig. 7. R2 results for the training and testing of the RF in the Mean of 

Coefficients scenario. 
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Fig. 8. R2 results for the training and testing of the CNN in the Mean of 

Coefficients scenario. 

Fig. 6 to 8 show the differences between training and 
testing results in The Mean of Coefficients as a Threshold 
scenario. There is still overfitting even though feature 
selection, cross-validation, and Dropout were utilized. The 
average ratio of overfitting for DF, RF, and CNN was 63%, 
69%, and 54%, respectively. CNN showed the lowest 
differences ratio between the R2 training and testing results. 
CNN overfitting ratio was reduced from 72% to 54% 
compared to the Baseline scenario. However, RF and DF did 
not show a positive effect of applying BBR. 

C. The Top 10% of Coefficients 

In this scenario, the coefficient of each feature was 
calculated using BRR. Then, the mean of all coefficients was 
used as a threshold, and the top 10% of features were selected 
from the features that passed the threshold. Table V shows the 
results of this scenario. 

TABLE V.  THE RESULTS OF THE TOP 10% OF COEFFICIENTS SCENARIO 

FOR THE CCEL DATA 

Type Features RMSE R2 PCC 
Time 

(Sec) 

Deep Forest (DF) 

EXP 1020 0.176 0.706 0.84 47.5 

SNV 78 0.227 0.087 0.289 23.2 

CNV 1253 0.225 0.107 0.322 51.7 

EXP, SNV 1098 0.175 0.708 0.842 45.1 

EXP, CNV 2273 0.188 0.584 0.764 35 

SNV, CNV 1331 0.222 0.127 0.352 66 

EXP, SNV, CNV 2351 0.184 0.618 0.786 56 

Random Forest (RF) 

EXP 1020 0.192 0.495 0.703 1.48 

SNV 78 0.245 0.016 0.116 0.11 

CNV 1253 0.234 0.067 0.256 1.88 

EXP, SNV 1098 0.19 0.509 0.713 1.53 

EXP, CNV 2273 0.193 0.469 0.685 3.01 

SNV, CNV 1331 0.235 0.062 0.247 2 

EXP, SNV, CNV 2351 0.183 0.583 0.763 3.02 

CNN 

EXP 1020 0.171 0.544 0.737 15.5 

SNV 78 0.234 0.035 0.182 6.53 

CNV 1253 0.229 0.083 0.283 18 

EXP, SNV 1098 0.194 0.495 0.703 16.4 

EXP, CNV 2273 0.161 0.564 0.751 26.8 

SNV, CNV 1331 0.217 0.167 0.407 18.7 

EXP, SNV, CNV 2351 0.159 0.585 0.764 27.4 

In this scenario, the highest results were noticed when 
multi-omics were integrated. DF achieved RMSE 0.175, R

2
 

0.708, and PCC 0.842 because of combining EXP and SNV. 
RF and CNN displayed the best scores when the three omics 
were integrated. The lowest RMSE -0.159- was achieved by 
CNN. 

Fig. 9 to 11 demonstrate the last scenario: The Top 10% of 
Coefficients. The average ratio of overfitting for DF, RF, and 
CNN was 54%, 64%, and 39%, respectively. In this scenario, 
the overfitting of the DF was reduced from 60% to 54% 
compared to the baseline and from 72% to 39% for CNN. RF 
had the highest difference between training and testing for all 
scenarios. Therefore, this scenario showed the best effect of 
utilizing BRR in the three models. 

 

Fig. 9. R2 results for the training and testing of the DF in the Top 10% of 

Coefficients scenario. 

 

Fig. 10.   R2 results for the training and testing of the RF in the Top 10% of 

Coefficients scenario. 
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Fig. 11. R2 results for the training and testing of the CNN in the Top 10% of 

Coefficients scenario. 

D. Summary of the Scenarios and Algorithms 

This section presents the comparisons when evaluating 
which algorithms performed better. The DF, RF, and CNN 
algorithms were compared in terms of R

2
 and RMSE 

regardless of a specific scenario. 

 

Fig. 12.   R2 results for the DF, RF, and CNN algorithms in all scenarios. 

According to Fig. 12, the suggested algorithm Deep Forest 
(DF) has the best results as it achieved 39% for the average of 
the R

2
 results of all scenarios. Both RF and CNN obtained 

31% as the average of R
2
. 

 

Fig. 13. RMSE results for the DF, RF, and CNN algorithms in all scenarios. 

Regarding RMSE, DF obtained the lowest score, as shown 
in Fig. 13; it was 0.207 which is the average of all scenarios. 
RF obtained 0.210, and CNN obtained 0.213. 

Therefore, the results and performance of the proposed 
method can be summarized by the following points: 

 Bayesian Ridge Regression as a feature selection 
method for integrating multi-omics showed an 11% 
improvement ratio in terms of R

2
 compared to the 

Baseline scenario. Also, the complexity time was 
reduced by 90%. 

 The proposed method BRR-DF has the best results in 
terms of R

2
 and RMSE in all three scenarios. The Top 

10% scenario exhibited the best performance 
regardless of the specific algorithm. 

 The drug response was mainly explained by the gene 
expression data more than the copy number and single 
nucleotide variants. 

 Random Forest showed an 18% improvement when the 
three omics were integrated. Also, it was the fastest 
algorithm when dealing with these omics data. 

 In Deep Forest, integrating gene expression and single 
nucleotide variant has a better result than integrating all 
three omics. Both Random Forest and CNN showed 
better results when all three omics were integrated. 

E. Comparison with Related Studies 

To evaluate the performance and robustness of the 
proposed model using the CCLE data, BRR-DF was compared 
with three state-of-the-art models as follows: 

 WGRMF [50]: Weighted Graph Regularized Matrix 
Factorization is applied for predicting the anti-cancer 
drug response in cell lines. Their model used the 
CCLE, which contains 491 cell lines and 23 drugs with 
10,870 known responses. WGRMF utilizes gene 
expression and drug fingerprints as the input for the 
model. 

 DeepDSC [26]: Gene expression is employed to extract 
the features of cell lines using a stacked deep 
autoencoder, before the chemical structure is integrated 
with gene expression to predict the drug response. 
DeepDSC uses the CCLE, which contains 491 cell 
lines and 23 drugs with 10,870 known responses. 

 SRMF [51]: A Similarity-Regularized Matrix 
Factorization model combining gene expression with 
chemical structures for drug response prediction. The 
CCLE, with 10,870 known responses, contains 491 cell 
lines and 23 drugs. 

Table VI shows a comparison between the proposed 
method and the three models in the CCLE dataset. 

TABLE VI.  COMPARISON OF PERFORMANCES WITH OTHER RELATED 

MODELS 

Model RMSE PCC R2 

WGRMF 0.56 0.72 - 

DeepDSC 0.23 - 0.78 

SRMF 0.57 0.71 - 

BBR-DF (Proposed) 0.17 0.84 0.70 
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The proposed model showed an improvement in terms of 
achieving the lowest RMSE and highest PCC compared with 
the other models. R

2
 needs to be enhanced, and some of the 

limitations are discussed in the following section. 

F. Effectiveness of Gene Expression in Drug Response 

The main challenge in drug development research and 
clinical trials is the lack of understanding regarding how 
individuals respond to drugs, which can significantly impact 
their efficacy and tolerability [52]. The present study aimed to 
investigate this issue by analyzing gene expression data, copy 
number alterations (CNA), and single nucleotide variants 
(SNV) to determine their role in drug response. The results 
indicated that gene expression data was the most significant 
factor in describing drug response, as compared to CNA and 
SNV. To identify the genes that are most important in 
explaining drug response, the study utilized Bayesian Ridge 
Regression (BRR) to calculate a coefficient for each gene 
based on its mRNA expression data. Genes with high 
coefficients were considered potential candidates for 
explaining drug response. Table VII presents the top five 
genes based on their coefficient for 24 drugs, while the 
complete list of ranked genes for each drug is provided in the 
Supplementary Materials. 

TABLE VII.  THE TOP FIVE GENES SELECTED BY THE MODEL FOR 24 

DRUGS IN CCLE 

Drug Gene Drug Gene 

17-AAG 

LIN28B 

Paclitaxel 

ABCB1 

TNFAIP6 UPK1B 

MAGEA4 SLC6A14 

VCAM1 PITX2 

MMP7 PLAC8 

AEW541 

IFITM2 

Panobinostat 

CYP1B1 

CD69 CPVL 

CXorf61 TM4SF18 

CLEC2B VSNL1 

MAGEA11 NMI 

AZD0530 

MT1E 

PD-0325901 

DSE 

AC093323.3 COL1A2 

WWC3 MMP1 

CPVL CXCR7 

SERPINE1 KLHL13 

AZD6244 

TUBB2B 

PD-0332991 

SCRN1 

DSE KLHL13 

ARL4C AIM2 

CSTA CSDA 

SRPX2 S100A16 

Crizotinib 

GSTP1 

PHA-665752 

CMBL 

CXorf61 FABP4 

TM4SF18 BST2 

TFPI2 CST6 

CR2 LIMCH1 

Erlotinib 

DKK1 

PLX4720 

GOLGA8A 

CMBL TDRD9 

MT1E MMP1 

GNE IFITM2 

MUC4 KLHL13 

Irinotecan 

IFI27 

RAF265 

CLEC2B 

RBM24 SDC2 

GDF15 ZNF83 

COL11A1 CXCL5 

CA2 PEG10 

L-685458 

GTSF1 

Sorafenib 

PRSS21 

CLEC2B ROBO1 

CSDA VCAN 

ARHGEF3 ANKRD36BP2 

ABCG1 CYFIP2 

lapatinib 

MT1E 

TAE684 

MMP1 

FBP1 HSPA1A 

BST2 RASGRP1 

SPARC IFI27 

ALKBH3 CHN1 

LBW242 

AKAP12 

TKI258 

RGS4 

WASF3 HEY1 

CACHD1 LIN28B 

SLC10A4 SGCE 

EPS8 IGF1R 

Nilotinib 

DHRS9 

Topotecan 

MAGEA4 

CPVL COL11A1 

DDX3Y NGFRAP1 

PLOD2 CYP24A1 

TFPI2 KLK6 

Nutlin-3 

BIK 

Vandetanib 

PODXL 

SAMSN1 CHI3L1 

G0S2 DKK1 

SERPINB1 MT1E 

HLA-DQA1 CRNDE 

MT1E (Metallothionein 1E) appears as an important 
predictor for 4 drugs: AZD0530, Erlotinib, Lapatinib, and 
Vandetanib. It is a Protein Coding gene. Frontometaphyseal 
Dysplasia 1 and Bladder Cancer are some of the diseases that 
are associated with MT1E [53]. In addition, CLEC2B (C-Type 
Lectin Domain Family 2 Member B) has a high score as an 
informative gene for 3 drugs: AEW541, L-685458, and 
RAF265. Several cancers, such as pancreatic adenocarcinoma, 
melanoma, and clear cell renal cell carcinoma, have been 
linked to CLEC2B as a marker [54]. However, those genes 
and their effect on each drug need to be validated in the 
biological context, which is an essential point in our future 
work. 
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V. CONCLUSION 

Bayesian Ridge Regression (BRR) was combined with 
Deep Forest (DF) to enhance drug response prediction by 
integrating multi-omics data. BRR was used to select 
informative features for every type based on the coefficient 
value before integrating it with the other omics. DF works 
effectively to capture the local features and utilizes a network 
structure inspired by CNN for continuous improvement. Three 
scenarios were implemented. In each scenario, three models 
were utilized to evaluate the proposed model: Deep Forest 
(proposed), Random Forest, and CNN. BRR-DF displayed an 
11% improvement ratio in terms of R

2
 compared to the 

Baseline scenario. Also, the complexity time was reduced by 
90%. DF showed the best results in all three scenarios in 
which it obtained 0.175, 0.842, and 0.708 regarding RMSE, 
PCC, and R

2
, respectively. The Top 10% scenario exhibited 

the best performance regardless of the specific algorithm. In 
DF, integrating gene expression and a single nucleotide 
variant showed a better result than integrating all three omics. 
Both Random Forest and CNN exhibited better results when 
all three omics were integrated. Regarding the multi-omics 
that were used, the drug response was mainly explained by the 
gene expression data more than the copy number and single 
nucleotide variants. 

There are some limitations to the proposed solution. 
Firstly: the experiments showed overfitting even though cross-
validation and feature selection were utilized. Techniques such 
as bootstrapping, ensemble methods, and synthetic 
oversamples could be investigated. Secondly, we only focused 
on cell line data. Future work will utilize drug information 
such as chemical structure and the drug target. Thirdly, 
selecting the best features was implemented manually, in 
which the top 10% were chosen. However, an automatic 
method, such as a voting-based will be studied in future work. 
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