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Abstract—The trend of globalization in the world is becoming 

increasingly frequent, and people from different regions are 

communicating more closely. Therefore, the demand for a second 

language is constantly expanding, accelerating the development 

of the field of English oral evaluation and also accelerating the 

development of online education. The study proposes a text priori 

based oral evaluation model, which is based on the Transformer 

model and uses target phonemes as input to the Decoder. The 

model successfully predicts the relationship between actual 

pronunciation and error labels. At the same time, a 

self-supervised oral evaluation model with accent is constructed, 

which simulates the training process of misreading data by 

calculating semantic distance. The experimental results show that 

when the training set ratio reaches its maximum in the Speed 

Ocean dataset and the L2 Arctic dataset, the F1 values of the 

proposed method are 0.612 and 0.596, respectively; the length of 

the target phoneme has a smaller impact on this model compared 

to other models. Experiments have shown that the proposed deep 

learning method can alleviate deployment difficulties, directly 

optimize the effectiveness of oral evaluation, provide more 

accurate feedback, and also provide users with a better learning 

experience. This has practical significance for the development of 

the field of oral evaluation. 

Keywords—Spoken English; online education; transformer 

model; deep learning; evaluation model 

I. INTRODUCTION 

Deep learning technology has largely enhanced the 
efficiency of speech recognition. Deep speech recognition 
technology can recognize the phonemes of students' speech and 
compare them with the text they read. Compared with 
traditional evaluation methods, this method only needs to train 
a single recognition model, without complex modeling or 
providing additional comparative corpus. This speech 
recognition technology has become the main solution in 
spoken language testing [1-2]. However, the current spoken 
language testing methods based on deep learning mostly focus 
on speech recognition, mainly from improving the accuracy of 
speech recognition. These methods tend to use better acoustic 
models in speech testing to improve the effect of oral testing, 
thus ignoring the shortcomings of speech recognition in oral 
testing. The spoken language test algorithm based on speech 
recognition mainly aims at the phoneme and target phoneme in 
speech recognition to misread. Its optimization aims at 
improving the accuracy of speech recognition, rather than 
directly optimizing the effect of oral test. The misreading result 

generated by the algorithm is binary. It misreads the identified 
phoneme and target phoneme by aligning them, and judges 
whether to align the target phoneme or not, so it is unable to 
adjust the severity of the evaluation. At present, most of the 
mainstream recognition patterns need autoregressive 
recognition and decoding. This process is not real-time, which 
is a big defect for students who require fast feedback [3-4]. 
Therefore, to solve the above problems, a text priori oral 
evaluation model is proposed. This model uses the Transformer 
mode as the basis of the oral test, and appends a target text 
entered by the Decoder. By converting the non-differential 
calibration to the data preparation stage, the misreading of each 
target is improved, thus realizing the error recognition of each 
target. Furthermore, the study further discusses the role of 
phonemes in speech recognition models, demonstrating the key 
role of phonemes in English oral teaching. The innovation of 
this method lies in optimizing the speech recognition model 
from the perspective of oral phonemes, enabling learners from 
different regions and accents to learn from online oral teaching. 
The method proposed in the study can effectively recognize the 
phonemic features of spoken language, making oral learning 
more widely applicable and playing an important role in 
promoting online oral teaching. 

II. RELATED WORK 

The gradual development of deep learning has become the 
research object of many international scholars and has achieved 
certain results. Wang et al. implemented a new fault location 
by using multiple feature groups for depth and breadth 
learning. They analyzed suspicious features based on spectrum 
and mutation by combining the combination features of 
invariants based on suspiciousness, static measurement, 
collapse stack tracking and invariants change features. Through 
testing a real software defect standard, Defects4J, higher early 
diagnosis performance than traditional methods were 
confirmed [5]. KotaV et al. adopted neural networks for 
emotion analysis. Methods CNN, double LSTM, attention 
mechanism and other methods were used for emotional 
analysis. CNN can reduce complexity, while dual LSTM can 
help handle long input text. This method uses the attention 
mechanism to determine the importance of each hidden state 
and weight it [6]. Seebeck and other scholars developed a DL 
method, which can automatically obtain comprehensive retinal 
sensitivity from OCT volume. The relative error of PWS and 
multiple sclerosis is 2.34 dB, and the minimum relative error is 
5.70 and 3.07. Pearson correlation coefficient is 0.66 and 0.84, 
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Spearman correlation coefficient is 0.68 and 0.83. Their 
research showed that predicting the retinal function of each 
measurement site based on OCT scanning can be used as a new 
visual function prediction method [7]. Kong and his team 
developed a second-order one-dimensional phase expansion 
method. The first step is to encode the phase of one dimension 
using quasi-Grami matrix. The second step is to use the deep 
convolution neural network to unwrap the phase. Both 
simulation and measurement results showed that the phase 
unwrapping quality of this algorithm is significantly improved 
when the SNR is less than 4 dB, and it can still maintain good 
performance under negative SNR [8]. 

There are many types of oral teaching models in the current 
research field. Chen S introduced an online oral English 
teaching platform based on the Internet of Things. This 
platform adopts the technology of Internet of Things to realize 
the design of the system structure of online oral English 
teaching platform and establish a virtual teaching environment. 
The platform corrects the user's mouth shape and pronunciation 
through the voice teaching system, and establishes a 
vocabulary tagging model based on long-term memory. He 
also introduced the attention mechanism into the long-term 
memory network. The test results showed that the network 
delay of the system is between 0.26 seconds and 0.37 seconds, 
which reduces the development time by 50% and increases the 
human-computer interface by 13.20% [9]. Liu used speech 
recognition technology to analyze and deal with differences in 
phoneme expression in spoken English, and made statistics on 
some errors and areas to be improved in English. The 
development and promotion of speech recognition technology 
can effectively reduce the cost of college oral English teaching 
and promote the improvement of college students' oral English 
ability [10]. Xu first proposed the concept of five dimensions 
of AR situational telepresence, i.e. the sense of scene, 
immersion, reality, interaction, and social telepresence. Then, 
combined with the actual situation of English teaching, he put 
forward a theoretical framework to strengthen the teaching of 
spoken English. Finally, he made a systematic analysis and 
discussion on the relationship between the proposed 

dimensions. He explored the application of augmented reality 
technology in classroom and online teaching from three levels 
of perception, acceptance and application [11]. 

To sum up, deep learning has been widely used in many 
fields and has shown strong performance. However, the field of 
oral evaluation is still in the development stage, so the research 
applies the deep learning technology to the oral evaluation 
model for the first time. The purpose of the study is to improve 
the oral evaluation model and further promote the development 
of oral evaluation. 

III. ORAL ENGLISH LEARNING EVALUATION MODEL FOR 

ONLINE EDUCATION BASED ON IMPROVED DEEP LEARNING 

ALGORITHM 

A. The Construction of Transformer Oral Evaluation Model 

based on Text Priori 

With the continuous development of computer deep 
learning technology, the task of speech recognition has been 
greatly improved. The evaluation model based on in-depth 
learning of spoken English has been applied in online oral 
English education [12-14]. The research first proposes a text 
priori-based oral evaluation model, whose structure is shown in 
Fig. 1. 

The model built in Fig. 1 obtains the error status label of 
the phoneme by comparing the actual phoneme with the target 
phoneme. The obtained wrong label can avoid the model from 
introducing an improbable alignment operation during training, 
and at the same time, the alignment operation will be 
transferred to the data preparation stage. This model is 
significantly different from the spoken language evaluation 
model using speech recognition. The model used in the 
research does not use the actual pronunciation phoneme as the 
input of Decoder, but uses the target phoneme. The prediction 
expression of actual pronunciation and error label is shown in 
formula (1). 
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Fig. 1. Work flow of oral evaluation based on text priori. 
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ˆ ˆ, ( , )tgtP E Decoder H P
 (1) 

In formula (1), P̂  represents the actual pronunciation. 

Ê  indicates an error label. 
tgtP  is the target phoneme. H  

represents the characteristics of audio. When outputting the 
model, the output length should be paid attention. In the oral 
language evaluation model of speech recognition, when to 
output <EOS> determines the output length of speech 
sequence. Moreover, when the length of speech sequence is 
aligned with the target text, the model will output an error 
status sequence, which is the same length as the target text. The 
model used in the study has used phoneme tagging to align the 
speech sequence with the target text in the training process, 
which can also make the length of the error state equal to the 
target text. The research takes “hi” as an example, and aligns 
the labeled actual phoneme “HH EY” with the target text 
phoneme “HH AY” in the data preparation stage, and then 
obtains the phoneme error status target. For audio features and 
target phonemes, the output of the model reflects the matching 
between the two. A two-layer convolutional network is 
superimposed on the back end of Decoder, and the convolution 
core size of the network is 3 * 3. ReLU function is used as the 
activation function, and the output value is mapped to [0,1] 
interval through linear layer and sigmoid function. The oral 
language evaluation model based on text priori is shown in Fig. 
2. 

Since the evaluation can be differentiated in the output of 
the evaluation error state, the loss function between the 
predicted state and the real label can be directly calculated and 
optimizes the whole model using back-propagation. The 
research uses Binary Cross-Entropy (BCE) to train the 
predicted value and label, and its expression is shown in 
formula (2) [15-17]. 

ˆ( , )BCE

el BCE E E
 (2) 

In formula (2), E  represents the real label. In the 
evaluation task, BCE loss does not represent a loss function. 

When the model extracts the relevant acoustic features of the 
speaker's mother tongue as an auxiliary task, the research adds 
a module about mother tongue prediction to the output of 
Encoder. This module predicts the speaker's mother tongue 
through the input audio features. The input sequence audio 
features need to be converted into a single classification output, 
so the research uses the Statistics pooling layer based on mean 
variance statistics to achieve the above purpose. Its expression 
is shown in formula (3). 

ˆ ( )a StatisticsPooling H
 (3) 

In formula (3), â  represents the single classification 
output of the sequence audio feature transformation. Cross 

Entropy (CE) is also used for the training of â  and a . Its 
expression is shown in formula (4). 

ˆ( , )al CrossEntropy a a
 (4) 

The criterion for classifying the error state is the misreading 
of the target phoneme. The model needs more samples for 
training, otherwise the model cannot combine the output target 
with the corresponding audio and target phonemes, and then 
over-fitting occurs. At present, there are few data sets that can 
be used in oral evaluation, so the research needs to obtain an 
acoustic model first. The model can be trained by standard 
speech recognition dataset. After completing the pre-training 
task, the research will still require the model to complete the 
auxiliary task of speech recognition, so as to mine more 
relations between audio features and phonemes. Finally, the 
loss function is integrated to obtain the formula (5). 

ˆ( , )

e a asr

out

asr

l l l l

l CrossEntropy P P

   


  (5) 

In formula (5),   represents the weight of the auxiliary 

task of native language recognition. 


 represents the weight 
of loss function of speech recognition auxiliary task. 
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Fig. 2. Structure of spoken language evaluation model based on text priori. 

B. Self-Supervised Acoustic Model Construction 

In the practice of second language learning, learners are 
extremely vulnerable to the objective influence of their mother 

tongue pronunciation, which leads to the deviation of their 
second language pronunciation from the standard 
pronunciation. There is unavoidable misreading in oral English 
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assessment. There is a large error between the text annotation 
of the Second Language (L2) phonetic feature and the actual 
pronunciation. Therefore, in the absence of actual 
pronunciation marking, it is difficult to accurately model L2 
speech features based on the text priori oral evaluation model. 
Self-supervised learning (SSL) is a common machine learning 
method. It can use auxiliary tasks to accurately mine the 
supervision information related to itself from the massive 
unsupervised data without external tag data, and then realize 
effective network training [18-20]. In recent years, the research 
on SSL in the voice field has attracted more and more 
attention. The most classic structure in SSL is the Noise 
Reduction Auto Encoder (DAE). Its main structure is divided 
into three parts, namely encoder, bottleneck layer and decoder, 
as shown in Fig. 3. 

According to Fig. 3, the DAE will first learn a compressed 
feature vector from the original features. Then the decoder will 
process the feature vector to recover the corresponding original 
data. The feature vectors in the original feature will be 
compressed once in the encoder and bottleneck layer 
respectively. Therefore, the original data recovered by the 
decoder is no longer accompanied by noise and other influence 
elements, and will be more representative and typical. From 
Fig. 1, the DAE will modify the original features before 
importing them. According to the different types of input 
features, there are also some differences in the modification 
methods of features, mainly including transformation, masking, 
and comparative learning. Transformation refers to converting 
the original voice input information into spectrum information, 
and then requiring the network model to recover the original 
waveform from it. Masking refers to treating the input speech 
feature as 0 randomly, and the most widely used is the 

Bidirectional Encoder Representations from Transformer 
(BERT) model. Comparative learning can ensure that the 
model can screen out more typical and distinctive speech 
features under specified conditions. This modification method 
no longer only destroys and modifies the original input 
information, but helps the network model learn valuable 
representative features by adding interference items. The most 
typical model is Wav2Vec model. The BERT model and 
Wav2Vec model are organically combined, and a discrete 
process is added after the encoder completes the encoding of 
the original features. This realizes the effective integration of 
discretization process and comparative learning, and obtains 
the Wav2Vec2 network model, whose structure is shown in 
Fig. 4. 

Decoder
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Original 
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Fig. 3. Network structure diagram of DAE. 
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Fig. 4. Structure and training diagram of Wav2Vec2 network model.

Looking at Fig. 4, the original speech feature X  can be 

encoded as Z  under the action of the encoder, and Z  has a 
higher degree of abstraction. Then the Wav2Ve++c2 network 

model will enter the discretization process, from which Z  

can be converted into speech feature 
Q

. Finally, Transformer 
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can integrate it into a new context feature C . The Wav2Vec2 
network model also includes the contrast loss function training 
model, which can generate a richer discrete code table. On this 
basis, the discrete acoustic units can be obtained by clustering 
them with k-Means algorithm, as shown in Fig. 5. 

Fig. 5 shows the complete acoustic unit construction 
process. The circle represents the cluster, the red label and the 
blue label represent the original acoustic unit and the replaced 
acoustic unit respectively. Black dots represent each voice data 
in the training process of the clustering model network. The 
semantic vector is extracted from the target speech standard 

and L2 speech feature, and then Class- K  speech information 
is obtained under the clustering effect of k-Means algorithm. 

Finally, it is converted into discrete acoustic unit sequence-U , 
as shown in Eq. (6). 

 1 2, , , TU u u u
 (6) 

In formula (6), T  is the corresponding length of the 
discrete acoustic unit sequence, which can replace the original 

voice features as the input of the network model. For any U , 

ranking the other 1K   acoustic units according to their 

distance from U , and their corresponding distance is obtained 
as shown in Formula (7). 

 1 2 1, , ,d d d d

KS s s s 
 (7) 

In formula (7), d  is the single semantic distance, that is, 
the difference between the vector distance of the acoustic unit 
before and after the replacement in the semantic subspace. It 

can accurately reflect the matching degree between the 
replaced acoustic unit sequence and the original speech 

features. The research selects the unit closest to k  from the 
dataset as a substitute, and uses normal distribution to select it, 
as shown in formula (8). 

( 1)
min( 1,int( ( )))

3

r K
k K abs


 

 (8) 

The above method can obtain the vector distance difference 
of the acoustic model in the semantic subspace before and after 
the replacement. Euclidean distance is selected as the 
calculation method of distance difference, and the expression is 
shown in formula (9). 

( , ) ( , )r rd u u MSE v v
 (9) 

In formula (9), d  refers to the distance difference of the 
vector. The mute part of the original audio will have a huge 
distance from other acoustic units after clustering. These 
outliers will interfere with the model, so the replacement 
method used in the study should be used under the condition of 

( , )rd u u H
. If the condition is not met, it will not be 

replaced. The pre-training process based on acoustic unit 
replacement is shown in Fig. 6. 

In Fig. 6, the original audio is converted into a discrete 

audio sequence U . Then the new sequence 
rU  is obtained 

by replacing the acoustic unit. The distance difference between 
the two in the quantum space is shown in formula (10). 

1{ , , }TD d d 
 (10) 
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Fig. 5. Self-supervised clustering of original speech features and its replacement. 
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Fig. 6. Pre-training process based on acoustic unit replacement. 

To obtain the corresponding distance between phonemes, 
the initial position of phonemes is searched through the forced 
alignment tool. Therefore, the corresponding distance of 
phonemes is shown in formula (11). 

1{ , , }p p p

LD d d 
 (11) 

In formula (11), L  represents the sequence length of the 
target phoneme. Finally, the research attempts to predict the 
distance model of each phoneme with the model, and then 
make the model learn the degree of deviation from the target 
text. The loss of the model is expressed by the mean square 
error function, as shown in formula (12). 

ˆ( , )p p

edl MSE D D
 (12) 

Formula (13) is the loss function when using the 
substitution method based on acoustic units for migration 
prediction. 

ed asrl l l 
 (13) 

The clustering model is trained in L1 and L2 speech, and 
the characteristics of standard and non-standard pronunciation 

of the target speech are obtained. These features can obtain 
more fine-grained audio replacement by changing the number 
of clusters, which greatly increases the authenticity of misread 
samples. 

IV. PERFORMANCE VERIFICATION OF ORAL ENGLISH 

LEARNING EVALUATION MODEL FOR ONLINE EDUCATION 

A. Performance Analysis of Oral Language Evaluation Model 

based on Text Priori 

Before the experimental analysis, the weight of the 
auxiliary task of mother tongue recognition was set to 0.1. If no 
native language information is added, the weight is set to 0. 
The weight of loss function of speech recognition auxiliary 
task is set to 0.1. The ASR pre-training uses the Librispeech 
data set. The ratio of training set, verification set and test set is 
approximately 10:1:1 in this data set. The L2-Arctic data set is 
used in the oral evaluation task. The data set is divided into 
training set, verification set and test set according to the ratio of 
10:1:4. The test of model performance is mainly evaluated by 
seven indicators: Phoneme Error Rate (PER), Precision, 
Accuracy, Recall, F1, False Rejection Rate (FRR) and False 
Acceptance Rate (FAR). The effect comparison of different 
models in oral evaluation is Table I. 

TABLE I. ORAL EVALUATION OF DIFFERENT METHODS 

Model PER PRE ACC REC 

Primitive phoneme 

ASR 0.224 0.426 0.787 0.524 

TC-ASR 0.120 0.452 0.833 0.396 

TC-Direct 0.129 0.506 0.824 0.474 

Extended phoneme 

ASR 0.286 0.403 0.789 0.401 

TC-ASR 0.155 0.569 0.842 0.502 

TC-Direct 0.173 0.500 0.823 0.521 

Extended phoneme+ 

ASR 0.293 0.398 0.786 0.413 

TC-ASR 0.172 0.552 0.838 0.519 

TC-Direct 0.181 0.488 0.818 0.629 
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Table I shows the performance comparison of different 
models under different conditions. In Table I, there is a certain 
gap between the PER, RRE, ACC and REC indicators of ASR 
model and the other two models. The ACC index of TC-ASR 
model is higher than TC-Direct, while the remaining three 
indexes are lower than TC-Direct model. The PER value of 
TC-Direct model in “extended phoneme+” is 0.181. The ACC 
value in “extended phoneme” is 0.823. The REC value in 
“extended phoneme+” is 0.629. The experimental results show 
that the TC-Direct model has better performance in oral 
evaluation. 

Fig. 7 shows the F1 value result of the translation model. 
Fig. 7 (a) shows the F1 value of the model in the original 

phoneme. The F1 of ASR is 0.464. TC-ASR model is a text 
priori phoneme level speech recognition model, its F1 value in 
the original phoneme score is 0.462. The TC-Direct model is a 
text priori model proposed by the study, and its F1 score in the 
original phoneme is 0.538. Fig. 7 (b) shows the F1 value of the 
model in the extended phoneme. The F1 score of ASR model is 
0.402. The F1 score of TC-ASR model is 0.533. The F1 of 
TC-Direct is 0.554. Fig. 7 (c) shows the F1 value of the model 
in “extended phoneme+”. The F1 score of ASR model is 0.405. 
The F1 score of TC-ASR model is 0.535. The F1 score of 
TC-Direct model is 0.549. The experimental results show that 
the F1 value of TC-Direct model is the highest in the three 
environments, and the validity of extended phoneme is also 
shown. 
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Fig. 7. F1 values of machine translation models in different models. 
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Fig. 8. F1 scores of the model before and after adding mother tongue accent information. 
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Fig. 8 shows F1 scores of each model after adding native 
language feature information. Fig. 8(a) shows the F1 score of 
the model adding native language feature information to the 
original phoneme. The F1 value of ASR is 0.464 without 
adding native language accent label; The F1 score of the ASR 
model is 0.473 when the mother tongue accent label is added. 
Similarly, the F1 scores of TC-ASR model before and after 
adding mother tongue information were 0.462 and 0.469 
respectively; The F1 scores of TC-Direct model before and 
after adding mother tongue information were 0.538 and 0.550 
respectively. Fig. 8(b) shows the F1 score of the model in 
which the mother tongue accent information is added to the 
expanded phoneme. The F1 scores of ASR model were 0.402 
and 0.404 before and after the addition of mother tongue accent 
information. The F1 scores of TC-ASR model before and after 
adding mother tongue information were 0.533 and 0.551 
respectively. The F1 of TC-Direct before and after adding 
mother tongue information were 0.554 and 0.562 respectively. 
Fig. 8(c) shows the F1 score of the model in which the mother 
tongue accent information is added to “extended phoneme+”. 
The F1 scores of ASR model were 0.405 and 0.408 
respectively before and after adding native accent information. 
The F1 scores of TC-ASR model before and after adding 
mother tongue information were 0.535 and 0.552 respectively. 
The F1 scores of TC-Direct model before and after adding 
mother tongue information were 0.549 and 0.555 respectively. 
From the comparative analysis of model results, TC-Direct 
model has a higher F1 score compared with other models, 
indicating that the model has better performance. From the 
analysis of the results before and after adding the mother 
tongue accent information, adding the mother tongue accent 
information can improve the F1 score of the model, indicating 
that the mother tongue accent information can help the model 
obtain better recognition performance. 

B. Analysis of Influence of Parameters on Model 

Performance 

Adjusting the weight   between FAR and FRR can make 
the oral evaluation model different in difficulty, as shown in 
Fig. 9. Fig. 9(a) shows the change of the Recall-Recision curve 

of the loss function when adjusting  . The larger the value of 

 , the effective adjustment range of Focal function is between 
0.05 and 0.95. The effective adjustment range of BCE function 
is about 0.38 to 0.78. The effective adjustment range of F1 
function is 0.59 to 0.62. Fig. 9(b) shows the change of the 

FAR-FRR curve of the loss function when adjusting  . The 
effective adjustment range of Focal function is also between 
0.05 and 0.95. The effective adjustment range of BCE function 
is about 0.22 to 0.42. The effective adjustment range of F1 
function is 0.37 to 0.39. The experimental results show that 
Focal loss function has a wider adjustment range, which is a 
better choice for practical application. 

Fig. 10 shows the effect of target phonemes of different 
lengths on the reasoning duration. Fig. 10(a) shows the 
reasoning time results of ASR model for different length 
phonemes. The longer the length of the target phoneme is, the 
longer the reasoning time of ASR model is, which is in positive 
proportion. Fig. 10(b) shows the reasoning time results of 
TC-Direct model for different length target phonemes. The 
reasoning time of the model is also positively correlated with 
the phoneme length, but the influence is low. The model has 
the best performance when the target phoneme length is 25-40. 

Fig. 11 shows the effect of the scale of the training set on 
the performance of the model. Fig. 11(a) shows the F1 value of 
the model in the L2-Arctic dataset. The F1 of ASRis 0.372 
without training; The F1 value is 0.473 when the training set 
proportion reaches the highest. The F1 value of TC-Direct is 
0.596 when the training set proportion is the highest. Fig. 11(b) 
shows the F1 value of the model in the Speed Ocean dataset. 
The F1 of ASR is 0.356 without training, and the ratio of 
training set is 0.446 when it reaches the maximum. The F1 of 
TC-Direct is 0.612 when the training set proportion is the 
highest. The F1 value is higher than that of ASR model in both 
data sets regardless of the proportion of the training set. 
Comparing the two data sets, the F1 value of ASR in the Speed 
Ocean data set is slightly lower than that in the L2-Arctic data 
set. The F1 value of the TC-Direct model in the Speed Ocean 
dataset is higher than that in the L2-Arctic dataset. Thus, the 
TC-Direct has wider applicability. 
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Fig. 9. Influence of the weight between FAR and FRR on the loss function. 
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Fig. 10. Reasoning duration results of target phonemes with different lengths. 
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Fig. 11. F1 value of model in different training set proportions. 

V. DISCUSSION 

The proposed model was experimentally validated through 
comparative experiments. Analyzing the performance of the 
model from three datasets, among which the TC-ASR and 
TC-Direct models have better performance. In the original 
phonemes, the PER and ACC indicators of TC-ASR are 
slightly better than those of TC-Direct, but both exceed 0.1; 
The PER and REC indicators of the TC-Direct model are 
significantly higher than those of the TC-ASR model. In the 
"extended phoneme" and "extended phoneme+" models, the 
TC-ASR model showed lower REC indicators than the 
TC-Direct model, while the PER, PRE, and ACC indicators 
were higher than the TC-Direct model. Through the above four 
indicators, it is difficult to distinguish the performance gap 
between models. The study continued to use the F1 value to 
measure the superiority of the model's performance. After 
introducing the F1 value, the TC-Direct model showed the 
highest F1 value in all three phoneme conditions, indicating 
that the model had good performance. Not only that, the study 
also added native accent information, which can enhance the 
F1 value of the model, indicating that native accent information 

helps the model to perform more accurate recognition. To 
verify the rigor of the experiment, several parameters were 
validated. Adjust the weight of parameters, adjust the length of 
phonemes, and adjust the size of the training set. In the 
experiment, the weight of FAR-FRR has a direct impact on the 
performance of the model. If its weight ratio is about, the 
worse the model performance; The length of phonemes does 
not directly affect the performance of the model, indicating that 
the model has a wide range of applications; The performance 
of the model also depends on the size of the training set, and 
with sufficient training sets, the model can perform better. 

VI. CONCLUSION 

For the low performance of the conventional speech 
recognition oral evaluation model, a text priori-based oral 
evaluation model is proposed. By using the self-supervised 
learning method to build the acoustic model, the speech 
recognition and misreading detection are combined to achieve 
the purpose of error state prediction. The research verifies the 
performance of the proposed model through Librispeech 
dataset, L2-Arctic dataset and Speed Ocean dataset. The 
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experimental results show that the F1 value of the model in the 
"original phoneme" is 0.538, the F1 value in the "extended 
phoneme" is 0.554, and the F1 value in the "extended 
phoneme+" is 0.549; After adding native accent features, the 
F1 value of the model is 0.550 in the "original phoneme", 
0.562 in the "extended phoneme", and 0.555 in the "extended 
phoneme+". The proposed model has good F1 values in 
different phoneme datasets, indicating that the model has good 
performance in phoneme recognition and can improve the 
recognition performance of English spoken language. In the 
experiment, the study also verified the impact of the length of 
the target phoneme on the model performance, and the results 
showed that the change in model performance was less affected 
by the change in the length of the target phoneme. The 
experiment has verified that the performance of the model has 
a direct impact on the size of the training set. If the model is 
trained in sufficient training sets, it cannot continuously 
increase the F1 value, further improving the model's 
performance, and indicating that the model has a wider 
adaptability. However, there are still deficiencies in the study. 
The research did not explore the speech style when it was used 
for oral evaluation, so the follow-up research needs to preserve 
the speech style without accent. 
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