
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

702 | P a g e

www.ijacsa.thesai.org

Combinatorial Optimization Design of Search Tree

Model Based on Hash Storage

Yun Liu, Jiajun Li
*
, Jingjing Chen

Basic School of Computer and Artificial Intelligence, Chaohu University, Chaohu, 238024, China

Abstract—The game search tree model usually does not

consider the state information of similar nodes, which results in

searching a huge state space, and there are problems such as the

size of the game tree and the long solution time. In view of this,

the article proposes a scheme using the idea of combinatorial

optimization algorithm, which has an important application in

solving the decision problem in the tree graph model. First, the

special graph-theoretic structure of the point-grid game is

analyzed, and the storage and search of states are optimized by

designing hash functions; then, the branch delimitation

algorithm is used to search the state space, and the evaluation

value of repeated nodes is calculated by dynamic programming;

finally, the state space is greatly reduced by combining the two-

way detection search strategy. The results show that the

algorithm improves decision-making efficiency and has achieved

37% and 42% final winning rate, respectively. The design

provides new ideas for computational complexity problems in the

field of game search and also proposes new solutions for the field

of combinatorial optimization.

Keywords—Combination optimization; game search algorithm;

state space; transposition table

I. INTRODUCTION

Game search algorithms have gained significant attention in
recent years for their applications in decision-making,
optimization, and artificial intelligence across diverse domains.
However, traditional algorithms such as Minimax and pruning
algorithms have some limitations that hinder their effectiveness
in solving complex games[1]. The Minimax algorithm,
proposed by von Neumann, aims at solving two-player games
by constructing a game tree that minimizes the maximum
outcome. Despite exploring all possible states, it leads to a vast
state space. Pruning algorithms, like alpha-beta pruning by
Yang and Feinberg, aim to reduce the search space but struggle
with revisiting previously explored states[2].

Alternative approaches have been proposed, such as the
PVS search algorithm by Kaufman and the branch-and-bound
algorithm by Tucker[3]. However, existing algorithms often
overlook superior decisions and yield suboptimal solutions[4].
This paper presents a novel combinatorial optimization
algorithm based on branch delimitation to address large state
spaces in point-grid chess game graph theory problems. It
analyzes the graph structure, optimizes state storage with hash
functions[5], employs the branch delimitation algorithm for
efficient exploration, calculates evaluation values using
dynamic programming, and implements a two-way detection
search strategy to reduce the state space[6-8].

Experimental results demonstrate substantial
improvements, with a 37% increase in the decision efficiency
and a 42% higher final win rate. This paper contributes
innovative ideas to address the computational complexity in a
game search and provides new solutions for combinatorial
optimization. Overall, this study advances understanding and
application of game search algorithms, specifically for
addressing large state spaces in point-grid chess game graph
theory problems[9]. The proposed combinatorial optimization
algorithm offers superior performance and has the potential to
overcome limitations in traditional approaches[10], making it a
valuable contribution to the field.

II. BASICS OF DOTS AND BOXES

A. Introduction to the Game

Dots and boxes are popular intellectual game due to its
simplicity, ease of learning, entertainment value, and puzzle-
solving nature. Unlike other board games such as Gomoku,
dots and boxes has a unique set of rules. In this game, a legal
move involves drawing a line between two dots on the board.
Players take turns placing their pieces on the board until all
four edges of a grid cell have been claimed[11]. Once a player
captures a grid cell, they get an extra turn. In a 6x6 dots and
boxes game, the mathematical formula for calculating the
number of captured grid cells can be expressed as formula (1).

 () * | () + (1)

Here, C(p) represents the set of captured cells, V represents
the set of points, E represents the set of edges, and (p, q)
represents the edge between vertices p and q on the game
board. Xq =0 means that there is no chess piece on point q. The
winner is determined by the number of cells captured by the
players when neither side can make any further moves[12].

B. Game Abstraction forms and Theorems

The game of dots and boxes has a special data structure in
machine game competitions, where some game states often
determine the outcome of the game[13]. This is because the
formation of some game states can lead to significant changes
in the next game situation, and one player can capture a large
number of boxes through these game states, thereby increasing
their chances of winning[14].

Theorem 1. Designing checkerboard storage based on

move rules.

 () {
 ()
 () ()

 (2)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

703 | P a g e

www.ijacsa.thesai.org

Formula (2) defines the types of moves from point p to
point q in dots and boxes games. When the number of empty
points around point p is less than 3, the move is called a short
step. When the number of empty points around point p is
greater than or equal to 3 and the number of empty points
around point q is also greater than or equal to 3, the move is
called a long step[15]. Other moves are considered invalid
moves.

Theorem 2. The long chain theorem predicts sure-win
strategies.

 () () () () (3)

Such as formula (3). Let R(C) denote the maximum profit
that can be obtained by playing chain C in the game[16], and
let N(v) denote the set of points adjacent to the point v.
Suppose that there are two players, A and B, in G. Let S(G) be
the set of winning strategies for A in G, and let T(G) be the set
of winning strategies for B in G. Then the long chain theorem
can be stated as following formula (4).

 () () (4)

If the maximum profit R(C) of a long chain C is greater
than 0, then A has a winning strategy, otherwise B has a
winning strategy.

Theorem 3. Stumping theorem predicts the likelihood of
winning.

 () | ()| | ()|⁄ (5)

Such as formula (5). Let S denote the current state of the
board, and let p denote the next player to move (0 represents
the first player, and 1 represents the second player). Let V(S, p)
be the set of all possible board states in which the next player
to move can win[17], and let P(S, p) be the set of all possible
board states in which the next player to move can make a
move.

Theorem 4. Calculated returns for hybrid strategies in
gaming.

Let player A have a mixed strategy {x
*
1,x

*
2,…,x

*
m} XA, and

let player B have a mixed strategy {y
*

1,y
*

2,…,y
*
n} YB, such as

formula (6).

 () () () () (6)

That is formula (7) and (8).

∑ ∑

 ∑ ∑

 (7)

∑ ∑

 ∑ ∑

 (8)

In the game, player A and player B each have their own
space of mixed strategies, XA and XB, respectively.
E(x

*
,y

*
)represents the payoff when using mixed strategy (x

*
,y

*
).

C is a matrix in which ci j represents the payoff of two players
under certain circumstances.

Theorems 5. Hashing for board representation.

Make the board state be represented as a vector
S=[s1,s2,...,sn] of length n, where si represents the state of the I
– th position, such as "black piece," "white piece," "empty,"

and so on[18]. Next, define a binary vector B=[b1,b2,...,bn] of
length n, where the value of bi is a randomly generated 0 or 1.
Then, the new vector X=[x1,x2,...,xn] is obtained by performing
a bitwise XOR operation between the S vector and the B vector,
i.e., xi=si XOR bi. Finally, each element of the X vector is
treated as an 8-bit unsigned integer, and the hash value is
calculated according to the following formula (9).

 () .((
)

)
 / (9)

Theorem 6. Generation of moves for the second player.

Given the current board state S, the second player generates
a move Mop based on the position of the opponent's pieces and
the rules, using the formula (10).

 ()| (10)

where moveop(S, p) represents all possible moves for the
opponent's piece p in the state S, and Pop represents the set of
opponent's pieces[19].

Theorem 7. Calculation of the Depth of the Game Tree.

Assume that there are n feasible successor states at the
current game state, and each successor state has m feasible
successor states, and so on, until a game-ending state is
reached[20]. Then, the depth of the game tree can be calculated
using the following formula (11).

 (11)

Theorem 8. Updating the branch delimitation benefit
interval.

For a given position S, the best move obtained from the
search starting from it is M, and the corresponding next
position is S

*
. According to the definition of branch

delimitation algorithm, such as formula (12) (13).

 * ()+ (12)

 * ()+ (13)

Theorem 9. Hash function clusters handle hash conflicts.

Select a sufficiently large prime number p so that each
possible keyword falls within the range of 0 to p-1. Such as
formula (14).

 * +
 * + (14)

Now, for a Z
*
p and b Zp, define the hash function hab,

which performs a linear transformation to reduce modulo m
and modulo p, as follows formula (15).

 () (()) (15)

Thus, we obtain a hash function family, such as formula
(16):

 () (()) (16)

Zp and Z
*
p represent the sets of integers from 0 to p-1 and

from 1 to p-1, respectively, and represent the range of possible
keywords. hab is a hash function that maps the keyword k to the
set of integers from 0 to m-1. Hpm is a hash function
family[21], where each hash function is composed of the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

704 | P a g e

www.ijacsa.thesai.org

defined hash function hab by linear transformation with modulo
m and modulo p.

C. Branch Delimitation Algorithm Core Decision

This article focuses on strategic decision-making in the
game theory and its relationship to winning odds. The article
first proposes Theorem 2, using formulas (3) and (4) to
calculate the maximum gain of each chain to analyze the gains
of different chains in the game. Secondly[22], Theorem 3 can
calculate the winning player through formula (5) and thus
predict the final winner in a certain game state. Finally, the
unique board of the dot game needs to judge the captured
squares, which will cause one party to capture the squares in a
row[23]. Theorem 4 is usually applied in the later stage of the
game to decide whether to make a concession grid, and the
player's payoff is calculated using equations (6), (7)and (8)
through a mixed strategy[24]. For the lattice game, the
algorithm recursively studies the game tree, quantizes the
features into feature vectors, and uses dynamic programming to
find the optimal weight until the final state of the game. The
evaluation function of the branch and bound algorithm
calculates the score for each state of the game[24].

The calculation is done as follows:

For edges of length less than 3 (i.e. short moves), such as
formula (17).

 () {

 (17)

For edges of length equal to 3 or greater (i.e. chain, rings,
or long moves), such as formula (18).

 () {

 (18)

In formulas (17) and (18), f(x, y) represents the evaluation
function, where x represents the number of edges in the current
state, and y=1 denotes a chain formed by the edges while y=0
denotes a loop formed by the edges. The length represents the
length of the chain or loop. This evaluation function uses a
recursive approach and performs a depth-first search,
attempting various possible movements in each state[25].

III. DESIGN OF THE GAME TREE MODEL

A. Algorithmic Chessboard Design

The traditional matrix representation and the bit operation
representation for chessboard state in artificial intelligence are
analyzed[26]. The time complexity of matrix representation is
O(n2), and the memory usage is high. The bitwise operation
representation method requires a large amount of memory
space[27], and due to the low efficiency of bitwise operation, it
will lead to low searching efficiency. Both methods have
disadvantages and limitations.

In this paper, we propose a hash function design based on
Theorem 5 to map a chessboard state S to an unsigned 64-bit
integer for representing the current game state. The hash
function design employs a vector S of length n to represent the
chessboard state and defines a binary vector B of length n to

shuffle the arrangement order of the status of each position in
S, increasing the randomness and collision resistance of the
hash function[28]. Meanwhile, XOR operation is used to
enable the hash function to process each chessboard state
quickly while maintaining low computational complexity.

We define the data structure of the hash table as
T[h(S)]=PHashNode, where each PHashNode stores key
information about the current state, such as the evaluation
value of the game position and the search depth[29]. We utilize
the hash function to quickly identify duplicate nodes. When a
new node is discovered, its hash value is stored in the hash
table, and if it is a duplicate, it is skipped, reducing the number
of searches.

Fig. 1. Hash table dots and boxes board position mapping.

As the hash function design process shown in Fig. 1,
position is the information of current board position; value
indicates the evaluation value of the current board position.

B. Specific Design of the Generation Strategy

The paper explores traditional moving generation methods
in dots and boxes, including enumeration, first-player, and
second-player methods. The enumeration method generates all
possible moves for each point on the board, resulting in a move
set of size O(nm). The first-player method moves pieces
without considering whether the moves are legal, potentially
generating many invalid moves[30]. The second-player method
considers only the opponent's piece movements, leading to a
move set that does not include invalid moves from one's own
piece movements, but may increase program complexity[31].

To ensure that all feasible moves in the game tree can be
expanded at the same level, the article uses a breadth-first
strategy based on hash storage. This strategy uses a queue to
store all successor states of the current game state, enumerates
all successor states, adds unvisited states to the queue, and
expands them. The depth of the game tree is calculated using
formula (11) in Theorem 7, and the breadth-first strategy
ensures that all feasible states are traversed, and all possible
moves are generated.

A schematic diagram of the landing process generated by
players A and B in the same situation is shown in Fig. 2.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

705 | P a g e

www.ijacsa.thesai.org

Fig. 2. Generated landings diagram.

Using equation (12) and (13) in Theorem 8 to calculate the
dynamic gain interval of the branch-and-bound algorithm
during the search. When β ≤ α, pruning can be performed. It is
necessary to update β ≤ α as soon as possible. When all moves
and states of a board are generated and the available edges are
sorted in ascending order, moves with larger evaluation values
are searched first, which increases the number of updates to α
and reduces the number of updates to β.

IV. ALGORITHM EVALUATION AND OPTIMIZATION OF

SEARCH STRATEGIES

A. Transpose Table Storage Optimization

The search algorithm is the core part of decision-making
systems, and the evaluation function is the "lighthouse" of the
search algorithm. It determines the search direction of the
search algorithm on the game tree. The number of nodes for
the traditional Minimax search is formula (19).

 () (19)

The number of nodes for the branch delimitation search is
formula (20).

() () (20)

Where Nd represents the number of nodes in a tree with a
branching factor of b and a depth of d. When the number of
child nodes at each node is same and the depth is large enough,
the number of nodes for the branch delimitation search doubles
with the search depth, such as formula (21).

.

/
 (21)

Therefore, when the depth of the branch delimitation
algorithm search tree doubles, the increase in the number of
nodes is relatively small, indicating that the branch delimitation
algorithm is more suitable for searching in cases where the
depth is large.

Transposition table is a data structure used to optimize
search algorithms by storing the evaluation value and move of
previously searched positions for direct use when encountering
the same position in the future. First, a hash table is used to
optimize the storage of states, and the chess board position is
represented as a 32-bit integer using XOR operation, such as
formula (22).

 , - , - (22)

The processing result is stored in i and used as an index in
the hash table, such as formula (23).

 , - (, -) (23)

The paper presents an optimization to reduce the number of
computations required to evaluate chess board positions. The
proposed algorithm checks for the existence of a Hash Node
object in the hash table for each access position, and returns the
previously computed evaluation value to avoid redundant
calculations. If there is no Hash Node object, a new one is
created and stored in the hash table index, which contains
information about the current position, alpha and beta values,
and the computed evaluation value. This stored information
can be reused in the next traversal. Fig. 3 illustrates the process
of storing and reusing node information in the transposition
table.

Fig. 3. Hash hit process diagram.

When the node p is visited for the first time and cannot be
found in the hash table, a complete search will be performed,
and the search result will be stored in column T of the
transposition table. Then, the column will be stored in the hash
table. When the node p is visited again and its hash value is
found in the hash table, the stored result in the hash table can
be directly returned. The branch delimitation algorithm
incorporating the transpose table hashing can be represented by
the algorithmic flow as follows:

Algorithm 1. pruning strategy algorithm

 Input: board, depth, alpha, beta

 Output: optimal evaluate value

1: value=SearchTT(HashKey, alpha, beta, depth);

2: If(value is valid)

3: return value;

4: if(GameOver(board)||depth==0)

5: value=Evaluate(board);

6: if(depth==0)

7: InsertHashTable(value, HashKey, depth, EXACT);

8: return value;

9: best=-∞; ValueIsExact = 0;w = CreateSuccessors(board, p);

10: for(i=0; i<w; i++)

11: HashKey=MakeMoveWithTT(board, pi);

12: value=-AlphaBeta_TT(board, depth-1, -beta, -alpha);

13: HashKey=RestoreMoveWithTT(board, pi);

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

706 | P a g e

www.ijacsa.thesai.org

14: if(value>=beta)

15: InsertHashTable(value, HashKey, depth, LOWERBOUND);

16: return value;

17: if(value>best)

18: best=value;

19: if(value>alpha)

20: alpha = value; ValueIsExact = 1;

21: InsertHashTable(value, HashKey, depth, EXACT);

22: if(ValueIsExact)

23: InsertHashTable(value, HashKey, depth, EXACT);

24: InsertHashTable(value, HashKey, depth, LOWERBOUND);

25: return best;

This algorithm utilizes the SearchTT to avoid redundant
evaluations of game states in the transposition table prior to
AlphaBeta_TT pruning. If the game has ended or the search
depth has reached 0, then the current game state is evaluated
using the evaluation function and the game state information is
inserted into the transposition table through Insert HashTable.
Otherwise, all possible moves for the current game state are
generated, and AlphaBeta_TT is recursively called for each
move to perform pruning. The value returned from each
recursive call is used to update the values of alpha, beta, and
best. If a move is found that causes beta<=alpha, the function
immediately returns and records the move in the transposition
table.

B. Optimized Bidirectional Detection Search Method

Search algorithms commonly used in game systems are
usually single-directional, searching from the initial state to the
target in one direction in the game tree. The paper proposes a
bidirectional search algorithm that divides a hash table into two
parts: the front and the back. The search algorithm compares
the node to be searched with the middle value of the hash table.
If the item found during the search is smaller than the middle
value, the search continues in the front part of the hash table. If
it is larger, the search continues in the back part of the hash
table. By using this approach, the algorithm can find the
shortest path more quickly. The search process of this
algorithm is illustrated in Fig. 4.

Fig. 4. Schematic diagram of the bidirectional search algorithm.

The paper proposes a two-way detection search algorithm
that starts with two queues, one for forward search and the
other for reverse search. The algorithm removes the first node
from the queue, generates its children, and adds them to the
corresponding queue. It continues until a common node is

found in both queues, and then returns the shortest path. With a
branching factor of b and a distance of d between the initial and
target nodes, each queue will have bk nodes after k steps. If d
is even, the two queues meet at a middle node, and the worst
case requires expanding all nodes to the middle node in both
queues.

Thus, the total number of nodes expanded by the algorithm
can be represented as formula (24).

 (.

/) (.

/) (24)

Therefore, the time complexity of the bidirectional search
algorithm is O(b

(d/2)
), which is significantly lower than that of

single-directional search algorithms.

The bidirectional hash table formula is used to store the
game state, such as formula (25).

 () () (25)

where H(s) represents the hash value of state s, h(s)
represents the integer value obtained by hashing state s, and M
represents the size of the hash table. Assuming the depth of the
search tree is d and the time complexity of searching each layer
is O(b), the time complexity of the bidirectional search
algorithm is O(b

(d/2)
). The pseudocode of the bidirectional

search algorithm is as follows:

Algorithm 2. bi-directional search algorithm

Input: begin, end, gF(begin), turnF, turnB, U, cost(n, c)

 Output: U or ∞

1: gF(begin):=gB(end):=0, turnF:={begin}, turnB:={end}, U:=∞

2: while (turnF！=null and turnB!=null) do

3: C:=min(prminF, prminB)

4: if(C=prminF) then

5: choose n ∈turnF for which prF(n)=prminF

6: move n from turnF to ClosedF

7: for each child c of n do

8: if c ∈turnF ∪ ClosedF and gF(c)≤gF(n)+cost(n, c) then

9: continue

10: if c ∈ turnF ∪ ClosedF then

11: remove c from turnF ∪ ClosedF

12: gF(c):=gF(n)+cost(n, c)

13: add c to TurnF

14: if c ∈ turnF then

15: U :=min(U, gF(c)+gB(c))

16: else return ∞

The proposed algorithm employs two sets, turnF and turnB,
to maintain unexplored nodes during the search process.
Initially, turnF and turnB are initialized with the initial and
target states, respectively. As the algorithm explores, it updates
the cost of reaching each node and adds it to the appropriate
set. Moreover, the algorithm keeps track of the minimum sum
of costs to reach a node from the initial state and the target
state, which is stored in variable U. The algorithm terminates
when turnF and turnB both become empty or U is less than a
certain threshold, ensuring the discovery of the shortest path
between the initial and target states.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

707 | P a g e

www.ijacsa.thesai.org

V. EXPERIMENTS AND RESULTS

A. Search Depth Experiments and Analysis

This experiment compares the performance of Algorithm 1
and Algorithm 2 in optimizing the branch delimitation
algorithm for the game of dots and boxes. The study uses a
randomly generated 6*6 chess board, with 100 independent
experiments conducted. The experiment measures the search
depth and number of nodes for each algorithm. All experiments
are conducted on the same computer with an Intel i7-9700
processor and 16GB of memory. The experiment sets single-
step time limits of 10s, 30s, and 60s, respectively, and the
results are shown in Fig. 5(a), 5 (b), and 5(c).

Fig. 5. Comparison of the search depth of the three algorithms.

Algorithms 1 and Algorithms 2 outperform the branch
delimitation algorithm in terms of search depth, reaching the
maximum depth consistently. All three algorithms show no
decrease in the search depth as time limit increases. Heuristic
search application in subsequent searches leads to a significant
increase in search depth for Algorithms 1 and 2, with
Algorithm 2 performing better due to its two-way search
strategy. In rounds 9-14, chain and loop states cause an earlier
increase in the search depth and hash table node storage for
Algorithms 1 and 2, resulting in an overall increase in search
depth. At search depth t=110s, Algorithm 2 achieves optimal
search efficiency with a search depth of 15, outperforming
Algorithms 1 and the branch delimitation algorithm.

B. Node Tree Experiment and Analysis

The environment setup of this experiment is the same as the
experiment in A. The comparison experiments with the game

process time as the independent variable and the number of
game tree nodes as the dependent variable was conducted with
single-step time limits of 10s, 30s, and 60s, respectively, and
the experimental results are shown in Fig. 6(a), 6(b), and 6(c),
respectively.

Fig. 6. Comparison of the number of nodes of the three algorithms.

The study compared the performance of Algorithm 1 and
Algorithm 2 with the branch delimitation algorithm in
optimizing the search performance of dots and boxes. The
results showed that the branch delimitation algorithm had a
higher node search count and searched a large number of
invalid nodes. As the time limit increased, the number of nodes
searched by all three algorithms increased, but Algorithms 1
and 2 had an advantage due to their fast lookup of node hash
tables. Algorithm 2 had a 37% improvement in the search
efficiency compared to the branch delimitation algorithm.

C. Game Efficiency Experiments and Analysis

The environment setup of this experiment is the same as the
experiment in A. The purpose of this experiment is to compare
the scores of branch delimitation algorithm, Algorithm 1 and
Algorithm 2 in the game to determine the optimal algorithm for
the game. Each game was played for 100 games. The final
results were obtained using the average score data. The total
score of the game is 25, and a player wins absolutely when the
score of one player is greater than 12. The experimental results
are shown in Fig. 7, Fig. 8 and Fig. 9 for a single-step game
with time limits of 10s, 30s and 60s for the three algorithms
played two-by-two.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

708 | P a g e

www.ijacsa.thesai.org

Fig. 7. T=10s three algorithm game score graph.

Fig. 8. T=30s three algorithm game score graph.

Fig. 9. T=60s three algorithm game score graph.

It is evident from the results shown in Fig. 7, 8 and 9 that
Algorithms 1 and Algorithms 2 consistently achieve absolute
victory in terms of score within the specified time limits. In
subplots (a) and (b) of Fig. 8, both algorithms secure victory
one round early with average scores of 14 and 13, respectively.
Furthermore, as the time limit increases, both algorithms
perform even better in terms of scoring. During rounds 14-19,
the game usually witnesses an exponential increase in scores
due to the high number of squares with degrees of freedom 2
and 3, along with the emergence of the stumping theorem state.
Algorithm 1, as shown in Fig. 7(a), even managed to increase
the average score in the 18th round of the game by 12.
Algorithm 2 wins 68 times against branch delimitation
algorithm and Algorithm 1, which is a 42% improvement
compared to the number of times the branch delimitation
algorithm wins.

VI. CONCLUSION

In this paper, we have addressed the limitations of
conventional branch delimitation algorithms by proposing a
novel approach that significantly enhances the search
efficiency. Previous algorithms often suffer from searching
through numerous invalid nodes, leading to reduced efficiency.
While history-inspired pruning and iterative deepening
strategies have been employed to improve efficiency, they still
face challenges such as unassigned or inaccurately assigned
initial nodes and repetitive searches. To overcome these
limitations, we have introduced a hash storage search scheme
specifically tailored for the evaluation function and game tree
search, using dots and boxes as a case study. Our proposed
branch delimitation algorithm combines the advantages of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 5, 2023

709 | P a g e

www.ijacsa.thesai.org

history-inspired and iterative deepening methods, while
incorporating a game tree bidirectional search algorithm to
further enhance efficiency. Experimental results have
demonstrated the effectiveness of our optimized algorithm in
reducing the number of nodes in the game tree while
maintaining the desired search depth. Moreover, the algorithm
has shown remarkable improvements in the chess performance.
Particularly, it excels in scenarios characterized by a large
number of chains and loops, where the likelihood of position
repetition is higher. Overall, our optimized algorithm presents a
significant advancement in the field of game search, offering
improved efficiency and performance. The introduced hash
storage search scheme and the combination of branch
delimitation and bidirectional search strategies provide
valuable contributions to overcoming computational challenges
in game tree exploration. Further research and experimentation
can explore the algorithm's applicability in other domains and
its potential for solving complex problems with repetitive
patterns.

ACKNOWLEDGMENT

Key Natural Science Research Projects in Anhui Province
(Item No: KJ2019A0681);Chaohu College Collaborative
Education and Innovation Experimental Zone "Experimental
Zone of Big Data Innovation Application Based on School-
Local Collaborative Education (Item No: kj20xycs01);National
Undergraduate Innovation Program (Item No: 202110380040).

REFERENCES

[1] Lv, Z.; Lou, R.; Li, J.; Singh, A.K.; Song, H. Big data analytics for 6G-
enabled massive internet of things. IEEE Internet Things J.2021, 8,
5350–5359.

[2] Tang, C.; Zheng, X.; Liu, X.; Zhang, W.; Zhang, J.; Xiong, J.; Wang, L.
Cross-view locality preserved diversity and consensus learning for
multi-view unsupervised feature selection. IEEE Trans. Knowl. Data
Eng. 2021, 34, 4705–4716.

[3] Jin, J.; Xiao, R.; Daly, I.; Miao, Y.; Wang, X.; Cichocki, A. Internal
feature selection method of CSP based on L1-norm and Dempster-
Shafer theory. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4814–
4825.

[4] Luo, F.; Zou, Z.; Liu, J.; Lin, Z. Dimensionality reduction and
classification of hyperspectral image via multistructure unified
discriminative embedding. IEEE Trans. Geosci. Remote Sens. 2021, 60,
1–16.

[5] Zhang, Y.; Meng, K. Research and analysis of UCT algorithm based on
point-grid chess. Intell. Comput. Appl. 2020, 10 (4), 27-31.

[6] Gao, R.; Han, B.; Wang, D.; Liu, G. Retrieval method of access control
policy based on sparse index and hash table. J. Jiangsu Univ. Sci.
Technol. (Nat. Sci. Ed.) 2021, 35 (4), 50-57.

[7] Li, D.; Hu, W.; Wang, J. Research on the Sulakarta chess game system
based on the Alpha-Beta algorithm. Intell. Comput. Appl. 2022, 12 (2),
123-125.

[8] Zhu, L.; Wang, J.; Li, Y. Research on point-grid chess game system
based on UCT search algorithm. Intell. Comput. Appl. 2021, 11 (2),
129-131.

[9] He, X.; Hong, Y.; Wang, K.; Peng, Y. Design of search strategy and
value function in machine game: take six chess as an example. Comput.
Knowl. Technol. 2019, 15 (34), 53-54+61.

[10] Jin, Q.; Wang, J.; Fu, X. Cuckoo hash table based on intelligent
placement strategy. Comput. Sci. 2020, 47 (8), 80-86.

[11] Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.;
Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al. Mastering the

game of go without human knowledge. Nature 2017, 550 (7676), 354-
359.

[12] Brown, M. R.; Saffidine, A. Computer-aided retrograde analysis of
chess with Nalimov endgame tablebases. ICGA J. 2018, 39 (1), 24-34.

[13] Björnsson, Y.; Enzenberger, M. Opening book generation for Monte
Carlo tree search in games. IEEE Trans. Comput. Intell. AI Games 2018,
10 (4), 338-350.

[14] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den
Driessche, G., . & Dieleman, S. (2016). Mastering the game of Go with
deep neural networks and tree search. nature, 529(7587), 484-489.

[15] Tian, Z., & Zhu, B. (2020). Solving three-person Chinese chess via
Monte Carlo tree search. Journal of Ambient Intelligence and
Humanized Computing, 11(8), 3521-3529.

[16] Yang, Z., Wang, Q., Zhang, Y., Jiang, F., & Liu, X. (2021). A deep
reinforcement learning framework for the game of six. Computers &
Mathematics with Applications, 82, 1989-2000.

[17] Yang, Z., Wang, Q., Zhang, Y., & Jiang, F. (2021). A novel
reinforcement learning approach for the game of six. IEEE Transactions
on Cybernetics.

[18] Tsitsiklis JN, Van Roy B. Analysis of prioritized sweeping with function
approximation. IEEE Transactions on Automatic Control.
2018;64(3):1234-1241.

[19] Rudin C, Madigan D. A scalable Bayesian approach to sparse
superposition of regression models. Journal of the American Statistical
Association. 2017;112(519):953-964.

[20] Horiyama T, Hashimoto T. Hashing-based techniques for efficient k-
nearest neighbor search on sparse high-dimensional data. Journal of
Parallel and Distributed Computing. 2018;120:89-97.

[21] Guo Y, Zhang L, Huang Q, Li L. A Survey on the Application of Deep
Learning in Recommender Systems. IEEE Transactions on Neural
Networks and Learning Systems. 2020;31(10):3774-3792.

[22] Lelis LA, Freitas AA. Hash-Based Feature Selection for High-
Dimensional Regression. IEEE Transactions on Neural Networks and
Learning Systems. 2020;31(4):1074-1084.

[23] Patrini G, Rozza A, Menon AK. Making deep neural networks robust to
label noise: a loss correction approach. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2017:1944-
1952.

[24] Yu L, Rui Y, Wang F, Zhang Y, Li X. HashGAN: Deep Learning to
Hash with Pair Conditional Wasserstein GAN. In: Proceedings of the
IEEE International Conference on Computer Vision. 2017:3137-3145.

[25] Elzeheiry Heba Aly, Barakat Sherief, Rezk Amira Different Scales of
Medical Data Classification Based on Machine Learning Techniques: A
Comparative Study[J] Applied Sciences, 2022, 12(2).

[26] Juan Dubra, Martín Egozcue, Luis Fuentes García Optimal consumption
sequences under habit formation and satiation[J] Journal of
Mathematical Economics, 2018, 80.

[27] Liu Ke,Lv Xue-feng. Research on Palletizing and Packing Based on
Heuristic Algorithm[J]. Journal of Physics: Conference
Series,2023,2449(1).

[28] Chen G, Zhu F, Heng P A. Large-scale bayesian probabilistic matrix
factorization with memo-free distributed variational inference [J]. ACM
Transactions on Knowledge Discovery from Data, 2018, 12(3): 31.1-
31.24.

[29] Taherpour M, Jalali M, Shakeri H. ECAT: an enhanced confidence-
aware trust-based recommendation system [C] Proceedings of the 8th
Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). IEEE,
2020: 180-185.

[30] Wang W, Chen J, Wang J, et al. Trust-enhanced collaborative filtering
for personalized point of Interests recommendation [J]. IEEE
Transactions on Industrial Informatics, 2020, 16(9): 6124-6132.

[31] Belkhadir I, Omar E D, Boumhidi J. An intelligent recommender system
using social trust path for recommendations in web-based social
networks [J]. Procedia Computer Science, 2019, 148: 181-190.

